#### **Carton House - Summer NT 2011**

# Redox-Based Resistive Switching - from Semiconductors to Chemiconductors?

## **Rainer Waser\* & Victor Zhirnov\*\***

\*Jülich-Aachen Research Alliance JARA, Section Fundamentals of Future Information Technology PGI-7, FZ Jülich & IWE2, RWTH Aachen University

> \*\*Semiconductor Research Corporation, Raleigh, USA







Rainer Waser (Ed.)

# Nanoelectronics and Information Technology



approx. 1000 pages
full-colored
Price: € 89,3rd edition
coming soon

ELECTRONIC MATERIALS RESEARCH LABORATORY EMRL

#### **Prof. Dr. Rainer Waser**

Aachen – IWE-2 Jülich – PGI-7

Phenomena Methods Materials



# Outline

- **1** Introduction
- **2** Electrochemical metallization (ECM)
- 3 Valence change mechanism (VCM)
  - fundamentals, formation, switching, kinetics
- **4** Thermochemical mechamism (TCM)
- 5 Ultradense and 3-D stackable Architecture Concepts
- 6 Scaling Rules
- 7 Conclusions







# 1 Introduction

# Basic Definition of Resistive Random Access Memory









# **Basic Definition**

## **Polarity modes**

#### **Bipolar (antisymmetrical)**



#### **Unipolar (symmetrical)**









# **Classification of the working principle**



# **Classification of the working principle**



## **Processes during redox-based switching**



Note: these are <u>all</u> conceivable (relevant) processes during forming and switching. The actual processes depend on the type of ReRAM

#### ... to compete with Flash

Tunnel

oxide

•

G

p-Si

**Endurance**: **Resistance ratio:**  $R_{OFF} / R_{ON} > 10$ **Scalability**: Write voltage: **Read voltage:** 0.1 ... 0.5 V Write speed: > 10 yrs **Retention:** 

> **10<sup>7</sup> cylces** (Flash 10<sup>3</sup> ... 10<sup>7</sup>) F < 22 nm and/or 3-D stacking **approx. 1 ... 5 V** (Flash > 5 V) < **100 ns** (Flash > 10 μs)

#### ... to compete with Flash

Tunnel oxide

p-Si

Endurance:>  $10^7$  cylcesResistance ratio: $R_{OFF} / R_{ON} > 10$ Scalability:F < 22 nm and/Write voltage:approx. 1 ... 5 NRead voltage:0.1 ... 0.5 VWrite speed:< 100 ns (Flast</td>Retention:> 10 yrs

> 10<sup>7</sup> cylces (Flash  $10^3 ... 10^7$ )  $R_{OFF} / R_{ON} > 10$ F < 22 nm and/or 3-D stacking approx. 1 ... 5 V (Flash > 5 V) 0.1 ... 0.5 V < 100 ns (Flash > 10 µs) > 10 yrs

Voltage – time dilemma Kinetics of switching process requires non-linearity of > 15 orders of magnitude

## Link between devices and physics

#### **Criteria of ReRAM**

1. Existence of a (compositional) state variable x, such that

$$I = G(x, V) \cdot V$$

- 2. Kinetics of change of xcontrolled by V  $\dot{x} = f(x, V)$
- 3. Ultrahigh non-linearity of the kinetics

 $\dot{x} = x_0 [(V - V_{\text{th}}) / V_0]^n \text{ with } n >> 1$ 

4. Limits to the range of *x* 

$$x_{\min} \le x \le x_{\max}$$

Memristors as defined by Leon Chua [1971, 1976, 2011]

# 2 Electrochemical metallization (ECM) - Cation-migration redox systems

basic process

non-linear switching kinetics

# **Electrochemical Metallization (ECM)**

## Operation

**ON-switching:** Reduction @ cathode  $\rightarrow$  Ag filament formation

 $Ag^+ + e^{\circ} \rightarrow Ag$ *M. Faraday (1834)* 

## **OFF-switching:**

Oxidation @ anode

 $Ag \rightarrow Ag^{\scriptscriptstyle +} + e^{\scriptscriptstyle \cdot}$ 

## Electrolyte

- \* amorphous GeSe<sub>2+x</sub> and GeS<sub>2+x</sub>
- \* Disordered and amorphous sulfides and oxides

