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• Power challenge and energy efficient switch 

• Sub-thermal swing switches 

• Complementary Tunnel FETs 

– Physics, optimization, scaling 

– Model and temperature (in)dependence 

– All-silicon, Ge & III-V heterostructure, Carbon 

– Circuit benefits 

• Conclusions 
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• Power per chip continues increasing. 

• Leakage power dominates in advanced technology nodes. 

• VT scaling saturated by 60mV/dec physical limit. 

• Voltage scaling slowed, 90nm=1.2V, 45nm=1V, 22nm=0.8V 

T. Sakurai, IEICE Trans. Electron., Vol.E87-C, April 2004, pp. 429-436. 

Not 

achieved 
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Conduction band profile in transport direction 

 in a long channel MOSFET. 

• The gate voltage moves the conduction band downwards, so that a larger 

fraction of the exponential tail of the source Fermi distribution can contribute 

to the current. 

•This gives rise to the exponential increase of the current. 
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• carrier injection by lowering the barrier 

• subthreshold current is a diffusion current 
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R. Van Overstraeten,G.J. Declerck, P.A. Muls,  

IEEE Transactions on Electron Devices, Volume 22, May 1975.  
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Reducing threshold voltage by 60mV 

increases the leakage current (power) by ~10 times 
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a technology that would enable a voltage scaling by a factor of 5 (from 1 V 

to 0.2 V) with a negligible leakage power (with ultra-low Ioff due to a small S, 

as the TFET) could offer a power dissipation reduction of 125x. 
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Parallelism (multi-core) is a key 

technique to improve system 

performance under a power budget 

CMOS has a fundamental lower 

limit in energy per operation due to 

subthreshold leakage: (Vddmin, Emin)  

Source: T.J. King, UC Berkeley. Source: A.M. Ionescu, H. Riel, to appear. 
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• Improving the MOSFET switch: evolutive, 

additive technology boosters. 

– Channel engineering to reduce the Vdd-Vt  (Ge, 

III-V, graphene, etc). 

– Nanowire and nanotube FETs for improved 

electrostatic (subthreshold leakage) control. 

• Reduce the VT and Vdd by a novel small swing 

switch. 
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Tunnel FET is the most promising small swing switch for Vdd scaling. 
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• Tunnel FETs 

• Impact Ionization MOS 

m less than 1 
 

• NEM relay or NEMFET 

• negative capacitance 

(NC) FET) 
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• Vd = positive 

• Vg = 0 

• no current 

flows 

 

On-state 

• Vd = positive 

• Vg = positive 

• barrier thin, 

current flows 
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• gated pin junction 

• reversed biased, BTBT 

Band-To-Band-Tunneling (BTBT) 
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• dissipative quantum transport 

simulations of CNT FETs using 

the non-equilibrium Green’s 

function (NEGF) formalism. On-current: ~1mA/tube 

J. Appenzeller, J. Knoch, Phys. 

Rev. Lett. 93, (2004). 
M. Lundstrom 
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Major characteristics 

dictated by the 

tunneling junction 

and gate control on  

• bandgap 

• gate dielectric 

(thickness, permittivity) 

• silicon film thickness 

(UTB, NW) 

• fringing fields 
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Q. Zhang, A. Seabaugh, DRC 2008.  

• all-silicon Tunnel FET: low 

performance (low Ion) 

• heterostructures: source 

bandgap engineering. 
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K. Boucart and A.M. Ionescu, IEEE TED 2007. 
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Additive technology boosters (simulation) 

Ion > 100mA/mm @ 1V 

Ion/Ioff > 1010 

K. Boucart, W. Riess, A.M. Ionescu, ESSDERC 2009. 

‘A’: base device 

‘B’: Like A with high-k dielectric. 

‘C’: Like B with narrower junction. 

‘D’: Like ‘C’ with thinner body. 

E: Like ‘D’ with higher source 

doping. 

‘F’: Like E with double gate. 

‘G’: Like ‘F’ with oxide over intrinsic 

region. 

‘H’: Like ‘G’ with shorter length. 

‘J’: Like ‘H’ with bandgap Eg = 0.8 

eV at the tunnel junction.  
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• Smaller bandgap  improved 

tunneling but Ioff high 

A. Verhulst, Node 

workshop, Zurich, 2009.  



• Ion=46μA/μm and IOFF of 5pA/μm at VDD=-1.2V demonstrated for 

narrow fin Tunnel FETs by IMEC. 

• Implant optimization study carried out: spike anneal (‘SPIKE’), sub-

ms laser anneal (‘LA’) and low temperature anneal for Solid Phase 

Epitaxy Regrowth (‘SPER’). 

