And scaling goes on... Technology Challenges & Opportunities

Presentation to the 2007 EMEA Academic Forum Budapest, 12 June 2007

J. Maiz Intel Fellow, Director of Logic Technology Q&R

Key Messages

Technology scaling continues according to Moore's Law

- 2X increase in functionality every 2 years
- Multicore, integrated functionality or both
- 65nm in 2005, 45nm 2007, 32nm 2009

High rate of innovation is critical to future success

- Many new device types and materials
- A challenge as well as an opportunity

• Close collaboration with Universities is a key component of a successful Intel strategy

- Highly capable universities with outstanding research professors
- Outstanding students

EMEA ACADEMIC

12th EMEA Academic Forum June 12-14, Budapest Hungary

Technology scaling on a 2 Year Cycle

	<u>180 nm</u>	<u>130 nm</u>	<u>90 nm</u>	<u>65 nm</u>	<u>45 nm</u>
	1999	2001	2003	2005	2007
Transistor	11		SiGe + SiGe		
Interconnect	Liniçii Təşəələr Təşəələr				
	200mm 100nm L _G CoSi ₂	300mm 70nm L _G CoSi ₂	300mm 50nm L _G NiSi Strain Si	300mm 35nm L _G NiSi 2nd Strain	Details Coming!
	6 AI SiOF	6 Cu SiOF	7 Cu Low-k	8 Cu Low-k	Courtesy: Intel
EMEA ACADEMIC					

FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

z

Moore's Law Delivers Value to the End User

Twice the functionality at the same cost every 2 years

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

4

EMEA ACADEMIC

Performance/ Watt

Trend in Performance/ Watt relative to i386 1000 Core® 2 Int MIPS/W MIPS/ Watt (Relative) 1/2Core **FP MIPS/W P4** 100 i386 i486 E **P5 P6** Ξ 10 1 2000 2006 2004 2002 2006 1998 966 988 992 994 985 2006 Year

Performance/ watt improvement for both integer and Floating point

> 12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

5

1 2th EMEA Academic Forur

EMEA ACADEMIC

Lead in 45nm Technology and Products

Intel® Penryn Core[™]2 family processor 410/820 M transistors (2C/4C) Wo*rld's first working 45 nm CPU*

153 Mbit SRAM 0.346 μm² cell 119 mm2 chip size >1B transistors Functional in Jan 2006

6

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

45 nm Yield Improvement Trend

2000 2001 2002 2003 2004 2005 2006 2007 2008

Excellent Yield learning and good reliability too On track for production ramp in 2H '07

12th EMEA Academic Forum June 12-14, Budapest Hungary

SRAM Cell Size Trend

The trend continues

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

At the core of it is the transistor

35 nm gate length
220 nm gate pitch
1.2 nm gate oxide
NiSi for low resistance
2ND generation strained silicon

Leading edge transistor technology is unmatched by our competitors

FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Strained Silicon Transistors

 Intel's unique strained silicon technology increases

 transistor drive current by an average of >30%

 EMEA ACADEMIC

 12th EMEA Academic Forum

 June 12-14, Budapest Hungary

 J. Maiz
 10

Higher performance + lower leakage

"The implementation of high-k and metal materials marks the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s."

Gordon Moore, Intel co-founder

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

High-k + Metal Gate Transistors

Integrated 45 nm CMOS process

High performance

Low leakage

Meets reliability requirements

Manufacturable in high volume

Low Resistance Layer

Work Function Metal Different for NMOS and PMOS

High-k Dielectric Hafnium based

Silicon Substrate

	High-k vs. SiO ₂	Benefit
Capacitance	60% greater	Faster transistors
Gate Leakage	>100x reduction	Cooler chips

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

Gate Dielectric Field Trend

Substantial increases in E_{field} enabled by HK/MG

FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

65 nm Generation Interconnects

Simple 2 layer dielectric stack for low capacitance and low cost

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

45nm Development/ 65 nm High Volume Manufacturing

45 nm development

- D1D in Oregon
- 176,000 sq feet clean room
- ~3.5 football fields
- 65 nm high volume fabs
 - D1D in Oregon
 - F12 in Arizona
 - F24 in Ireland
 - D1C in Oregon
 All 300 mm

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Logic Technology Evolution Today

<u>P1262 P1264 P1266</u> P1268 **Process Name** P1270 2007 1st Production 2003 2005 2009 2011 Lithography 65 nm 45 nm 32 nm 90 nm 22 nm Manufacturing Fabs **Development** Research

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Pipelined Development Enables 2 Yr Cycle

Heavy reliance on Universities & consortia in the early research stages

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Future Transistors

The future: Tri-Gate Transistors?