# **Electrochemical Metallization (ECM)**

## Operation

**ON-switching:** Reduction @ cathode  $\rightarrow$  Ag filament formation

 $Ag^+ + e^+ \rightarrow Ag$ *M. Faraday (1834)* 

**OFF-switching:** Oxidation @ anode

 $Ag \rightarrow Ag^{\scriptscriptstyle +} + e^{\scriptscriptstyle \cdot}$ 

## Electrolyte

- \* amorphous GeSe<sub>2+x</sub> and GeS<sub>2+x</sub>
- \* Disordered and amorphous sulfides and oxides



C. Schindler et al., IEEE T-ED, 54 (2007) 2762

# **Processes during ECM switching**



Sketch shows initial stages of the SET process







## **Electrochemical Metallization (ECM) Memory**



Qimonda group (2006)

# Scaling potential: multibit storage

## true memristive behaviour

Drive towards an ever increasing memory density:

- storage of multiple states per cell
  shrinking the cell size



C. Liaw (2007)



*C. Schindler* (2008)







# Z

Valence change mechanism (VCM) - anion-migration redox systems

- TiO<sub>2</sub> and SrTiO<sub>3</sub> as model systems
  - defect related electronic structure
- forming process
- filamentary switching

## **Bipolar resistive switching in transition metal oxides**

#### **Example SrZrO<sub>3</sub> (0.2 at% Cr)**



A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).

#### Thin film systems

- SrZrO<sub>3</sub>, SrTiO<sub>3</sub>
- (Pr,Ca)MnO<sub>3</sub>

• TiO<sub>2</sub>

• etc.

#### **Single crystals**

- SrTiO<sub>3</sub>
- TiO<sub>2</sub>

#### **Characteristics**

- Typically forming required
- ⇒ Bipolar resistive switching by asymmetric cell

#### Thermal preformation by reduction annealing: conductive Tip AFM Mapping – types of I-V Characteristics



## **Extended defects in SrTiO<sub>3</sub> & their electronic structure**

#### **Dislocation exit**...





- Surface chemically etched
- reduction anneal at 1000 K
- simultaneous AFM topography and LC-AFM current scan







#### Formation process - SrTiO<sub>3</sub> crystal as a model system

#### **Electrochemical concentration polarization**

... based on oxygen vacancy drift-diffusion in STO:Fe as a mixed ionic-electronic solid electrolyte Pt/STO:Fe/Pt cell



5x5 mm<sup>2</sup> / 0.5 mm T = 453 K E = 1 kV/cm

R. Waser, in: Ferroelectric Ceramics, Birkhäuser (1991)

#### **Forming – Phase formation**

## HRTEM study of formed TiO2 films



#### Identification of Magnelli phases Ti4O7





## **Processes during formation into the OFF state**



#### Forming into the OFF state – an example









## **Details of the forming process: Initial situation**



#### **Details of the forming process: electronic process**



## **Details of the forming process: ionic process**

Processes involving ions:
1. anodic oxidation of O<sup>2-</sup>
2. generation of oxygen vacancies and their drift towards the cathode



O<sub>2</sub> are released to the gas phase or adsorbed by the grain boundaries of the Pt electrode



- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode



- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode



- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode



- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode



- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode



- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode


## **Details of the forming process: overall process**

- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode



## **Details of the forming process: overall process**

- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode
- => termination of the formating process by current compliance (or else)



## **Details of the forming process: overall process**

- generation of oxygen vacancies at the anode
- drift towards the cathode
- formation of a virtual cathode which approaches the anode
- => final situation: OFF state



# Illustration of the resistive switching

Modification of the barrier by push/pull of oxygen vacancies

... using extended filaments as "heating rods"



K. Szot et al. Nature Mat. (2006) & R. Waser, et al. Adv. Mat. (2009)

### **Redox-process at dislocations**



## **Tip-induced switching of dislocations in SrTiO<sub>3</sub>**



K. Szot et al., Nature Materials, 2006

## Switching kinetics of TiO<sub>2</sub> cells





Pulse testing



C. Nauenheim, et al., Microel. Eng. (2009)

- SET-time < 10 ns
- Limitation: R only before and after
- When does the cell actually switch?