21 
D. Leonelli, A. Vandooren, R. Rooyackers, S. De Gendt, M. 

M. Heyns, G. Groeseneken,  ESSDERC 2010. 
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VLS grown Si NWs tunnel FETs with different gate stacks (SiO2 and 

HfO2); the use of a high-k gate dielectric markedly improves the TFET 

performance in terms of average slope and on-current. 

Ion~0.3uA/um, Ion/Ioff ~105  

K. Moselund et al, ESSDERC 2009, DRC 2008, TED 2011. 
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T. Krishnamohan et al, IEDM 2008. 

Ion ~ 300mA/mm @ Vd=3V 

Ion ~ 10mA/mm @ Vd=1V 

Ion ~ 0.2mA/mm @ Vd=0.5V 

S=50mV/dec 

 

Ion/Ioff  ~3.106 @ Vdd=0.5V 

S. Kim, H. Kam, C. Hu and T.-J. King Liu, 

VLSI 2009. 



24 Courtesy of Cyrille Le Royer: CEA-LETI @ IEDM 2008 & ULIS 2010. 
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Technology boosters + contact engineering. 

Various types of substrates studied. 
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• High on state 

performance 

predicted 

• minimal S value in 

the case of staggered 

band line-up 

J. Knoch, Proc. 2009 Internat. Symp. VLSI-TSA, 45 (2009). 

broken 

staggered 
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• Ultralow-Voltage Bilayer 

Graphene Tunnel FET with 

electrostatically tuned 

bandgap for Vd=0.1V, 

• Solution of the coupled Poisson 

and Schrödinger equations in 

three dimensions, within the 

nonequilibrium Green’s function 

formalism on a Tight Binding 

Hamiltonian. 

• low quantum capacitance of 

bilayer graphene allows the BG-

TFET to have most of the 

advantages of 1-D TFETs 

G. Fiori and G. Iannaccone, IEEE EDL, 2009. 
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Recent model advancements by IBM and IMEC. 



• the S of TFET is weakly dependent on 

the temperature via the semiconductor 

band gap, EG. 

• the leakage floor of TFETs determined 

by Shockley–Read–Hall GR current 

exponentially increases with 

temperature 

• Correct Tunnel FET behavior can be 

experimentally checked by the 

temperature insensitivity of the 

subthreshold swing. 

• Interesting for analog applications with 

high temperature stability. 
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• 50nm all-Si and 50nm Ge/InAs C-TFET inverters have better noise 

margins, more abrupt transition and higher gain than 65 nm CMOS 

• Problem: slower transient than CMOS and overshoot peaks due to 

critical Millet effect (in a Tunnel FET the gate capacitance Cgg is dominated 

by the Cgd under all bias conditions, which is in strong contrast to a 

MOSFET). This effect is reduced in heterostructure C-TFET. 
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Source: D.J. Frank, IBM, 

Node Workshop, Zurich, 2009. 
Source: S.Kim, C. Hu, T.-J. King Liu, 

IEEE EDL, Oct 2010. 

• Tunnet FET offer better energy efficiency for applications up to 1GHz.  

Ge-source TFET TFET with Ion 1x, 1/3x, 1/10x 
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• Opportunities: 
– Tunnel FET stands as the most promising steep slope switch 

candidate to reduce the supply voltage below 0.5 V and offer 

significant power dissipation savings. 

– Because of their low Ioff, they appear suited for low power and low 

standby power logic applications operating at moderate 

frequency (hundreds of MHz). 

– Other promising applications of TFETs: ultra-low power 

specialized analog integrated circuits with improved temperature 

stability and low-power SRAM. 

– hybrid CMOS complementary TFET design, with TFETs as an 

add-on ultra low power device option on advanced CMOS 

platforms. 
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• Challenges and perspectives: 
– achieve high Ion without degrading Ioff, combined with a 

subthreshold swing of less than 60 mV/decade over more than four 

decades of drain current. 

–  Additive combination of specific technology boosters. 

– Carbon materials (graphene and carbon nanotubes) are well-suited for 

high-performance Tunnel FETs due to their ultra-thin body thickness and 

their one-dimensional transport characteristics but face enormous 

challenges for experimental implementation. 

– Heterostructure Tunnel FETs offer the best performance 

compromise for complementary logic through advanced band 

engineering, using Ge- and InAs-sources on silicon platforms for n- 

and p-type Tunnel FETs in ultra-thin films or nanowires. 
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• STEEPER project funded by the European 

Commission 

• Kathy Boucart, EPFL 

• Heike Riel, IBM Zurich 

• Cyrille LeRoyer, CEA-LETI 

• Kirsten Moselund, IBM Zurich 



Backup: C-Tunnel FET 
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