Nano-carbon structures for electronic applications?

1st Ireland SummerSchool 2011

Georg S. Duesberg School of Chemistry Trinity College Dublin Dublin 2, Ireland

Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)

Outline

- Carbon Nano-structures: Applications in microelectronics
- Vertical Carbon devices
- Graphene Processing
- Other 2D Materials
- Carbon NEMS?
- Conclusions

- High Mobilities Ballistic conductance, massless Dirac fermions in graphene
- High Thermal Conductivity
- Room Temperature Quantum Effects
- Tuneable Band Gaps
- High surface area
- Chemically inert
- Mechanically stable

Potential Applications for Carbon Nanostructures in electronics

Structure metal contacts and Catalyst on wafer scale

Deposition by drop casting or CVD – random process!

Encapsulate CNT and Contact by electroless deposition

Apply Dielectric (Dip Coat Process!) and Top Gate (E-beam lithography)

⇒ Works at channels shorter 20 nm! Ballistic regime ⇒ Ultra high currents can be switched $(I_{on} > 10 \mu A/tube)$ ⇒ On/off ratio > 10⁵

G.S. Duesberg, Ireland Summerschool, Leixlip, 30th August, 2011

Seidel, Duesberg et al.: Nano Letters, 2004

Throughput -

the number of wafers per hour optical lithography \rightarrow 60 - 90 wafers/hour

Lateral dimmensions?

Accurate Positioning of CNTs ?

The vertical CNTFET could be the solution – but there is still a long way to go....

10 **nm**

metal gate length can be adjusted to subnm accuracy by deposition

The vertical transistor concept

CVD of nano-carbon structures

 $CH_4 \rightarrow C_1 \rightarrow C_2 \rightarrow (C_4) \rightarrow C_6 \rightarrow C_n$ $\begin{array}{cccc} \downarrow & \downarrow & \downarrow & \downarrow & \\ C_{\infty} & C_{\infty} & & C_{\infty} & & C_{\infty} \end{array} \end{array} Pyrolysis of hydrocarbons \\ \end{array}$

CNTs by CVD

Pyrolytic Carbon (PyC)

Graphene by CVD

Challenge: Structural homogenity of CVD CNTs

Carbon Interconnects – PyC and CNTs

A. Graham, G. Schindler, G. S. Duesberg, T. Lutz, and W. Weber, Journal of Applied Physics, 107 114316.2010.

Carbon devices: Memory and diode

Schottky diode: Duesberg, Kreupl, Graham et al.

Outline

- Carbon Nano-structures: Applications in microelectronics
- Vertical Carbon devices
- Graphene Processing
- Other 2D Materials
- Carbon NEMS?
- Conclusions

CVD graphene & transfer

SEM

•Optical images of graphene films transferred to glass slides S. Kumar et al. Chem Comm 2010

Conductive AFM in graphene films

Peter Nirmalraj, Tarek Lutz, Shishir Kumar, Georg Duesberg John Boland Nanoletters 2011

Graphene on Copper

Low solubility of carbon

Less catalytic t Lattice match

Graphene transferred with polymers is cleaned with remote plasma at low temps

Cleaning of graphene with plasmas

"Chemical" plasma by a remote source $(R^{3}T \text{ TWR 2000-GEN, 400V})$ 1000W . pressure of 1 torr flow rates of 100 sccm Oxygen and Hydrogen

Cleaning of graphene with plasmas only

In-situ cleaning possible! Conductivity and mobilities increased ~ 200 cm²/Vs after plasma treatment This applies to all graphene type samples

Peltekis, Duesberg et al. Carbon, accepted

G.S. Duesberg, Ireland Summerschool, Leixlip, 30th August, 2011

Band gap ?

Avouris group IBM

Double layers

Zhang et al. 2009 Nature

<u>Stress</u> Lu, Nano Research 2009

MPI – Metalforschung

Functionalisation/ Doping

Gate Voltage (V)

Cut out/size effect

Materials science: Nanotubes unzipped Mauricio Terrones Nature 458, 845-846(16 April 2009)

Atomically defined structures!

J. Cai, et al.Nature, 2010

Same or even more problems as with nanotubes

Outline

- Carbon Nano-structures: Applications in microelectronics
- Vertical Carbon devices
- Graphene Processing
- Other 2D Materials
- Carbon NEMS?
- Conclusions

Layered compounds such as $MoS_2,WS_2, MoSe_2,$ $MoTe_2, TaSe_2,$ $NbSe_2, NiTe_2,$ $BN, and Bi_2Te_3$ can be efficiently dispersed (also topological insulators?!)

Jonathan N. Coleman, Hye-Young Kim, Kangho Lee, Gyu Tae Kim, Georg S. Duesberg, Nicolosi, et al, "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials", **Science**, 568-571, 2011

Up to $\mu = 195 \text{ cm}^2/\text{Vs}$ can be extracted based a model taken into thermal field emission (MSM). (similar to B. Radisavljevic , A. Kis, Nature Nano 2011)

Lee, Kim, Duesberg et al. Adv Mater., 2011

Outline

- Carbon Nano-structures: Applications in microelectronics
- Vertical Carbon devices
- Graphene Processing
- Other 2D Materials
- Carbon NEMS?
- Conclusions

•High on/off ration

- •Low power
- •High speed

•Carbon stable and light = high Q factors

Bachthold et al. 2009

Advantages

- very high on-off ratios
- can have very high operating frequencies
- can be used with loaded graphene for sensing applications
- -robust in extreme environments

Kumar et al. unpublished

Suspended graphene

Surface tension breaks $G \rightarrow$ use critical point dryer

Carbon NEMS devices

Overcome Subthreshold limit

Moving gate, Svenson et al. Nanoletters 2011

Conclusions

Lateral carbon FETs may have application as power transistors or in flexible, transparent electronics, sensors etc. (More than Moore)

Vertical FET face integration challenges (high k, contact engineering, Growth of CNTs) but have a lot of potential

Graphene can be synthesized and processed on the large scale but band gap engineering/passivation is crucial – potential for Spintronics and NEMS

New 2D Materials have a lot of potential for electronics and energy harvesting

Carbon NEMS have superior properties

Acknowledgements

<u>Collaborators</u> Prof G.T Kim – Korea University Prof. Coleman – TCD Prof. Boland - TCD

<u>Group:</u> Shishir Kumar, Niall McEvoy, ChanYoungYim, Gareth Keeley, Ehsan Rezvani, Hugo Nolan, Nikos Peltekis (now Intel) Anne Weidlich, Toby Halham, Chris Murray (Intel),

Hye-Young Kim, Kangho Lee (KU)

Support by Science Foundation Ireland, Enterprise Ireland, Embark Initiative HEA, EU for Marie Curie, FP7 (Electrograph)

Intel Ireland LTD, Hewlett Packward, Infineon AG

