

Breakthrough Materials & Methods

- What are the key enabling materials and methods?
- Is there new magic at the interfaces?
- What does the nano world enable?

What new skills will be required?

What are the key enabling materials and methods?

0D quantum dots, molecules

www.tyndall.ie

1D semiconductor nanowires,

carbon nanotubes

2D quantum wells, graphene

Zigzag – semiconducting Armchair – metallic Open challenge: controlled chirality

electron-phonon coupling in Si nanowires

<110> 3 nm

Full – NW def pot Iso – isotropic bulk Bulk – bulk def pot Iso eff- isotropic NW

[110] grown mobility is 6x times larger than for [100] Sensitive to details of deformation potential

Murphy-Armando, Fagas and Greer, Nano Lett. (2010)

SiNW Gate-all-around junctionless transistor

Relaxed H-saturated [110] SiNW Diameter = 1.15 nm

٠

Simulated GAA junctionless transistor (right): Oxide thickness 1 nm – continuum dielectric κ Gate length = 3.1 nm

Ansari, B. Feldman, Fagas, Colinge, Greer Appl. Phys. Lett. (2010) www.tyndall.ie

At these scales, requires a highly doped device?

CNT Gate-all-around junctionless transistor

Is there new magic at the interfaces?

 $\frac{surface}{volume} = \frac{\pi r^2}{4\pi r^3/3} \propto \frac{1}{r} \Rightarrow \text{Nanostructures are mostly surface}$

Strain in Si interlayers at SiOx/Ge interface

Substitute Ge substrate atoms with Si to form interlayer

High mobility substrate with ideal Si/SiO_x interface

From continuum and atomic simulation – strain resides in interlayer

O'Callaghan, Monaghan, Elliott, and Greer Appl. Phys. Lett. **90**, 143511 (2007)

Stress in interlayer with increasing thickness

www.tyndall.ie

Si interlayer thickness / no. of layers

Increasing surface-to-volume yields new effects

www.tyndall.ie

Leu, Shan, Cho, Phys, Rev. B (2006) Nolan, O'Callaghan, Fagas, Greer, Frauenheim, *Nano Lett.* (2007).

Scattering off surface oxide in quasi-1D wires

Hole scattering in [110] Si nanowires

[110] oxidation varied with surface hydroxyl groups W = 1.15 nmDefect density $n = 5 \cdot 10^{19} \text{ cm}^{-3}$ [110] oxidation varied with surface hydroxyl groups and O backbonds W = 1.15 nmDefect density $n = 5 \cdot 10^{19} \text{ cm}^{-3}$

www.tyndall.ie

Scattering lengths calculated from method of : Markussen, Rurali, Jauho and Brandbyge, PRL (2007)

Different materials and approaches?

What does the nano world enable?

10 to 15 years ago we didn't know if Si transistors would work below 10 nm

 V_{G}

Molecular electronics is still a great opportunity to explore electron transport on the 1 nm scale

Mechanical break junctions

- A patterned metal
- B polymer substrate
- C piezoelectric piston

A single conducting channel has an intrinsic quantised resistance

For macroscopic conductors, many parallel channels, intrinsic conductance is low

In nanoscale conductors, this resistance is unavoidable

Conductance across $Au-S-(C_2H_4)_n$ -S-Au molecular junction

Agrees well some measurements: • $\beta = 0.57 / n$ [Cue et al., J. Phys. Chem B 106, 8609 (2002)]

• β= 0.52 / n [Haiss et al., PCCP 6, 4330 (2004)]

β= 0.68 – 0.79 / n
[Akkerman et al., Nature 441, 69 (2006)]

G. Fagas, et al, *Phys. Rev. B* (2006).

Different linkers: well defined conductances

"Quantitative" agreement with well-defined measurements of molecular conductances

	Conductance (ns)											
	NH-anchoring	NH2-anchoring	L. Venkataraman et al, Nano Letters 6 , 458 (2006)	F. Chen et al, JACS 128 , 15874 (2006)								
Pentane	34.52±16.51	51.99±24.10	27.12±0.77	-								
Hexane	12.96±2.98	30.64± 6.07	11.62±1.16	20.79								
Heptane	4.27±1.03	4.91± 3.26	5.66±1.55	-								
Octane	3.65	4.33± 3.26	2.32±2.32	3.85								

... additionally

direct comparision to NEGF+DFT, complex band structures, and analytical tunnel barrier models

McDermott et al (2009)

Molecular Quantum Dot

Molecular Quantum Dot

Group V Atoms Trapped in C₆₀

Weidinger et al, 2002 Extremely long spin coherence times (order of ms)

How to design

- Classical circuits working near quantum limits

- interface between quantum and classical worlds

Quantum electronic transport

$$I = \frac{2e}{h} \int_{-\infty}^{+\infty} [f(E + \mu_L) - f(E - \mu_R)]T(E) dE$$

How does a battery work?

Quantum mechanical system average for O

$$< O > = < \Psi | \hat{O} | \Psi >$$

Quantum mechanical subsystem average for O

 $< O >= Tr[\hat{O}\rho]$

How do we define O as outputs and what are the inputs?

$$O_k = \langle \hat{O}_k \rangle = f(I_1, I_2, \dots, I_n)$$

Delaney and Greer, Proc Roy Soc A (2006)

Can we write quantum to "classical" circuit laws?

Density matrices between subsystems should factorize $\langle \hat{O} \rangle = \text{Tr}_{AB} \ \hat{O} \hat{\rho}(I) = \text{Tr}_{A} \hat{\rho}_{A}(I) \text{Tr}_{B} \ \hat{O} \hat{\rho}_{B}(X) = \text{Tr}_{B} \ \hat{O} \hat{\rho}_{B}(X)$

Fan-out: The two outputs should not correlate (operations B and C independent) (b) I A C O_1 B C O_1 B O_1 C O_2

 $\langle \hat{O}_1 \hat{O}_2 \rangle = \mathrm{Tr}_{\mathrm{ABC}} \ \hat{O}_1 \hat{O}_2 \hat{\rho}(I) = \mathrm{Tr}_{\mathrm{A}} \ \hat{\rho}_{\mathrm{A}}(I) \mathrm{Tr}_{\mathrm{B}} \ \hat{O}_1 \hat{\rho}_{\mathrm{B}}(X) \mathrm{Tr}_{\mathrm{C}} \ \hat{O}_2 \hat{\rho}_{\mathrm{C}}(X) = \langle \hat{O}_1 \rangle \langle \hat{O}_2 \rangle$

Canonical ensemble $\langle E \rangle = Tr[\hat{H}\hat{\rho}]$ $\hat{\rho} = \exp[-\hat{\beta}\hat{H}]$ $\hat{\rho} = \exp[-\hat{\beta}\hat{H}]$ $\hat{\rho} = \exp[-\hat{\beta}\hat{H}]$ $\hat{\rho} = \exp[-\hat{\beta}\hat{H} + \mu\hat{N}]$

Maximize entropy: yields best estimate to subsystem density matrix

MaxEnt (Jaynes 1957) Information Theory (Shannon 1948)

Interacting quantum sub-systems as circuits

A simple example: spin gate

A simple example: spin gate

A simple example: spin gate

	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	+	+	÷	÷	÷	÷	÷	÷
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	÷	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	ŧ	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	ŧ	+	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	—	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	—	—	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+
+	÷	÷	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	÷	+	ŧ
+	—	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

"AND"

Correlations in nanowires

The end is nigh

... but what the heck does nigh mean?

