Tunnel FET: the next energy efficient switch?

Adrian M. Ionescu Ecole Polytechnique Fédérale Lausanne http://nanolab.epfl.ch/

Outline

- Power challenge and energy efficient switch
- Sub-thermal swing switches
- Complementary Tunnel FETs
 - Physics, optimization, scaling
 - Model and temperature (in)dependence
 - All-silicon, Ge & III-V heterostructure, Carbon
 - Circuit benefits
- Conclusions

The power challenge

- Power per chip continues increasing.
- Leakage power dominates in advanced technology nodes.
- V_T scaling saturated by 60mV/dec physical limit.
- Voltage scaling slowed, 90nm=1.2V, 45nm=1V, 22nm=0.8V

T. Sakurai, IEICE Trans. Electron., Vol.E87-C, April 2004, pp. 429-436.

MOSFET & subthreshold swing

$$S_{avg} = \left(V_T - V_{Goff}\right) / \log(I_T / I_{off}) \approx V_{dd} / \log(I_{on} / I_{off})$$

(mV/decade)

60mV/decade limit at RT

Conduction band profile in transport direction in a long channel MOSFET.

- The gate voltage moves the conduction band downwards, so that a larger fraction of the exponential tail of the source Fermi distribution can contribute to the current.
- •This gives rise to the exponential increase of the current.

History: diffusion current and S

V_{aate} E_{min} (eV) -0.2 V_{drain} = 0.6 -0.8| -15 -5 5 x (nm) above Log₁₀ l_{DS}--> threshold lon loff V_T

V_{GS} -->

- carrier injection by lowering the barrier
- subthreshold current is a diffusion current

$$I_{D} = q \frac{W}{L} \left(\frac{n_{i}^{2}}{N_{A}}\right) \frac{\left(k_{B}T / q\right)^{2}}{E_{S}} \mu_{eff} e^{qV_{GS}/mk_{B}T} \left(1 - e^{-qV_{DS}/k_{B}T}\right) A$$

$$m = 1 + C_D / C_{ox}$$

$$S = \frac{dV_g}{d(\log_{10} I_d)} = \ln 10 \frac{kT}{q} (1 + \frac{C_{dep}}{C_{ox}} + \frac{C_{ss}}{C_{ox}})$$

$$\rightarrow \frac{kT}{q} \ln 10 = 60 mV / decade \quad @RT$$

subthreshold region

0.4

R. Van Overstraeten, G.J. Declerck, P.A. Muls, IEEE Transactions on Electron Devices, Volume 22, May 1975.

Leakage power and thermal swing

Reducing threshold voltage **by 60mV** increases the leakage current (power) **by ~10 times**

Performance metrics: I_{ON} , I_{ON}/I_{OFF} , S, V_{T} , V_{dd} , τ

Energy efficiency, V_{dd} scaling and S $E_{total} = E_{dynamic} + E_{leakage} = \alpha L_d C V_{dd}^2 + L_d I_{off} V_{dd} \tau_{delav} \approx$ $\approx \alpha L_d C V_{dd}^2 + L_d C V_{dd}^2 \frac{I_{off}}{I} =$ $=L_d C V_{dd}^2 (\alpha + \frac{I_{off}}{I_{off}}) \approx L_d C V_{dd}^2 (\alpha + 10^{-V_{dd}/S})$

$$P = \alpha L_D C V_{dd}^2 f + I_{off} V_{dd} \approx K C V_{dd}^3 + I_{off} V_{dd}$$

a technology that would enable a voltage scaling by a factor of 5 (from 1 V to 0.2 V) with a negligible leakage power (with ultra-low I_{off} due to a small S, as the TFET) <u>could offer a power dissipation reduction of 125x</u>.

Small S and/or parallelism to the rescue

CMOS has a fundamental lower limit in energy per operation due to subthreshold leakage: (V_{ddmin}, E_{min}) Parallelism (multi-core) is a key technique to improve system performance under a power budget

Source: A.M. Ionescu, H. Riel, to appear.

