

PIONEERS IN COLLABORATIVE RESEARCH®

Future chip technologies: Evolution or Revolution?

Steve Hillenius

Semiconductor Research Corporation

Ireland Summer School for Nanotechnology, Kildare, Ireland, August 28-30, 2011

Session Questions from Organizers

- 1. What will the driving force be?
- 2. How can simulation lead the way?
- 3. Could the transition be 'disruptive'
- 4. Who will be the leaders, winners or losers

- 1. What will the driving force be?
- Answers:
 - Smaller size of the system
 - Lower energy
 - More 'work' done:
 - Computing
 - Communication Convergence!
 - Sensing

The Economics of any application will be the overriding moderating factor

Disruption through Functional Convergence for a Feature-Driven Market

Introduction to the *iKnow Machine*

E=?

Thought Model - a hypothetical handheld device whose function is to enhance the life experiences of its user by providing a variety of support functions. It is envisioned that the set of support functions could be defined by the users to best meet their perceived needs.

Some of the *iKNOW* functions:

- Real-time image collection, recognition and labeling
- Medical monitoring and reporting
- Communication
- Support for reasoning about questions across a wide set of problem domains
- Real-time language translation
- Entertainment etc.

Essential components of iKnow

C=?

- M Memory
- L Logic
- **S** Sensors
- **D** Displays
- C Communication
- **E** Energy

Bio-inspired device evolution

 Electronic systems like biology: They are evolving to become more intelligent and connected

- 2. How can simulation lead the way?
- Answers:
 - Productive simulation usually occurs after you have a technology, not before
 - e.g. SPICE
- First: We need to have a design concept
- <u>Second</u>: We need experimental data (either ab-initio or from the design)
- <u>Third:</u> Simulation plays an important role to support understanding and optimization
- Simulation Challenge: Are there limits to how predictive simulation tools can be?

- 3. Could the transition to new IP technologies be 'disruptive' ?
- Answers:
 - Logic not likely
 - No convincing alternatives yet
 - Memory likely
 - Recent results on ReRAM are encouraging
 - Architectures Promising!!!
 - Moving from logic-centric to data-centric?
 - More-than-More Intelligent Sensor Networks
 - Central Nervous System of the Earth?

PIONEERS IN COLLABORATIVE RESEARCH®

Disruptive Memory technologies: The Past

256 Kbit DRAM in production 2 μm minimum features

64 Kbit UV-EPROM in production

No flash memory as we know it today yet exists

SRC 1982 challenges: 64 Mbit DRAM 0.25 μm minimum features

Semiconductor Vision (circa 1982):

- "It is doubtful that one can scale the device dimensions to <u>below 0.1 μm</u> and gain any advantage in circuit performance because of several basic limitations"
 Proc. IEEE (1983): A systems approach to 1 μm NMOS by M.P. Lepselter, D.S. Alles, H. J. Levinstein, G. E. Smith (2009 Nobel Prize Recipient), H. A. Watson
- "MOS gate lengths of about 0.25 micrometer are <u>the practical</u> <u>scaling limit</u>" (1st SRC Annual Report–1984)
 - The SRC 0.25 micrometer CMOS research thrust is centered at Cornell University, with contributing projects at Wisconsin, Illinois, Stanford, Colorado State, Arizona, Yale, and Notre Dame

Disclosure Dates ^a Subm. Pub.		Authors-Inventors Development Team	Institutions or Locations ^b	Memory Density (bit/chip)	Device and Technology ^c	Reduction to Practice ^d	Ref.
	1985	IBM Essex Junction		1M	DRAM NMOS 1T2d SAMOS	Prod	[154]
	1985	ATT, Fujitsu, Hitachi, Toshiba		1M	DRAM NMOS 1T2d	Eng	[154]
	1985	TI Í		1M	DRAM NMOS 1T3d trench-C	Eng	[154]
	1985	IBM E. Fiskill, Yorktown Ht		64k-4M	DRAM PMOS 1T3d trench-C	Lab	[169]
	1985	Hitachi, Toshiba, NEC		4M	DRAM NMOS 1t3d trench-C	Lab	[170]
	1985	Chatterjee et al.	TI	- 4M	DRAM NMOS 1T3d > 1µm TCT	Lab	[173]
	1985	1BM Research	IBM	16M	DRAM NMOS 1T2d 0.5µm EB	Est	[198]
	1986	IBM-3090	IBM	1M	DRAM NMOS 1T2d SAMOS	Prod	[154]
	1986	MicroVAX-2 Toshiba/Chrislin		1M	DRAM NMOS 16MB/card	Prod	[154]
	1988	Matsushita, Toshiba, Hitachi		16M	DRAM CMOS 1T3d trench-C	Eng	[177]-[179]
•	1995	SRC University Research		64M	DRAM CMOS 1T3d 0.25µm	Est	[130]

Table 3 Evolution of the Silicon MOS Random Access Memory (RAM) (1969-1988)

The iPod was un-imaginable circa 1980

Best available storage

Do Basic Research and Applications/Markets will follow!

PIONEERS IN COLLABORATIVE RESEARCH®

Disruptive Memory technologies: The Future

- **Trend**: The amount of data being created is exploding, growing significantly faster than Moore's law
- **Need**: Data-centric information processing technologies
- Flash may not get us there...

Flash memory: Device Challenges

- NAND flash is currently the workhorse NVM technology
- NAND flash has recently become an alternative storage technology
 - faster access times and smaller size, as compared to HDD.
- The NAND-based solid state drive (SSD) market has flourished recently.
- Unfortunately, there are several fundamental limitations of NAND flash for data-centric applications
 - poor endurance (10⁴ 10⁵ erase cycles),
 - modest retention (typically 10 years on the new device, but only 1 year at the end of rated endurance lifetime),
 - Iong erase time (~ms), and high operation voltage (~15V). ENERGY!

