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Introduction 1

1.1 About this Manual

This document is a guide for the Intel® Itanium® architecture Streamlined Advanced 
Programmable Interrupt Controller (SAPIC). SAPIC is the high performance interrupt architecture 
for the Itanium architecture. 

This guide describes the Itanium architecture SAPIC and platform level implementation 
considerations. In order for the SAPIC architecture to be used effectively in a platform, the user 
must be aware of some considerations for hardware and software design. This guide provides many 
of those important design considerations. Failure to follow the guidelines established in this guide 
may result in incompatibilities with future Intel products.

This document is intended for platform hardware architects (both component and platform) as well 
as platform software architects (operating system [OS] and platform firmware). For the benefit of 
those who are already familiar with the Advanced Programmable Interrupt Controller (APIC) 
architecture, this document describes some of the differences when programming in the Itanium 
architecture system environment. 

1.2 Reference Documents

For implementation details, refer to the documents listed below. These documents can be 
downloaded on Intel’s Developer Site at http://developer.intel.com:

• Intel® Itanium™ Processor Hardware Developer’s Manual (Document Number: 248701)

• Intel® Itanium® 2 Processor Hardware Developer’s Manual (Document Number: 251109)

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application 
Architecture (Document Number: 245317)

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture 
(Document Number: 245318)

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set 
Reference (Document Number: 245319)

The following documents are available from their respective organizations:

• Advanced Configuration and Power Interface Specification v2.0 (available at www.acpi.info)

• PCI Bus Specification v2.2 (available at www.pcisig.com)

1.3 Objectives of SAPIC

When the Itanium architecture was being developed, it was determined that a new interrupt 
architecture would be necessary to match the performance and scalability goals of the new 
processor and platform architectures. The goal was to streamline the APIC used with the IA-32 
Architecture processors for the Itanium Architecture.
Intel® Itanium® Processor Family Interrupt Architecture Guide 1-1
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At the platform level, the software view of the interrupt architecture below the processor is 
identical between SAPIC and APIC; because of this compatibility, the I/O unit is called an I/O 
xAPIC in this document.

The I/O xAPIC can be easily integrated into the I/O devices. Some advantages of an integrated I/O 
xAPIC are that the delay incurred when routing interrupts through interrupt controller is eliminated 
along with the additional cost required to implement another component in the system.

With the APIC serial bus, the interrupts travel over a different path than the normal data which 
travels through the system bus. This creates an ordering problem that must be overcome through 
complex logic on the platform. If a data write was followed by an interrupt, it is possible for the 
interrupt to reach the processor first before the data write takes effect, allowing the processor to 
access stale data. By using the system bus for interrupt delivery as well as data traffic, the ordering 
problems can be avoided.

Higher performance is obtained by replacing the APIC serial bus implementation with a system 
bus interrupt delivery implementation. This interrupt handling capability is therefore scalable with 
the processor’s system bus speed. External I/O interrupts are delivered via the I/O bus, which also 
allows for a faster delivery to the system bus.

The SAPIC architecture minimizes software context switching overhead, which is inherent with 
the APIC architecture. It allows for the interrupt service routine (ISR) to process all pending 
interrupts within the current priority level. This reduces the number of times context switching is 
performed and the number of repeated interruptions to the processor, thereby improving 
performance.

Finally, it was an objective of the SAPIC architecture to move from a pin-based interrupt 
mechanism to a signal-based interrupt mechanism. In order to add more interrupt sources with a 
pin-based mechanism, more pins must be allocated to accommodate the devices; with a signal-
based mechanism, there is no limit to the number of interrupt sources that can reside on a bus.

1.4 Terminology

The following terms are used in this document:

• In the register descriptions, fields containing <rv> or <reserved> are reserved by the 
architecture. Reserved fields are read as zeros, and writing of a non-zero value results in 
reserved operand exception (part of the General Exception). Register fields with encodings 
that are listed as <reserved> should not be used by software. 

• The processor is said to receive an interrupt if the processor’s interrupt pins are asserted or an 
interrupt message bus transaction containing the processor’s unique identifier is detected by 
the processor.

• After receiving an interrupt, the processor internally holds the interrupt pending until the 
interrupt is acquired by software and placed in service. The interrupt is said to be pended when 
it is received and held by the processor. The processor maintains one interrupt pending 
indication for each possible unique interrupt, signified by a unique interrupt vector number. An 
occurrence of an interrupt that is already pending cannot be distinguished from previous 
occurrences. All occurrences to a given vector are pended in the same internal interrupt 
pending bit, and are therefore treated as “the same” interrupt occurrence.