## Ultrafast switching kinetics of TiO<sub>2</sub> cells

Initial system developed for ultrafast pulse testing of unipolar PCM cells

G. Bruns et al., APL 2009





extended into bipolar operation

- 2 ns rise time
- 200 ps resolution
- optimized to suppress reflections



C. Hermes et al., EDL 2011

## Ultrafast switching kinetics of TiO<sub>2</sub> cells

Initial system developed for ultrafast pulse testing of unipolar PCM cells

G. Bruns et al., APL 2009



**CIXACT** 

extended into bipolar operation

- 2 ns rise time
- 200 ps resolution
- optimized to suppress reflections



## 4 Thermochemical mechanism (TCM) - bulk redox systems

- unipolar switching
- internal redox-process

## **Thermochemical Memory (TCM) Effect**

#### **System**

MIM thin film stack with I = transition metal oxide showing a slight conductivity

e.g. Pt/NiO/Pt



*I. G. Baek et al. Samsung Electronics, IEDM 2004* 

## **Processes during TCM formation (and SET)**



## **Thermochemical (Fuse-Antifuse) Switching Mechanism**

#### Example: lateral Pt/CuO/Pt cell

#### **SET process**

- Controlled dielectric breakdown by thermal runaway
- formation of a conducting filament (fuse formed)

 $2 \operatorname{CuO} \longrightarrow \operatorname{Cu}_2 \operatorname{O} + \operatorname{O}(s)$  $\operatorname{Cu}_2 \operatorname{O} \longrightarrow 2 \operatorname{Cu} + \operatorname{O}(s)$ 

#### **RESET process**

Thermal dissolution of the filament (fuse blow)

➡ disconnected filament

## SEM image



## **PEEM** image



Differential XAS edge images

*R. Yasuhara, H. Kumigashira, Tagaki, et al., WOE 2008* 

## **Processes during TCM formation (and SET)**

#### Toggle between bipolar and unipolar switching

⇒ demonstrated for TiO2 thin films (Jeong et al. 2006)
 High current compliance ⇒ unipolar fuse/antifuse switching



D.S.Jeong et al., 2007



# Thermochemical behaviour of transition metal oxides

Temperature dependence of the free formation energy  $\Delta G^0$ 

 redox characteristics:
 lower valent states more stable at higher T



# Thermochemical behaviour of transition metal oxides

Temperature dependence of the free formation energy  $\Delta G^0$ 

 redox characteristics:
 lower valent states more stable at higher T

Comprehensive Review on TCM:

D. lelmini, R. Bruchhaus, R. Waser, Phase Transitions 84 (2011)



## Semiconductor

- the ions forming donor and acceptor levels are due impurities ('foreign bodies') introduced into the host matrix
  - e.g. P, B atoms in Si
- The *dopants* (i.e. donors and acceptors) don't change their positions
  - Invreasingly difficult to put them in precise location
- Electrons are the only movable particles
  - Used to represent and sense state
  - Difficult at <10nm</li>
- Rigid interfaces
  - EITHER Ohmic OR Blocking

## Chemiconductor

- the ions forming donor and acceptor levels are due to composition variation in the host matrix
  - lattice point defects (e.g. vacancies or interstitial atoms) can electrically act as donors or acceptors
  - e.g. ionized oxygen vacancy VO<sup>+2</sup> in TiO<sub>2</sub>
  - the ions can move in electrical fields
    - e.g. under external bias
- Atoms and electrons are movable
  - e.g. Atoms change state;
     electrons sense state
  - Operate at <10nm</li>
- Adaptive interfaces
  - Can switch from Ohmic to Blocking