Type & Part Number	SLC [37]	MLC×2 [38]
Endurance (Erase Cycles)	100,000	10,000
Price (US dollars/GB, 2008 Q1)[42]	7.10	2.48
Serial Access	25ns	25ns
Random Read	$20 \mu s$	$60 \mu s$
Write/Program	$200 \mu s$	$800 \mu s$
Erase	1.5ms	1.5ms

Flash SSD: Architectural Challenges

- Page/block-based architecture,
 - doesn't allow for a direct overwrite of data,
 - requiring sophisticated garbage collection
 - bulk erase procedures,
- Computation-intensive data management
 - Takes extra memory space,
 - Limits performance
 - Accelerates the wearing out of memory cells.
 - Lower power potential compromised in current SSD implementations

Flash Scaling Challenges

- Flash memory scaling doesn't improve (degrades!!!) the basic performance characteristics
 - read, write and erase latencies have been nearly constant for over a decade
 - Extreme scaling results in the degradation of retention time and endurance,
 - critical for storage applications!
- Emerging technologies for non-volatile memories have a potential to "take over" the scaling roadmap for flash.
 - may help to overcome the fundamental shortcomings of flash technology.
 - e.g. ReRAM

What is the smallest volume of matter needed for a memory cell?

V. V. Zhirnov, R. K. Cavin, S. Menzel, E. Linn, S. Schmelzer, D. Bräuhaus, C. Schindler and R. Waser, "**Memory Devices: Energy-Space-Time Trade-offs**", *Proc. IEEE* 98 (Dec. 2010) 2185

In collaboration with RWTH Aachen Univ / Jülich Res. Ctr.

V. V. Zhirnov, R. Meade, R. K. Cavin, S. Menzel, and G. Sandhu, "**Scaling Limits of Resistive Memories**", *Nanotechnology* 22 (June 2011) 254027

In collaboration with Micron Technology, Inc.

$$E \cdot t \cdot V = \min \quad E \cdot t \cdot L = \min \quad E \cdot t \cdot N_{at} = \min$$

The Least Action principle is a fundamental principle in Physics

$$E \cdot t = \min(\geq h)$$

Plank's constant $h=6.62 \times 10^{-34}$ Js

Scaling optimization for DRAM based on minimal space action

DRAM vs. ReRAM

Memory Devices: Space-Time-Energy Trade-offs

	Ncarriers	V _{stor} ,nm ³	E _w , J	t _w , ns	<i>Space-</i> <i>Action</i> , J-ns-nm ³	Critical Component	
DRAM	10 ⁵	10 ⁵	10 ⁻¹⁴	1 ns	~10 ⁻⁷ -10 ⁻⁸	Storage Node	
Flash	10	10 ³	10 ⁻¹⁶	10 ³ ns	~10 ⁻⁹	Sensor	FET
STT-RAM	10 ⁵	10 ³	10 ⁻¹⁴	1 ns	~10-10	Selector	FET
ReRAM	100	3	10 ⁻¹⁷	1 ns	~10 ⁻¹³	Selector	FET or 2-t select device
				Construstion sensor	aints by rem not conside	note ered	
Energy	y × tim	$e \times Vo$	lume	r = mi	n		

- Advances in memory technologies could drive the emerging datacentric chip architectures
 - Nanostores Chips consisting of multiple 3D-stacked layers of dense nonvolatile memory with a top layer of power-efficient processor cores
- Nanostores architectures could be an important direction for the future of information processing.
- Ultra-fast data access
 Flattening memory hierarchy
 LOW ENERGY!

Matches with future datacentric workloads

PIONEERS IN COLLABORATIVE RESEARCH®

Disruptive Sensor Technologies: The Future

Trend: Sensors will likely be everywhere - from scales ranging from the human cell to outer space; and they will be present in very large numbers.

A Vision: Integrated Sensor Systems

- Highly functional space-limited (e.g. portable) sensor systems
 - Multisensory
 - Operate with extremely low energy consumption.
- Sensor networks could consist of a very large number of sensor nodes talking to one another; sleeping and waking on demand etc.
 - Sensors to support ubiquitous / pervasive autonomic networks
 - Communication energy/volume expenditures is most costly activity should therefore maximize "node intelligence"

'Autonomic'

 It must be user-transparent, self-healing, self-configuring, self-optimizing, and selfprotecting

Energy sources are key to future integrated sensor systems

Diverse energy sources in a small volume

- Can we move from the custom-designed, application-specific sensors to a technology framework for universal integrated on-chip multisensor systems?
- Could be next successful technology platform
 - Standard cell library for sensors
 - Standard interfaces

Gedanken 'In Silico' System

- **Nanomorphic Cell:** A model system, designed to analyze the physical scaling limits of electronic systems,
- Postulated to be confined within a $10\mu m \times 10\mu m \times 10\mu m$ cube.
- An atomic-level integrated, self-sustaining microsystem with six primary components: <u>computation, communication, energy</u> <u>supply</u>, <u>sensing</u>, and <u>actuation</u>.

Benchmark: Living cell In carbo system

"Microsystems for Bioelectronics: The Nanomorphic Cell", by Victor V. Zhirnov and Ralph K. Cavin (*Elsevier*, 2010)

- Who will be the leaders or winners
- Answers:
- Who changes faster...
- Companies that develop and integrate the following technologies:
 - Packaging
 - 3D ICs
 - Heat management
 - Robust technologies for diverse / extreme environments
 - Universal sensor platform
 - Extremely scale energy sources