• When interrupts are enabled and the highest priority pending interrupt is unmasked (as defined 
below), the processor accepts the pending interrupt, interrupts the control flow of the 
processor, and transfers control to the software interrupt handler.
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• When software acquires the interrupt vector from the processor, the interrupt is considered in-
service. The processor then removes the pending indication for the interrupt vector. The 
processor maintains one in-service indicator for each unique vector number.

• The interrupt remains in service until software indicates service for the interrupt has been 
completed (by writing into the EOI register). The processor then removes the in service 
indication for the interrupt vector.

• Interrupts are enabled when software programs the processor to accept any unmasked 
interrupt. External interrupts are enabled if Processor Status Register (PSR.i) is 1.

• Unmasked interrupts are interrupts of higher priority than the highest priority interrupt vector 
currently in service (if any) and whose priority level is higher than the specified current 
priority masking level (as indicated by the Task Priority Register, TPR). 

1.4.1 Glossary

8259
The interrupt controller used by legacy systems.

ACPI
Advanced Configuration and Power Interface

CMC
Corrected Machine-Check

EOI
End of Interrupt

ExtINT
External Controller Interrupt

ICR
Interrupt Command Register

INIT
Initialization Interrupt

IPI
Interprocessor Interrupt

IPSR
Interruption Processor Status Register

IRR
Interrupt Request Register

ITV
Interval Timer

IVR
Interrupt Vector Register

LID
Local ID Register

LRR
Local Redirection Register
Intel® Itanium® Processor Family Interrupt Architecture Guide 1-3
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LVR
Local Vector Register

MIC
Mask Interrupt Class

MADT
Multiple APIC Descriptor Table

MCA
Machine Check Abort

MMI
Mask Maskable Interrupt

MSI
Message-Signaled Interrupts

NMI
Non-Maskable Interrupt

OS
Operating System

PAL
Processor Abstraction Layer

PIB
Processor Interrupt Block

PMI
Platform Management Interrupt

PMV
Performance Monitoring Event

PSR
Processor Status Register

RT
Redirection Table

RTE
Redirection Table Entry

SAL
System Abstraction Layer

SMI
System Management Interrupt

TPR
Task Priority Register

XTP
eXternal Task Priority

Note: The term “Local SAPIC unit” is used throughout this document only to facilitate the description of 
the architecture. The interrupt architecture is an integral part of the Itanium architecture. The Local 
SAPIC unit is not a discrete component. 
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1.5 Revision History

 Version Description Date

001 Initial release of the document. March 2003
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SAPIC Interrupt Architecture 2

2.1 Platform Interrupt Architecture

The SAPIC has two roles: it is responsible for generating interrupts and for receiving, accepting, 
and processing the interrupts. Interrupts are asynchronous events that are used by the platform to 
communicate to the processor and software that something requires their attention. The portion that 
resides in the processor is known as the Local SAPIC unit, or Local SAPIC, and its primary 
responsibility is to receive, accept, and process the interrupts. The processor can also generate 
interrupts of its own (for interprocessor communication as well as for certain interrupts that 
originate within the processor core). The portion that resides in the I/O subsystem is known as the 
I/O xAPIC unit, or I/O xAPIC, and its only responsibility is to generate interrupts directed to each 
selected processor’s Local SAPIC unit.

The I/O xAPIC unit provides the interrupt input pins on which I/O devices inject interrupts into the 
system in the form of an edge or a level signal. The I/O xAPIC contains a Redirection Table (RT) 
with an entry for each interrupt input pin. Each entry in the RT can be individually programmed to 
indicate whether an interrupt on the pin is recognized as either an edge or a level, what vector (and 
hence what priority) the interrupt has, and which of all possible processors should service the 
interrupt. The contents of the RT are under software control and are assigned default values upon 
reset. The information in the table is used to route a message to the target Local SAPIC unit of a 
processor via the system bus. The functionality of the I/O xAPIC may be integrated with an I/O 
device, but any component of the system that is capable of injecting interrupt messages on the I/O 
bus must appear as an I/O xAPIC to the platform and must have the functionality of the I/O xAPIC.

Figure 2-1. Sample Implementation of an Intel® Itanium® Architecture-Based Multiprocessor 
Platform

000589b

Processor Processor Processor Processor

Bridge
Controller Memory

Local SAPIC Local SAPIC Local SAPIC Local SAPIC

I/O
Hub

I/O
xAPIC

Keyboard

HDD
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SAPIC Interrupt Architecture
The Local SAPIC unit determines whether or not its processor should receive interrupts sent on the 
system bus. The Local SAPIC unit also provides local registry of pending interrupts, nesting, and 
masking of interrupts, and handles all interactions, such as the INTR/INTA/EOI protocol, with its 
local processor. The Local SAPIC unit further provides IPIs capability to its local processor. The 
register level interface of a processor to its Local SAPIC is identical for each processor.

