

Beyond CMOS ... toward new integrated systems?

Thomas Ernst CEA-LETI

MINATEC CAMPUS

Outline

- Introduction
- Why new devices ?
- Need of killer applications
- An example of new application

An history of data computing ...

- increase of operation/second for a given cost
- a new device will to answer this question ?
- in log time scale, the transition looks disruptive ... but ...

From kurzweil

CMOS maturation example

Scaling limitation today : Lithography

Rayleigh equation

S. Sivakumar et al., IEDM 2006

Whatever the material or the type of device, lithography should be mature enough...

EUV - ASML production tool

NXE:3300B 1st shipment: H1 2012

2nd generation of NXE platform, NA raised to 0.33NA

leti

Challenge: Availability of the source?

Specifications

- Imaging
 - NA = 0.33
 - σ=0.2-0.9 / OAI
 - Resolution 22 nm 18/16nm with OAI
- Overlay
 - DCO 3.0nm
 - MMO 5.0nm
- Productivity
 - 125 wph
 15 mJ/cm² resist

MAPPER builds a system with 13,000 parallel electron beams for 10 wph

	HVM
#beams and data channels	13,000
Spot size:	25 nm
Beam current:	13 nA
Data rate/channel	70 MHz
Acceleration voltage	5 kV
Nominal dose	30 µC/cm ²
Throughput @ nominal dose	10 wph
Pixel size @ nominal dose	3.5nm
Wafer movement	Scanning

Toward a cluster tool

MAPPER single column tool. Upgrade to 13,000 beam for 10WPH

Outline

- Introduction
- Why new devices ?
- Need of killer applications
- An example of new application
- Conclusion

Then, comes the power dissipation limitation

A. Groove, International Electron Devices Meeting 2007

 $\mathbf{P} = \mathbf{f} \mathbf{C} \mathbf{V}_{dd}^2 + \mathbf{I}_{OFF} \mathbf{V}_{dd}$ **Dynamic Power** Static Power

New design approaches => limit f, I_{OFF} management, etc...

New devices architectures: High ION/IOFF or new concepts

Today new design approaches...

A Porobic, Microsoft

R.M. Ramanathan, Intel

Subthreshold slope limits V_{dd} reduction

Subthrehold slope limited by electrostatics

T. Ernst – Ireland Summer School | August 2011 | 13 © CEA. All rights reserved

leti

T. Ernst – Ireland Summer School | August 2011 | 14 © CEA. All rights reserved

TEM of assembly 5nm nanowires

Diameter control of large nanowires as sembly 11 15

Vertically stacked Nanowires for high current CMOS

- T. Ernst et al., IEDM 06,08
- K. Tachi et al IEDM 09,10

Outline

- Introduction
- Why new devices ?
- Need of killer applications
- An example of new application
- Conclusion

The exponential market growth

... needs « killer applications »

- The conjunction of the cost per function decrease and the emergence of "killer applications" which demanded a large volume of leading edge chip has been the revenue generator for the industry and its sustainability
 - 1980s → Analog for TVs and VCRs 1990s → Digital for PCs 2000s → Analog and Digital for Cell Phones 2010s → Analog and Digital for Mobile Internet 2020s ??? more revenue C. Reita, LIA workshop

Tomorrow driving applications ?...

Moore

For devices => Ultra-low power

3D : not only ultradensity but ...

 An opportunity for new devices <u>that cannot be</u> <u>implemented in CMOS easily</u>: III-V, new memories, carbon electronics, sensing devices

- Specific need for autonomous chips that can boost <u>ultra low voltage devices</u>: thin films, steep slopes ...
- Need to develop <u>design methodology</u> at the system level

Disruptive devices - which path should we follow ?

The microelectronic revolution... inspired by silicon and VLSI

WW II: Simple machines and manual laborers fill a room.

1955: ENIAC, the first electronic computer, fills a room.

2000s: The integrated circuit has made computation ubiquitous.

- Complex functions integrated High performances
- Existing manufacturing or design tools, processes, design rules
- Existing micro sensors... (Accelerometers, gyros, imagers, TCD, inkjets etc...)
- A lot of opportunities (assembly, costs, architecture etc...)

Outline

- Introduction
- Why new devices ?
- Need of killer applications
- An example of new application
- Conclusion

An example: NEMS at VLSI scale

Research, Technological Development and Demonstration

A multi-physics system vision

Nanowires for very sensitive mass

T. Ernst et al., IEDM 08

Few molecules sensitivity can be achieved => 1zg

Mass units in biology

Atomic mass unity = $1Da = 1 u \approx 1.66053886 \times 10^{-27}$ kg $1zg = 10^{-21}g = 602 Da \approx a$ nucleotides pair (DNA)

NEMS Parvoviridae Protein PrP Hemoglobine viruses: E. Coli bacteria (Prion) A-T G-C A molecule Hepatitis **B** 1.1 MDa 4.2×10¹¹ Da 66.2 kDa 150 kDa 613.4 Da 616.4 Da 'a,

Nanowires

V. Agache et al.

Nanowire used for mass detection

Capacitive actuation & detection

Capacitive actuation & piezo-resistive detection with nanowires Thermo-elastic actuation & piezo-resistive detection.

First 200 mm wafers with 3.5 millions NEMS

CALTECH & LETI VLSI NEMS Alliance

Mass resolution with nanowire

Mass resolution according to the diameter

R. He, M. Roukes et al. Nanoletters 12/08

© CEA. All rights reserved

A new design example

E. Mile et al., Nanoteenhology 21 (2010) 165504, Leti Patent

Electrostatic actuation

- Piezzo resistive detection (down mixing scheme)
- Excellent Signal to background ratio

Mass sensing demonstration

Goals

- Bring in Situ the power of chemical analysis for gas measurements – Bring analyzer to samples
 - To the heart of the industrial processes
 - Into environment of work or of everyday life
- Develop integrated multigas analyzers with less utilities
 - Carrier gas Air
 - Low power, low volume, low maintenance ATEX proof
 - No more or Less sample transportation

Goals...

Gas sampling

- Open panel of analytes
- Uncontrolled environment
 - Sample complexity, contaminants, concentration range...

Multigas detection and analysis system Real time – in situ

Analytical performances comparable to lab tools (sensitivity, number of compounds, robustness)

Quick measurements

10-100x smaller

Economy of scale for large volume

List of different present components with their concentrations [Ci]

Large detection range (sub-ppm à 100-1000 ppm)

Functional validation of NEMS detector

Gaz recognition

Ref: J. Arcamone et al., IEDM 2011

Design system methodology: **from** V-shaped cycle

Design methodology: from V-shaped cycle to FVP (Functional Virtual Prototyping)

From Y. Hervé et al.

For any new devices, a sufficient maturity is needed for:

- Compact models
- Introduction in a Design Kit
- Evaluation of performance in the system environment
 > Development of "multiphysics" simulation
 & technology platforms
- => NEW devices at VLSI SCALE will need high volume application

New opportunities for emerging devices Will we replace or complete CMOS ?

To sum up...

- Sub 22nm CMOS: trigate, SOI, nanowire + new channel materials
- New applications (ultra-low power) may drive revolutionary devices : mechanical, TFET, new memories & associated designs...
- More than Moore & 3D may be an opportunity for new devices
- But standardized (3D) approaches needed => high volume
- System level multiphysics simulation is required integrated several types of devices (in 3D)
- A good feeling of emerging markets & investment capabilities will help...
- The ability to think out of the box is needed !

- High I_{ON} thanks to the vertical stacked NWs

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Thank you for your attention

wange distance wanges alteratives