## Ultimate case: Minimal Conductive Bridge







## **Discontinuous atomic bridge**



| g | Ion, A   | I <sub>off</sub> , A | ON/OFF | <i>a<sub>gap</sub></i> , nm |  |
|---|----------|----------------------|--------|-----------------------------|--|
| 2 | 7.80E-06 | 3.37E-07             | 23     | <b>0.77 (3</b> δ)           |  |
| 3 | 3.39E-06 | 4.28E-09             | 792    | <b>1.29 (5</b> δ)           |  |
| 4 | 2.46E-06 | 1.86E-11             | 132258 | <b>1.81 (7</b> δ)           |  |

 $I(g) = \frac{1}{g^2} I_1$ 

The minimal 2-gap structure (1 atom in the inter-electrode space) is in principle sufficient to obtain both a sufficiently large ON current and a reasonably large resistance ON/OFF ratio to satisfactorily differentiate the state of the ReRAM cell.

## 6 Ultradense and 3-D stackable Architecture Concepts

## **Memory Architecture – Passive Arrays**

#### **Advantages**

- simple structure
- small area (4 F<sup>2</sup>)
- easy to manufacture
- high scalability
- suited for two terminal devices







## **Passive Arrays – Sneak Path Problem**

- ΔI = I<sub>sense,2</sub> I<sub>sense,1</sub> → ΔV
  several elements in LRS
  → Reading is disturbed
- $\Delta V$  small even for small arrays
- pattern dependencies
  - circuitry difficult to design
  - static power consumption high
- $\rightarrow$  Only small arrays can be built

#### Alternative:

 $\rightarrow$ Sneak paths must be avoided









## **Passive Arrays – Sneak Path Problem**

- ∆I = I<sub>sense,2</sub> I<sub>sense,1</sub> → ∆V
  several elements in LRS
  → Reading is disturbed
- $\Delta V$  small even for small arrays
- pattern dependencies
  - circuitry difficult to design
  - static power consumption high
- $\rightarrow$  Only small arrays can be built

#### Alternative:

 $\rightarrow$ Sneak paths must be avoided

Conventional attempts: Non-linear (Z-diode type) elements in series Problems:

- → Read dynamics reduced
- $\rightarrow$  High current density







## **Solution – Complementary Resisitve Switch (CRS)**

Complementary resistive switch (CRS) • two antiserial memristive elements



## Solution – Complementary Resisitve Switch (CRS)

Complementary resistive switch (CRS)two antiserial memristive elements

**CRS in a Passive Array** 

- high cell resistance
- not pattern dependent
- low static power losses



E. Linn, R. Rosezin, C. Kuegeler, and R. Waser, *Nature Mater.* 9, 403-406 (2010)

## **Complementary Resistive Switching (CRS) cells**



Euture Information



## **Complementary Resisitve Switch (CRS)**

Write operation:

- write 1: V <  $V_{th,4}$ - write 0: V >  $V_{th,2}$ 



• 1 and 0: high resistive

storage states

|   | CRS state | element A | element B | resistance<br>CRS |
|---|-----------|-----------|-----------|-------------------|
| - | 0         | HRS       | LRS       | $\approx$ HRS     |
| - | 1         | LRS       | HRS       | $\approx$ HRS     |
|   | ON        | LRS       | LRS       | LRS+LRS           |
|   | OFF       | HRS       | HRS       | >> HRS            |

E. Linn, et al. *Nature Mater.* 9, 403-406 (2010)

## **Complementary Resisitve Switch (CRS)**

#### **Read operation:**

$$V_{th,1} < V < V_{th,2}$$

- high current: read 1low current: read 0
- → Easy to distinguish (but: destructive Read-out like in FeRAM !)

read

read

|   | CRS state | element A | element B | resistance<br>CRS |
|---|-----------|-----------|-----------|-------------------|
| 0 | 0         | HRS       | LRS       | $\approx$ HRS     |
| Ŭ | 1         | LRS       | HRS       | $\approx$ HRS     |
| 1 | ON        | LRS       | LRS       | LRS+LRS           |
| - | OFF       | HRS       | HRS       | >> HRS            |