2.2 Intel® Itanium® Architecture Interrupt Delivery 
Overview

Interrupts received by the processor are generated by a number of different interrupt sources in the 
system. Possible interrupt sources are:

• Remote I/O xAPIC: Interrupts from these external sources manifest themselves as interrupt 
messages on the system bus and can be directed to any processor. PCI devices capable of 
Message-Signaled Interrupts (MSI) fall in this category (refer to the PCI Bus Specification 
v2.2)

• Local I/O devices: These originate as edge/level signals on interrupt input pins of the 
processor, but they are directed to the local processor only.

• Local processor-generated interrupts such as Interval Timer (ITV), performance monitoring, 
and Corrected Machine Checks (CMC); these are directed to the local processor only.

• Processors: A processor can interrupt any individual processor, including itself. This supports 
software self-interrupts, synchronization, scheduling, interrupt forwarding, etc. These 
interrupts also manifest themselves as interrupt messages on the system bus and are 
indistinguishable from other interrupts originating from remote I/O xAPICs.

2.2.1 I/O Interrupts from Remote I/O xAPIC

I/O interrupts from remote I/O devices that are not capable of generating their own interrupt 
messages (i.e. they generate interrupts via a pin) must be converted to an interrupt message by an 
I/O xAPIC unit. When an I/O device needs servicing, it sends an interrupt to the external I/O 
xAPIC via a pin. The I/O xAPIC does a look up in its I/O RT. Each entry in this table is dedicated 
to one interrupt pin. The I/O xAPIC uses the information in the Redirection Table Entry (RTE) to 
translate the interrupt signal into an interrupt message. This interrupt message contains the 
interrupt vector, delivery mode, trigger mode, and destination processor ID. The I/O xAPIC 
transmits this message along the I/O bus (i.e. in the form of a memory write transaction) to a bridge 
controller. Next, the bridge controller converts the message into an interrupt transaction and sends 
it on to the system bus. Each processor on the system bus then checks its own identification ID 
against the destination ID specified in the interrupt transaction. Only the processor with a match 
receives the interrupt transaction.

2.2.2 Processor Local Interrupts (ITV, CMC, Performance 
Monitor) 

Besides the responsibility of receiving and processing interrupts, the Local SAPIC unit in the 
processor also functions as an I/O xAPIC unit in the sense that it can generate interrupts to the 
processor core. Local to the processor are two separate sources of interrupts: those generated by the 
processor core such as the timer, performance monitoring, or CMC; and those generated by an 
external device connected to one of the interrupt pins of the processor (i.e. LINT0 and LINT1, if 
these pins are supported by the processor).
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Within the processor Local SAPIC unit, there is a set of Local Vector Registers (LVRs) and a set of 
Local Redirection Registers (LRRs), which are similar in format, function, and capability to the RT 
contained in the I/O xAPIC unit. The purpose of the LVRs and LRRs is to describe all the locally 
generated interrupts in the same fashion as the RT in the I/O xAPIC, with the exception that the 
destination ID fields are not used because all the locally generated interrupts are directed to the 
local processor only.

2.2.3 Interprocessor Interrupts

One processor can interrupt another processor (including itself) by generating an interprocessor 
interrupt (IPI). A processor generates interrupts by performing an uncacheable store to an aligned 
address within the Processor Interrupt Block (PIB). Interrupt information is exchanged between 
different Local SAPIC units on the system bus in the form of interrupt messages, the format of 
which is identical to interrupts generated by the I/O xAPIC. The address used for the store 
instruction determines which processor the interrupt is delivered to, and the data being stored is 
similar in format to the RTE used for the I/O xAPIC or the LVR/LRR registers (but only includes 
the Delivery Mode and the Vector. See Section 5.8.4 of the Intel® Itanium® Architecture Software 
Developer’s Manual, Volume 2).

2.3 Software Model

This section describes the software model for both the Local and the I/O xAPIC units of the SAPIC 
architecture.

2.3.1 Local SAPIC

The Local SAPIC is the interrupt resource. It is responsible for pending local interrupt sources, 
receiving SAPIC interrupt messages, and dispensing interrupts to the processor core. At most one 
Local SAPIC unit will receive an interrupt if the Local SAPIC ID/EID matches that of the interrupt 
message. If a Local SAPIC receives an interrupt, it will deliver the interrupt to its processor.

2.3.1.1 Local SAPIC Registers

Software interacts with the Local SAPIC by reading and writing its registers. The register set of 
each Local SAPIC unit appears as control registers for each processor. All registers can be accessed 
by using a 64-bit move instruction. This implies that to modify a field (e.g., a bit or a byte) in any 
register, the entire (64-bit) register must be read, the field modified, and the entire register written 
back. These registers are used to prioritize and deliver interrupts. Table 2-1 is a subset of the 
interrupt control registers. Refer to the Intel® Itanium® Architecture Software Developer’s Manual 
for additional information.

