

The end of CMOS scaling – when?

M. Brillouët

Ireland Summer School for Nanotechnology 2011 – Dublin – Aug. 28 to 30, 2011

MINATEC CAMPUS

How can the new materials and device architectures help? What are the key challenges, e.g. manufacturability, or affordability? What are the constraints, patterning, materials, or simply the physics?

- Basics in CMOS scaling
- What fuels the scaling?
 - Higher integration density
 - Material engineering
 - Device architectures
- What could stall the scaling?
 - Lithography / affordability
 - Material engineering
 - Physical limits
- Conclusion

Basics in CMOS scaling

What Gordon Moore actually said?

G. Moore - 1975

Higher integration density

nologies were first investigated in the late 1950's. The object was to miniaturize electronics equipment to include increasingly complex electronic functions in limited space with minimum weight. Several approaches evolved, including

More at lower cost

Digital revolution

Integration will not change linear systems as radically as digital systems. Still, a considerable degree of integration

G. Moore Electronics Vol.38 (8) April 19, 1965

103

102

10

ents Per Integrated Circui

The happy scaling

R. Dennard © IEEE

dimensions t _{ox} , L, W	1/α
doping	α
voltage	1/α
integration density	α ²
delay	1/α
power dissipation/Tr	1/α²

The happy scaling

R. Dennard © IEEE

dimensions t _{ox} , L, W	1/0
doping	α
voltage	1/0
integration density	α ²
delay	1/0
power dissipation/Tr	1/0

Diverging priorities

after Zhyrnov

Logic scaling

Device view

power performance

from G. Moore Electronics Vol.38 (1965)

after K. Schrüfer VLSI-TSA Short Course 2011

Power – performance trade-off

Active power

Performance

$$f = \frac{1}{T} \approx \frac{(V_d - V_t)^{\alpha}}{V_d \cdot C}$$
$$\propto V_d \text{ for } V_d > V_t$$

Variability & reliability

Standby power

 $P_{stat} = I_{leak} \cdot V_d$

 $\propto V_d^k, k = 4...6$

 $\sigma = syst. + random$

$$V_{d}(t) = V_{d,nom} - \Delta V_{d,IRdrop}$$

9

after K. Schrüfer VLSI-TSA Short Course 2011

leti

Equivalent scaling for logic devices

Memory drivers

Memory cell = multiple stable and noise-immune states which can be externally switched and measured

The segmented memory universe

256Mb SRAM

25nm 2Gb DDR3 DRAM

The quest for the "universal" memory

Fueling the scaling trend

Higher integration density Lithography as an enabler

Lithography: forget classical limits

Rayleigh's criterion

$$R = 1.22 \cdot \frac{\lambda}{NA}$$

Lithography: the key enabler

© CEA. All rights reserved

Material engineering

High k – metal gate

III-V

Material	Si	Ge	GaAs	InGaAs	InAs
μ _e (cm²V ⁻¹ s ⁻¹)	1350	3600	8000	11200	30000
μ _h (cm²V ⁻¹ s ⁻¹)	480	1800	300	300	450

from A. Lubow et al. APL 96 122105 (2010)

Device architectures

© CEA. All rights reserved

Ultimately scaled CMOS: no limit?

...and new architectures have their own scaling paths down to 10nm

FDSOI

from K. Cheng et al. VLSI 2011 #7.1

from L. Clavelier et al. IEDM 2010 #2.6

FinFET

22nm CMOS

Can the scaling stall?

Lithography

Lithography: a 2005 vision

leti

from M. Brillouët EEA 2010 Ireland Summer School for Nanotechnology 2011 - Dublin - M. Brillouët

| 26

time

Lithography: present perspective

NGL: "α-tools" and β-tools" exist, but...

from H. Mailing Semicon West 2010 & IMEC, EUV Symposium '09

Slow progress in EUV source power

What next step?

Dennis Publishing Limited

Bigger wafer size: is that affordable?

Semiconductor Equipment Industry Spending to Develop New Wafer Size Platforms

The other side of "Moore's Law"

after IHS iSuppli & S. Tedesco LithoVision 2011

Material engineering

III-V potential technology issues @<10nm

III-V: device physics

from T. Skotnicki et al. VLSI 2010 153 & IEDM Short Course 2010

III-V: ...as an interim conclusion...

IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 10, OCTOBER 2010

Benchmarking of III–V n-MOSFET Maturity and Feasibility for Future CMOS

Gerben Doornbos and Matthias Passlack, Fellow, IEEE

vices. However, benchmarking those within the realm of III–V and against Si CMOS has been inconsistent and fragmented. This is even more surprising given that the potential insertion of III–V channels in a CMOS has remained controversial and any feasibility study is inconclusive at best without widely accepted standard metrics. In mature Si CMOS, the technolo-

Binary InAs PHEMTs show the highest figure of merit $(Q = 27 \,\mu\text{S}/\mu\text{m} \cdot \text{dec/mV})$; the same unit for Q will be used throughout this letter), followed by Si MOSFETs (Q = 20) and ternary InGaAs PHEMTs (Q = 14). InGaAs MOSFETs appear rather immature (Q = 0.65). One important observation

Interconnection: any breakthrough?

leti

Incubation time for new technologies

P. Gargini 17

2011 ISS Europe

Physical limits

Physical limits?

"I am not convinced that there is any such thing as an "ultimate" limit.

In fact, finding ways to surmount those obstacles that, at the present, seem to be the limits is what technology is all about"

R.W. Keyes, IEEE Spectrum, vol. 6, pp.36-45 (1969)

Conclusion

A 1975 IC Technology Roadmap

What makes us think that we can forecast more than ~5 years of future IC technology any better today ?!!

from R. Doering 8th Annual High Perf Embedded Computing Workshop Sept.28, 2004.

When the roadmap will end?

 Maximum Packing Density and Minimum Size of Semiconductor Devices-J. T. Wallmark and S. M. Marcus, Radio Corporation of America, Sommerville, N. J.

The absolute upper limit to pack 1962! the absolute ated or nonintegrated, is investigated. It is found to the limitations

of today. Therefore as far as the devices themselves are concerned the end of the road to smaller size has already been reached. A comparison of various components, and various forms of these components is given.

from T. Wallmart et al. IEEE ED 9 111 (1962)

Exponential growth...for some time

Ireland Summer School for Nanotechnology 2011 - Dublin - M. Brillouët | 44

leti

LABORATOIRE D'ÉLECTRONIQUE ET DE TECHNOLOGIES DE L'INFORMATION

CEA-Leti MINATEC Campus, 17 rue des Martyrs 38054 GRENOBLE Cedex 9 Tel. +33 4 38 78 36 25

www.leti.fr

Thank you for your attention

encode atomical e encode alterativa