E. Linn, et al. *Nature Mater.* 9, 403-406 (2010)



## **Complementary Resisitve Switch (CRS)**

#### http://www.emrl.de/pu\_crs.html#crs-model







## **Towards Logic: Free Programmable Gate Array (FPGA)**





Floor plan advantage: RRAM-Xbar vs CMOS > 1:30

#### Additonal aspects:

- fusion of memory and logic
- defect tolerance
- energy efficiency
- 3-D stacking



C. Kügeler et al. (2008)

## **Defect engineering – towards crossbar architectures**



... by anti-phase

**Vicinal surfaces** 



... or templated growth



concept - R. Dittmann (2008)

#### ultrathin nanocrystalline films

#### nanoimprinted crossnet structures





C. Kügeler et al. (2008)

## From Multibit memory to artificial neurons





#### **Resistive switch (memristive element),** = multilevel non-volatile memory

R. Oligschläger, et al., APL (2006)





R. Waser (ed.), "Nanoelectronics and Information Technology", Wiley 2005







### Mouse Cortex Simulation on an IBM Blue Gene

#### IBM BlueGene/L (4 racks) 4096 CPUs 1000 Terabytes RAM



Mouse brain 10<sup>6</sup> neurons 10<sup>10</sup> synapses



10<sup>2</sup> Hz "clock" freq.0.5 W power dissipation

## 10<sup>9</sup> Hz clock freq.40 kW power dissipation

Frye, et al, IBM Almaden Research Center, 2007

## Human Brain .... on a chip ??

#### 10<sup>10</sup> neurons 10<sup>14</sup> synapses



10<sup>3</sup> cm<sup>2</sup> projected area 10<sup>11</sup> cm<sup>-2</sup> synpases density Nano-crossbar



expected 10<sup>11</sup> cm<sup>-2</sup> density of resistive elements

Projects on artificial brain

- IBM Almaden, Stanford, et al.
- HP Research Palo Alto
# 7 Conclusions

# **Challenges**

- Design rules not yet fully known
   ... to guide search in the material's "treasure map"
- Long-term reliability
  - ... and overcoming the voltage-time dilemma
- Defect engineering

   just at it's very beginning
- Highly scaled interconnect lines ... and reliable electrode contacts

# **Prospects**

- Technologically compatible to CMOS interface
- Ultimately high scaling potential

   .... of redox-based resistive switching concepts
- Functions beyond pure memory ... from FPGA type logic to neural functions to cognitive computing

# natureconference

## Frontiers in Electronic Materials: Correlation Effects and Memristive Phenomena



Aachen, Germany Eurogress Conference Centre

June 17<sup>th</sup> to 20<sup>th</sup>, 2012

#### **Scientific Organization Committee**

Jörg Heber, *Nature Publishing Group* Rainer Waser and Matthias Wuttig, *RWTH Aachen & FZ Jülich, JARA -*FIT Yoshi Tokura, *Tokyo University* Darrell Schlom, *Cornell University* 

# Thank You!



## **Peter Grünberg Institute** Research Topics



# Peter Grünberg Institut in JARA FIT



**Quantum Theory of Materials** S. Blügel

#### Scattering Methods Th. Brückel

Semiconductor Nanoelectronics D. Grützmacher

**Theoretical Nanoelectronics** D. DiVincenzo

### Bioelectronics

A. Offenhäusser

**Electronic Properties** *C. Schneider* 

## Functional Nanostructures at Surfaces

F. S. Tautz

#### Microstructure Research R. Dunin-Borkowski

#### Electronic Materials R. Waser

Fundamentals of Future Information Technology

> Inorganic Chemistry U. Simon R. Dronskowski

Physical Chemistry M. Martin

Physics Institute Nf. G. Güntherodt, H. Bluhm M. Morgenstern, U. Klemradt M. Wuttig

**Theoretical Physics** *H. Schoeller D. DiVincenzo, B. Terhal* 

Central Facility & ER-C J. Mayer

**Crystallography** *G. Roth* 

**Fhl Laser Technology** *R. Poprawe, P. Loosen* **EE & IT** *W. Mokwa, J. Knoch, T. Noll A. Vescan, C. Jungemann*