When reading and writing to the Local SAPIC registers, multiple clocks may be required to finish 
the write. To avoid slow access to the control registers, software can implement reads at the 
beginning and writes at the end of data serialization to take full advantage of the capabilities of the 
processor architecture. For example:

r1 = CR.IVR;

// Do other stuff

srlz.d;

CR.EOI = ...;
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2.3.1.2 Local SAPIC Redirection Registers

The Local SAPIC contains two sets of Redirection registers: the LVRs (ITV, CMC, PMV), which 
contain information on interrupts generated locally within the processor and the LRRs, which 
contain information on interrupts generated locally from the local external interrupt pins (i.e. 
LINT0 and LINT1, if available). Refer to Figure 2-2 and Figure 2-3). There is one entry in each 
redirection table for each interrupt source. Software can decide the vector (and hence the priority) 
dedicated to each individual interrupt source. This vector is then used for priority arbitration along 
with all other pending interrupts received by the Local SAPIC unit.

Table 2-1. Interrupt Control Registers (Subset)

Register Register Description

LID Local ID 
Register

R/W This register contains the processor’s SAPIC ID and EID. The ID/EID 
serves as a physical address of the Local SAPIC unit and is loaded after 
reset by the PAL and SAL firmware. This ID is compared to the target 
address of an interrupt message for receiving interrupts.

IRR[3:0] Interrupt 
Request 
Register

R Four 64-bit read-only registers allow software to determine which of the 
256 external interrupts are pending. Each vector bit is set when the 
processor receives the interrupt. 

IVR Interrupt Vector 
Register

R This register allows the software interrupt handlers to determine the 
highest priority pending external interrupt. Each IVR register read will clear 
the reported interrupt vector pending indication bit in the IRR register.

EOI End of 
Interrupt 
Register

R/W Software writes to this register when it is ready to accept another interrupt 
at a higher or same priority level than specified by the TPR.

TPR Task Priority 
Register

R/W Interrupt messages received by the Local SAPIC cause an interruption in 
the normal instruction execution only if the interrupt corresponds to higher 
priority than the class indicated by the TPR. This register supports 240 
maskable interrupt priority levels: interrupt vectors 16 to 255, divided into 
15 interrupt classes.

CMCV
ITV
PMV

Local Vector 
Registers

R/W These registers contain the vector number for internal asynchronous 
events, e.g. ITV, corrected machine-check, and performance monitoring 
events (PMV). These registers duplicate the vector number in the IVR for 
their respective interrupt events.

LRR[1:0] Local 
Redirection 
Registers

R/W The LRRs contain the vector number and delivery mode for the local I/O 
devices (i.e. LINT0/LINT1 external devices, if available).

Figure 2-2. Local Vector Registers (CMC Vector, ITV, PMV)

63 17 16 15 14 13 12 11 8 7 0

Ignored <rv> 0 <rv> Vector

M

Figure 2-3. Local Redirection Register

63 17 16 15 14 13 12 11 10 8 7 0

Ignored 0 Vector

M T P DM
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• Vector: An 8-bit field containing the interrupt vector. Vector values can range between 0x10 
and 0xFF.

• Mask (M): Masks the delivery of this interrupt.

0 (Unmasked) Indicates that occurrences of this interrupt are pended.

1 (Masked) Indicates that occurrences of this interrupt are not pended. The interrupts 
signaled on a masked LVR entry are simply ignored.

The only control available for locally generated interrupts is whether to mask them or not. The 
destination is always the local processor, and the triggering mode is always edge.

Note: Certain delivery modes will only operate as intended when used in conjunction with a specific 
trigger mode. These restrictions are indicated in the list for each delivery mode.

• Vector: An 8-bit field containing the interrupt vector.

• Delivery Mode (DM): The delivery mode is a 3-bit field that specifies how the local processor 
should act upon receipt of this signal.

000 (INT) Deliver the signal to the local processor. Trigger mode can be edge or 
level. The vector value can range between 0x10 and 0xFF.

010 (PMI) Deliver the signal on the Platform Management interrupt (PMI) signal of 
the local processor. The interpretation of the vector field is 
implementation defined: the vector ranges from 0x1-0xF (0x1-0x3 are 
useable by SAL; all other values are Intel reserved).

100 (NMI) Deliver the signal on the NMI signal of the local processor; vector 
information is ignored, but the vector read by the Itanium architecture-
based processor will be 0x2.