Source: T.J. King, UC Berkeley. 9

Strategy for the energy efficient switch

- Improving the MOSFET switch: evolutive, additive technology boosters.
 - Channel engineering to reduce the V_{dd} - V_t (Ge, III-V, graphene, etc).
 - Nanowire and nanotube FETs for improved electrostatic (subthreshold leakage) control.
- Reduce the V_T and V_{dd} by a novel small swing switch.

Small swing switches

Tunnel FET vs. future FET

Tunnel FET is the most promising small swing switch for V_{dd} scaling.

Principles for SS < 60mV/decade

- NEM relay or NEMFET
- negative capacitance
 (NC) FET)
- Tunnel FETs
- Impact Ionization MOS

Tunnel FET: principle Band-To-Band-Tunneling (BTBT) G **Off-state On-state** S D • $V_d = positive$ $V_d = positive$ p+ n+ $V_a = 0$ $V_a = positive$ gated pin junction no current barrier thin, • reversed biased, BTBT flows current flows 1.5 1.5 0.5 **Energy** 0.5 **Constant** -0.5 -1.5 **Evergy** 0.5 **Evergy** 0.5 **C** -0.5 -1.5 p+ p+ en+ n+ -2.5 -2.5 0 0.1 0.2 0.1 0.2 0 13 Location [um] Location [um]

First experimental demonstration: 40mV/dec in CNT tunnel FETs

• dissipative quantum transport simulations of CNT FETs using the non-equilibrium Green's function (NEGF) formalism.

M. Lundstrom

J. Appenzeller, J. Knoch, Phys. Rev. Lett. 93, (2004).

Physics: tunneling rate

$\begin{array}{l} \mbox{Min tunneling screening} \\ \mbox{length, } \lambda \end{array}$

Major characteristics dictated by the tunneling junction and gate control on λ

- bandgap
- gate dielectric
- (thickness, permittivity)
- silicon film thickness (UTB, NW)
- fringing fields

20nm Tunnel FET versus CMOS

Parameter	MOSFET ^a			Tunnel transistor		Unit
	2007	2010	2013 ^b	Si	Ge	
Gate length L _G	25	18	13	20	20 nm	
Gate width $W \sim 10L_G$	250	180	130	200	200	nm
Equivalent oxide thickness EOT	1.1	0.65	0.5	1	1	nm
Supply voltage V _{DD}	0.5	0.5	0.5	0.5	0.5	V
On current I _{ON}	428	701	1053	1.2	440	μA/μm
Off current I _{OFF}	0.29	2.02	1.88	2.7E-06	0.0036	μA/μm
Oxide capacitance density $C_{OX} \sim \epsilon / t_{OX}$	31.4	53.1	69.1	34.5	34.5	fF/µm ²
Gate capacitance $C_G \sim C_{OX}L_G$	0.78	0.96	0.90	0.69	0.69	fF/μm
Intrinsic speed $_T \sim C_G V_{DD}/I_{ON}$	0.92	0.68	0.43	288	0.78	ps
Leakeage $P_{\text{leak}} \sim n I_{\text{leak}} V_{\text{DD}}$	7.25	50.50	47.00	6.8E-05	0.09	μW/µm
Dynamic $P_{dyn} \sim 1/2nI_{ON}V_{DD} \alpha$	107	175	263	0.300	110	μW/µm
Total $P \sim P_{\text{leak}} + P_{\text{dyn}}$	114	226	310	0.300	110	μW/µm
Leakeage $E_{\text{leak}} \sim (nI_{\text{leak}}) V_{\text{DD}} (n\tau)$	332	1722	1002	1	4	aJ/μm
Dynamic $E_{dyn} \sim 1/2 (nC_G)V_{DD}^2 \alpha$	98	120	112	86	86	aJ/μm
Total $E \sim E_{\text{leak}} + E_{\text{dyn}}$	430	1842	1114	87	90	aJ/μm

- Q. Zhang, A. Seabaugh, DRC 2008.
- all-silicon Tunnel FET: low performance (low lon)
 heterostructures: source bandgap engineering.

