Non-Volatile Voltage Control of Magnetization in magnetostrictive epitaxial FeGa

D.E. Parkes¹, S.A. Cavill², A.T. Hindmarch¹, P. Wadley¹, F. McGee¹, C.R. Staddon¹, K.W. Edmonds¹, R.P. Campion¹, A.W. Rushforth¹, and B.L. Gallagher¹

¹School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom. ²Diamond Light Source Chilton, Didcot, Oxfordshire OX11 0DE UK.

Outline

Introduction

Control of magnetisation is important in many data storage and logic devices.

Techniques involving magnetic fields or electrical currents have limitations.

We use strain to demonstrate non-volatile control of magnetisation in highly magnetostrictive epitaxial FeGa.

Magnetisation Control

IBM J. Res. & Dev. 1, 5 (2006).

Existing Techniques

Electrical currents have problems with energy dissipation.

Magnetic fields can also have additional problems due to stray fields.

Control of magnetisation by strain

Piezoelectric transducers - electric fields into strain

Our work

Voltage-controlled, **non-volatile switching of magnetisation** at room temperature in the absence of magnetic fields.

We exploit the large magnetostriction and biaxial magnetocrystalline anisotropy in epitaxial FeGa

Why use FeGa 'Galfenol'?

Clark et al., JAP 93, 8621 (2003) Quench cooled bulk samples

Superconducting quantum interference device (SQUID) magnetometry

Our device

Strain is voltage-controlled via a piezo-electric transducer.

Magnetotransport

The magnetisation direction is detected by measuring the transverse anisotropic magnetoresistance (AMR)

 $\rho_{xy} = \Delta \rho \sin 2\theta$

where θ is the angle between the magnetisation and the current direction

Non-volatile switching

MOKE images

Domain Wall Motion

Nottingham

Device Considerations

Switching speeds

- Precessional frequency ~ GHz (switching times ~<1ns)
- DW motion: 100nm/ns

Low power consumption

 $- ~10 mW/cm^{2*}$

* Roy, K et al. APL 99, 063108 (2011)

Summary

Strain-controlled magnetisation switching

Domain wall motion