101 (INIT) Deliver the signal on the Initialization interrupt (INIT) signal of the local 
processor; vector information is ignored.

111 (ExtINT) Deliver the signal to the local processor as an interrupt originating from 
an Intel 8259A compatible external interrupt controller. A software-
initiated INTA transaction that corresponds to this ExtINT delivery will 
be routed to the external controller that is expected to supply the vector. 
A delivery mode of ExtINT requires an edge trigger mode. SAPIC 
architecture supports only one ExtINT source in a system. Vector 
information is ignored, but the vector read by the Itanium architecture-
based processor will be 0x0.

• Interrupt Input Pin Polarity (P): Specifies the polarity of each interrupt signal connected to 
the local interrupt pins of the processor.

0 (High) Means the signal is active high.

1 (Low) Means the signal is active low.

• Trigger Mode (T): Indicates the type of signal on the interrupt pin that triggers an interrupt.

0 (Edge) Indicates edge sensitive. Assertion of the LINT pin pends an external 
interrupt for the specified vector.

1 (Level) Indicates level sensitive. Assertion of the LINT pin pends an external 
interrupt for the specified vector; deassertion of the LINT pin removes 
the pending interrupt.
Intel® Itanium® Processor Family Interrupt Architecture Guide 2-5
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• Mask (M): Masks the delivery of this interrupt.

0 (Unmasked) Indicates that occurrences of this interrupt are pended.

1 (Masked) Indicates that occurrences of this interrupt are not pended. Edge-
sensitive interrupts signaled on a masked Interrupt Input pin are simply 
ignored (i.e. it is not delivered and is not held pending). Level asserts or 
deasserts occurring on a masked level-sensitive pin are also ignored and 
have no side effects. Changing the Mask bit from unmasked to masked 
after the interrupt was received by a processor has no effect on that 
interrupt. This behavior is identical to that in which the device withdraws 
the interrupt before that interrupt is posted to the processor. It is the 
software’s responsibility to deal with the case where the Mask bit is set 
after the interrupt message has been received by a processor but before 
the interrupt is dispatched to the processor.

2.3.2 I/O xAPIC

The I/O xAPIC unit consists of a set of interrupt input pins, an interrupt RT, and a message unit for 
sending SAPIC messages on the I/O bus. The I/O xAPIC unit is where I/O devices inject their 
interrupts. The I/O xAPIC unit selects the corresponding entry in the RT and uses the information 
in that entry to format an interrupt request message. The message unit then sends this message over 
the I/O bus. For the purpose of this guide, PCI is used as an example of the I/O bus. The content of 
the RT is under software control and is assigned default values upon reset.

2.3.2.1 I/O xAPIC Registers

Software interacts with the I/O xAPIC by reading and writing to its registers, which are memory-
mapped into the physical address space. In a multiprocessor (MP) system, the register sets of I/O 
xAPIC units would be globally accessible by any processor that has access to the address range. If 
a system contains multiple I/O xAPIC units, then each of the I/O units would be located at a 
different address. 

All registers are accessed using 32-bit uncacheable loads and stores to a reserved memory location 
in system memory. This implies that to modify a field (e.g., a bit or a byte) in any register, the 
whole 32-bit register must be read, the field modified, and the 32 bits written back. Partial register 
access, or non-aligned register access, are implementation-defined by the I/O xAPIC and will not 
be compatible across different implementations. Also, registers that are described as 64 bits wide 
are accessed as multiple independent 32-bit registers. 

There are a set of external registers (directly accessible via memory-mapped addresses) and a set of 
internal register (indirectly accessible via two external registers) as described in Table 2-2.

Table 2-2. External and Internal Register Description

Register Access Offset Register Description

I/O Register 
Select Register

Direct Base+0x00 This 32 -bit register is used to determine which read/writable 
internal register within the I/O xAPIC is manipulated when the I/O 
Window register is accessed. There are a maximum of 256 internal 
registers residing in the I/O xAPIC.

I/O Window 
Register

Direct Base+0x10 This 32-bit register is mapped by the value in the I/O Register 
Select register to the designated internal register.
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When accessing the I/O xAPIC RT, care must be taken to ensure that stores do not occur out of 
order. The first step is to do a store to the I/O Register Select register and second, do a load/store to 
the I/O Window register. If the two accesses occur out of order, the result is that the data being 
read/written belongs to the entry that was previously selected by the I/O Register Select register. To 
ensure the order of the load and store operations, the I/O xAPIC registers must be accessed with 
uncacheable attributes.