All-Si Double Gate Tunnel FET with high-k dielectric

Parameter	Before	After optimization	
Gate dielectric ϵ	3.9	25	
Junction width	47 nm / 5 decades	12 nm / 5 decades	
Body thickness	50 nm	10 nm	
Source doping	8x10 ¹⁹ atoms/cm ³	1.5x10 ²⁰ atoms/cm ³	
Gates	Single	Double	
Oxide alignment	Over all	Over intrinsic	
Device/gate length	90 nm	30 nm	

K. Boucart and A.M. Ionescu, IEEE TED 2007.

Sub-1V all-silicon tunnel FET

Additive technology boosters (simulation)

 $I_{on} > 100 \mu A/\mu m @ 1V$ $I_{on}/I_{off} > 10^{10}$

'A': base device

- 'B': Like A with high-k dielectric.
- 'C': Like B with narrower junction.
- 'D': Like 'C' with thinner body.
- E: Like 'D' with higher source doping.

'F': Like E with double gate.

'G': Like 'F' with oxide over intrinsic region.

'H': Like 'G' with shorter length.

'J': Like 'H' with bandgap $E_g = 0.8$ eV at the tunnel junction.

K. Boucart, W. Riess, A.M. Ionescu, ESSDERC 2009.

Ge/SiGe-source vertical NW Tunnel FET

All-Si Multiple-Gate Tunnel FET

- Ion=46µA/µm and I_{OFF} of 5pA/µm at V_{DD}=-1.2V demonstrated for narrow fin Tunnel FETs by IMEC.
- Implant optimization study carried out: spike anneal ('SPIKE'), subms laser anneal ('LA') and low temperature anneal for Solid Phase Epitaxy Regrowth ('SPER').

Bottom-up NW Tunnel FETs

VLS grown Si NWs tunnel FETs with different gate stacks (SiO₂ and HfO₂); the use of a high-k gate dielectric markedly improves the TFET performance in terms of average slope and on-current.

Experimental Ge-source Tunnel

lon/loff ~3.106 @ Vdd=0.5V

 $\begin{array}{l} \mbox{lon} \sim 300 \mu A / \mu m @ Vd=3V \\ \mbox{lon} \sim 10 \mu A / \mu m @ Vd=1V \\ \mbox{lon} \sim 0.2 \mu A / \mu m @ Vd=0.5V \\ \mbox{S=50mV/dec} \end{array}$

T. Krishnamohan et al, IEDM 2008.

S. Kim, H. Kam, C. Hu and T.-J. King Liu, VLSI 2009. 23

SOI, SGOI, GeOI tunnel FETs

Courtesy of Cyrille Le Royer: CEA-LETI @ IEDM 2008 & ULIS 2010.

Ρ

Ν

Ν

GeOl

Heterojunction Tunnel FETs: staggered vs. broken band line-up

- High on state performance predicted
 minimal S value
- minimal S value in the case of staggered band line-up

J. Knoch, Proc. 2009 Internat. Symp. VLSI-TSA, 45 (2009).

Graphene Tunnel FET

• Ultralow-Voltage Bilayer Graphene Tunnel FET with electrostatically tuned bandgap for Vd=0.1V,

• Solution of the coupled Poisson and Schrödinger equations in three dimensions, within the nonequilibrium Green's function formalism on a Tight Binding Hamiltonian.

 low quantum capacitance of bilayer graphene allows the BG-TFET to have most of the advantages of 1-D TFETs

 $I_{\rm on}/I_{\rm off} \text{ Ratios}, E_{\rm gap} \text{ Computed in the Middle of the Channel \mathcal{E}, the Electric Field in the Middle of the Channel, and Subthreshold Swing S for Different $V_{\rm diff}$$