19

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

Increasing Electron Mobility

EMEA ACADEMIC

Increased electron mobility leads to higher performance and less energy consumption

 The challenge is integrating them with Silicon and improving Hole mobility

n-Mobility	Compound Semiconductors			
Si	GaAs	InAs	InSb	
1	8	33	50	

20

12th EMEA Academic Forum June 12-14, Budapest Hungary

Scaling of the interconnect

21

• Effective resistivity increase due to:

- Cross section reduction due to barriers
- Increased scattering from grain boundaries and surfaces

Tough but manageable challenges

12th EMEA Academic Forum June 12-14, Budapest Hungary

Cu metal line scaling

Barrier scaling for larger copper cross section
Barrier scaling & Via shaping for easier metal fill

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

ILDs for Low capacitance interconnects

Reduction of Dielectric Permitivity:

- Insert Methyl groups (i.e. CDO)
- Random porous materials
- Ordered porous materials
- Polymers with low K

Source: Li et al, UCR, J Phys Chem, 2005

23

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Spin-on

Lithography Challenge

Very High Innovation Rate

Materials	HighK-MGate Xtors for performance & Low Power
	LowK ILDs for interconnect
5	Si-Ge layers
	Novel materials for strain and electrical Performance
Transistor	Novel transistor architectures for HighK-MG
Architecture	TriGate Xtors and III-V integration in the future
Chip	Efficient Performance/Power with CoreTM2
Architecture	MultiCore
	Monolythic integration of Graphics, Mem. Controller etc.
Platform Integration	Power & form factor optimization

High innovation rate in all fronts is critical to Intels success

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Technology leadership is the result of close multi-group collaboration within Intel +...

EMEA ACADEMIC FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

The effective collaboration with top research communities around the world

• Collaboration with research consortia like:

- IMEC (Europe)
- SEMATECH (USA)
- SRC
 - GRC: Global Research Corporation
 - FCRP: Focus Center Research Program
 - NRI: Nanotechnology Research Initiative
 - ASET: Association of Super-Advanced Electronic Technologies (Japan)

FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

The effective collaboration with top research communities around the world

• ... and research Universities:

- Funding of projects in ~60 universities worldwide
- Over \$10M funding
- In the areas of
 - Emerging Devices
 - Interconnects and Reliability
 - Packaging
 - Nano-electronics
 - Opto-devices and optical interconnects
 - Novel memory devices
 - Microsystems

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

The effective collaboration with top research communities around the world

 Small but growing participation of European Universities/ Institutions -IMEC (Belgium) - CEIT Research Institute (Spain) - University College Cork (Ireland) - Forschungszentrum Karlsruhe (Germany) - ETH, U Neuchatel (Switzerland)

FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Some key areas for University Research

- Fundamental understanding of properties and effective metrology for new materials:
 - High K dielectrics and Metal Gate materials
 - CVD/ALD deposited metal barriers/ and seed layers that will be needed to enable plating of lines 30nm and below
 - Ultra Low K ILDs with improved mechanical robustness and pore sealing strategies (if material is porous)
 - Reliability of materials and interfaces and effective metrology
 - Novel materials of interest in both Non-Volatile and 6T Cell replacement schemes

Promising novel device concepts

- Improved Power X Delay (Like some III-V?)
- Improved Ion/Ioff ratios (Like Tri-gate transistors)
- Novel memory concepts (Both volatile and NV)
- Innovative architectures
 - Low power logic architectures
 - Fault tolerant strategies for logic

FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

Some key areas for University Research

Some additional suggestions:

- Do not compete with industry in integration or in trying to build smaller devices
 - The cost is very high and the likelihood of success is low
- Focus on fundamental understanding, Metrology, and proof of concepts for novel devices (2011+)
- Develop a partnership with some key industry player
 - Guidance on what the relevant problem are, access to advanced equipment, materials and samples

The key core competency for the University is Brain Power, not money or fancy equipment

FORUM

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

(intel Leap ahead

12th EMEA Academic Forum June 12-14, Budapest Hungary

J. Maiz