2.3.2.2 I/O xAPIC Redirection Table

The I/O RT has entries dedicated to each interrupt source of the I/O xAPIC. Unlike the Intel 8259 
interrupt controller, there is no concept of interrupt priority depending on the pin for which the 
interrupt was asserted. Software can decide the vector (and hence the priority) dedicated to an 
individual pin. The information in the I/O RT is used to translate an incoming interrupt signal into 
the appropriate interrupt message.

Once an interrupt is detected on an input pin, a delivery status bit within the I/O xAPIC is set. The 
interrupt remains pending until the interrupt message associated with that interrupt has been 
successfully delivered on the bus.

Only after the delivery of the interrupt message has occurred will a new occurrence of an edge-
triggered interrupt on that interrupt input pin be recognized. If a new interrupt message is issued for 
a new occurrence at the interrupt input pin, the recognition of that interrupt will occur if, and only 
if, the previous interrupt pending has already been serviced by the processor (i.e. if the processor’s 
Interrupt Request bit for that interrupt vector is already set to a ‘1’, the new interrupt will not be 
recognized).

The number of entries in the RT is implementation dependent, and that number is recorded in the 
I/O xAPIC Version register. Because the RT registers are accessed indirectly via the 8-bit offset 
stored in the I/O Register Select register, there can be a maximum of 120 RTEs (each entry consists 
of two 32-bit registers) per I/O xAPIC. See Figure 2-4 for the I/O xAPIC RTE definition.

IRQ Assertion 
Register 
(optional)

Direct Base+0x20 This register allows several devices to generate interrupts without 
increasing the number of interrupt pins to the I/O xAPIC. I/O 
devices supporting this register can generate an interrupt by 
writing an interrupt vector to it.

I/O EOI Register 
(optional)

Direct Base+0x40 This 32-bit register is used by software to communicate to the I/O 
xAPIC that it has serviced a level-triggered interrupt initiated by the 
I/O xAPIC along with the vector number. If the interrupt line is still 
held high, the I/O xAPIC should generate a new interrupt message 
for the vector.

I/O xAPIC 
Version Register

Indirect 0x001 This 32-bit read-only register identifies different I/O xAPIC 
implementations and their versions. It also contains the maximum 
number of RT entries supported by the I/O xAPIC.

Redirection 
Table Entry X 
{31:0}

Indirect 0x010 
through 
0x0FE by 2

This I/O RT has entries dedicated to each interrupt source. The 
lower 32-bits of each entry specifies the interrupt vector, delivery 
mode, status, trigger mode, and mask mode.

Redirection 
Table Entry X 
{63:32}

Indirect 0x011 
through 
0x0FF by 2

This I/O RT has entries dedicated to each interrupt source. The 
upper 32 bits of each entry specifies the destination processor ID.

Table 2-2. External and Internal Register Description (Continued)

Register Access Offset Register Description
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Note: Certain delivery modes will only operate as intended when used in conjunction with a specific 
trigger mode. These restrictions are indicated in the list for each delivery mode.

• Vector: An 8-bit field containing the interrupt vector.

• Delivery Mode (DM): The delivery mode is a 3-bit field that specifies how the processors 
listed in the destination field should act upon receipt of this signal.

000 (INT) Deliver the signal to the processor listed in the destination. Trigger mode 
can be edge or level. The vector value can range between 0x10 and 0xFF.

001 (INT with The same as “INT” delivery, except that the platform is allowed to
Redirectable hint) redirect the interrupt to another processor on the same processor system 

bus as the destination (including the destination processor listed in the 
destination). See Section 2.4.2.

010 (PMI) Deliver the interrupt on the PMI signal of the processor listed in the 
destination. The interpretation of the vector field is implementation 
defined: the vector ranges from 0x1-0xF (0x1 - 0x3 are useable by SAL; 
all other values are Intel reserved). The trigger mode must be edge. This 
delivery mode is compatible with the System Management interrupt 
(SMI) delivery mode of the APIC when the vector is 0x0.

100 (NMI) Deliver the signal on the NMI signal of the processor listed in the 
destination; vector information is ignored, but the vector read by the 
Itanium architecture-based processor will be 0x2. NMI is always 
delivered as an edge triggered interrupt; the trigger mode field is ignored.

101 (INIT) Deliver the signal on the INIT signal of the processor listed in the 
destination; vector information is ignored.

111 (ExtINT) Deliver the signal to the INTR signal of the processor listed in the 
destination as an interrupt that originated in an 8259 compatible external 
interrupt controller. A software-initiated INTA transaction that 
corresponds to this ExtINT delivery will be routed to the external 
controller that is expected to supply the vector. A delivery mode of 
ExtINT requires an edge trigger mode. SAPIC architecture supports only 
one ExtINT source in a system. Vector information is ignored, but the 
vector read by the Itanium architecture-based processor will be 0x0.