$V_{\rm diff}$ (V)	$I_{\rm on}/I_{\rm off}$	E_{gap} (eV)	\mathcal{E} (MV/cm)	S (mV/dec)
6	147	0.24	9.45	21
6.5	885	0.25	10.23	13
7	2822	0.260	11.02	12
8	4888	0.274	12.59	14

G. Fiori and G. lannaccone, IEEE EDL, 2009.

Tunnel FET: basic modeling

$$I = AV_{eff} \xi \cdot \exp(-\frac{B}{\xi})$$

$$S = (d \log I_d / dV_{gs})^{-1}$$

= $\ln 10(\frac{1}{V_{eff}} \frac{dV_{eff}}{dV_{gs}} + \frac{\xi + B}{\xi^2} \frac{d\xi}{dV_{gs}})^{-1}$

$$S = \frac{V_{GS}^{2}}{2V_{G} + B_{Kane} E_{g}^{3/2} / D}$$

$$S|_{V_G\to 0}\to 0$$

- S is gate bias dependent: lowest @ lowest V_G
- B_{Kane} depends on effective mass
- D depends on tox, L, Vds, dopings

Recent model advancements by IBM and IMEC.

Unique temperature stability

- the S of TFET is weakly dependent on the temperature via the semiconductor band gap, E_G.
- the leakage floor of TFETs determined by Shockley–Read–Hall GR current exponentially increases with temperature
- Correct Tunnel FET behavior can be experimentally checked by the temperature insensitivity of the subthreshold swing.
- Interesting for analog applications with high temperature stability.

Complementary Tunnel FET inverter versus CMOS

50nm all-Si and 50nm Ge/InAs C-TFET inverters have better noise margins, more abrupt transition and higher gain than 65 nm CMOS
Problem: slower transient than CMOS and overshoot peaks due to critical Millet effect (in a Tunnel FET the gate capacitance Cgg is dominated by the Cgd under all bias conditions, which is in strong contrast to a MOSFET). This effect is reduced in heterostructure C-TFET.

• Tunnet FET offer better energy efficiency for applications up to 1GHz.

Fig. 4. Simulated (a) minimum-energy delay versus $V_{\rm DD}$ and (b) energy/ cycle versus frequency of the TFETs versus MOSFET for a 30-stage FO1 inverter chain (activity factor = 0.01). Projections are indicated by the dotted lines.

Ge-source TFET Source: S.Kim, C. Hu, T.-J. King Liu, IEEE EDL, Oct 2010.

TFET with Ion 1x, 1/3x, 1/10x Source: D.J. Frank, IBM, Node Workshop, Zurich, 2009.

Conclusions (1)

• Opportunities:

- Tunnel FET stands as the most promising steep slope switch candidate to reduce the supply voltage below 0.5 V and offer significant power dissipation savings.
- Because of their low I_{off}, they appear suited for low power and low standby power logic applications operating at moderate frequency (hundreds of MHz).
- Other promising applications of TFETs: ultra-low power specialized analog integrated circuits with improved temperature stability and low-power SRAM.
- hybrid CMOS complementary TFET design, with TFETs as an add-on ultra low power device option on advanced CMOS platforms.

- Challenges and perspectives:
 - achieve high lon without degrading loff, combined with a subthreshold swing of less than 60 mV/decade over more than four decades of drain current.
 - Additive combination of specific technology boosters.
 - Carbon materials (graphene and carbon nanotubes) are well-suited for high-performance Tunnel FETs due to their ultra-thin body thickness and their one-dimensional transport characteristics but face enormous challenges for experimental implementation.
 - Heterostructure Tunnel FETs offer the best performance compromise for complementary logic through advanced band engineering, using Ge- and InAs-sources on silicon platforms for nand p-type Tunnel FETs in ultra-thin films or nanowires.

Acknowledgements

- STEEPER project funded by the European Commission
- Kathy Boucart, EPFL
- Heike Riel, IBM Zurich
- Cyrille LeRoyer, CEA-LETI
- Kirsten Moselund, IBM Zurich

Backup: C-Tunnel FET