• Delivery Status (S): A 1-bit field that contains the current status of the delivery of this 
interrupt. This is a software read-only field; writes to this field do not affect this bit. This field 
is only used for debugging purposes.

0 (Idle) Indicates that there is currently no activity for this interrupt.

1 (Pending) Indicates that the interrupt has been injected, but it has yet to be 
delivered.

Figure 2-4. I/O xAPIC Redirection Table Entry Definition

31 17 16 15 14 13 12 11 10 8 7 0

<reserved> 0 Vector

M T P S DM

63 56 55 48 47  32

ID EID <reserved>
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• Interrupt Input Pin Polarity (P): Specifies the polarity of each interrupt signal connected to 
the interrupt pins of the I/O xAPIC.

0 (High) Means the signal is active high.

1 (Low) Means the signal is active low.

• Trigger Mode (T): Indicates the type of signal on the interrupt pin that triggers an interrupt.

0 (Edge) Indicates edge sensitive.

1 (Level) Indicates level sensitive.

• Mask (M): Masks the delivery of this interrupt.

0 (Unmasked) Indicates that delivery of this interrupt is not masked. An edge or level 
on an interrupt pin that is not masked results in the delivery of this 
interrupt message to the destination processor.

1 (Masked) Indicates that delivery of this interrupt is masked. Edge-sensitive 
interrupts signaled on a masked Interrupt Input pin are simply ignored 
(i.e. it is not delivered and is not held pending). Level asserts or deasserts 
occurring on a masked level-sensitive pin are also ignored and have no 
side effects. Changing the mask bit from unmasked to masked after the 
interrupt was accepted by a processor has no effect on that interrupt. This 
behavior is identical when a dev mask bit is set after the interrupt 
message has been received by a processor but before the interrupt is 
dispatched to the processor.

• Destination ID and EID: Specifies a processor ID and EID. Processors receiving an interrupt 
message compare these fields to the corresponding fields in their LID registers to determine if 
the interrupt is the interrupt to be received by them.

Because the RTEs are accessed indirectly in 32-bit chunks, it is necessary to make two write 
accesses to fully program one RTE. The proper sequence to do this is to:

1. Program the Mask bit to mask any interrupts (after a reset, the Mask bit is set automatically, so 
it is not necessary to set it if the RTE is being programmed for the first time after reset).

2. The destination field half of the RTE is written.

3. The Mask bit is cleared to enable the RTE to generate interrupt messages.

2.3.2.3 I/O xAPIC Version Register

Each I/O xAPIC unit contains a Version Register (VR) that identifies different implementations of 
I/O SAPIC and their versions. Software can use this to provide compatibility between different I/O 
SAPIC implementations and their versions. The VR also contains the Max RTE. These fields are 
described in Figure 2-5.

Figure 2-5. I/O SAPIC Version Register

• Version: This is a version number that identifies the implementation version. This field is 
hardwired and is read-only. the version numbers are assigned for 82489DX, APIC, and SAPIC 
as follows. “X” means a don’t care 4-bit value.

0x0X = 82489DX

0x1X = APIC

31 24 23 16 15 8 7 0

<APIC Reserved> Max. Redir. Entry <APIC Reserved> Version
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0x2X = SAPIC

0x30-0xFF = Reserved

• Max Redir Entry: This is the entry number (0 being the lowest entry) of the highest entry in 
the I/O RT. This field is hardwired and is read-only.

2.3.3 Interprocessor Interrupts

IPIs are generated by software using a 64-bit uncacheable store of an interrupt command into an 8-
byte aligned address within the PIB. See Section 2.7.1 for a detailed discussion of the IPI 
generation process.

2.4 Interrupt and Processor Priorities

Each interrupt is associated with a vector number which determines the priority of the interrupt. 
Typically, the higher the vector number, the higher the priority of the interrupt. When interrupts are 
enabled in the processor (i.e. PSR.i is set to 1), a higher priority interrupt can interrupt the 
processor even when it is already servicing a lower priority interrupt, but a lower priority interrupt 
cannot interrupt the processor which is servicing a higher priority interrupt.

Within the processor Local SAPIC unit, there is a Task Priority Register (TPR), which is used by 
software to mask interrupts based on “priority class.” There are 256 individual interrupt vectors in 
the SAPIC architecture; these are divided into 16 classes of 16 vectors each. The lowest 16 vectors 
are reserved (class 0). Classes 1 - 15 are maskable by the TPR.mic, which contains four bits, 
corresponding to 16 classes.

When TPR.mic contains 0x5, then classes 1-5 are masked (vectors 0x10-0x5F). When the TPR 
contains 0xE, then all interrupts below 240 are masked, and so on. Even when the TPR contains 
zero, the lowest priority class (interrupt vectors 0x00 to 0x0F) is still masked; therefore, these 
vectors are not usable for normal interrupts.

TPR.mmi is a single bit that can mask maskable interrupts. If TPR.mmi is 1, then all interrupts 
other than NMI (vector 0x2) are disabled, including class 0. If TPIR is 0, then TPR.mic determines 
interrupt masking.

Refer to the Intel® Itanium® Architecture Software Developer’s Manual, Section 5.8.1 for 
additional information

Any interrupt that is received by the processor is kept pending and recorded in the Interrupt 
Request Register (IRR). If the processor is not servicing an interrupt, then the contents of the TPR 
determines whether the processor will accept a pending interrupt depending on the priority of the 
interrupt compared to the current TPR. If the interrupt has a higher priority, then the processor is 
interrupted, otherwise the interrupt is kept pending. However, when the processor is already 
servicing an interrupt (which must have been accepted when the TPR was at a value lower than the 
priority of the interrupt being serviced), then the priority level of the interrupt being serviced is also 
used to determine whether to accept another pending interrupt. If the new interrupt has higher 
priority, then it is serviced immediately. See Section 2.4.3 for more information.

This temporary processor priority is necessary to ensure that only higher priority interrupts are 
allowed to disrupt the processing of another interrupt. Although the TPR only has 16 levels of 
priority and interrupts are masked by class, it really has 256 individual levels of priority when the 
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processor is servicing an interrupt. As an example, vector 0x51 is allowed to disrupt the processor 
while the processor is servicing interrupt vector 0x41. See Chapter A for differences between the 
SAPIC and APIC architectures.

2.4.1 Batch Processing of Interrupts

The SAPIC architecture supports batch processing of interrupts. When an interrupt occurs in an 
APIC system, the processor and OS first perform a context switch from the application to the OS in 
order for the device driver to handle an interrupt. Upon completion of this ISR, a context switch 
must occur again to return to the application. If a second (lower priority) interrupt occurs prior to 
the completion of the initial ISR, then the second interrupt cannot be processed until the initial ISR 
completes and returns control to the application. At this point, the application must context switch 
again to the OS. Each context switch is time consuming because the processor states must be 
saved. With the SAPIC architecture, when the second interrupt occurs prior to the completion of 
the initial ISR, this second interrupt can be processed along with any other pending interrupts by 
reading the Interrupt Vector Register (IVR) before context switching back to the application.

The SAPIC architecture allows the ISR of the OS to process all pending interrupts within the 
current priority level. This batch processing of interrupts eliminates the need for repeated 
interruptions of the processor and the associated time consuming context switching that is 
necessary to service the interrupts.

As discussed in Section 2.4.4, there is a range between the priority of the interrupt currently being 
serviced and the contents of the TPR. Any pending interrupts within this range can be serviced as a 
batch without exiting the ISR. Obviously a higher priority interrupt that arrives during this time 
will disrupt the ISR and cause the interrupts to nest if interrupts are enabled.

The conceptual ISR in the OS would look similar to the following pseudo code fragment:
Save processor state;

PSR.ic = 1;

srlz.d;

// Interrupt is disabled upon entry

Loop {

Read IVR register into variable VECTOR;

if (VECTOR == 0x0F) {  // Spurious interrupt, no more interrupts

Enable Interrupts;

Return from Interrupts;

}

Enable Interrupts;  // So higher priority interrupts can come in

Service (VECTOR);  // 8259 handler will send EOI directly to 8259

Disable Interrupts;

if (external interrupt) {  // includes 8259 interrupts

if (Level_Triggered (VECTOR))

Write to I/O xAPIC I/O EOI register;

Write to EOI register in Local SAPIC;

}

}

Note: Any read of the IVR is destructive if there is an interrupt pending that is within the priority range. 
Once the read of the IVR is done, the pending interrupt is removed from the IRR and must be 
processed or else the interrupt is lost. The interrupt can be pended again by sending an IPI with the 
same vector number to any processor, including itself.
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2.4.2 Redirectable Interrupt Delivery

The lowest priority interrupt delivery methodology increases the probability of delivering an 
interrupt request to a processor that is executing a lower priority task. To implement the lowest 
priority delivery method over the system bus requires costly bandwidth. This is in addition to the 
unnecessary complexity that would need to be added on the bus interface unit.

Instead of the lowest priority delivery of the APIC, the Itanium architecture implements an 
interrupt redirection mechanism that is controlled by system firmware. This mechanism is an 
optional part of the platform architecture. The bridge controller oversees the interrupt redirection as 
opposed to the processor Local SAPIC unit. A set of External Task Priority (XTP) registers, one for 
each Local SAPIC unit, can optionally be integrated in the chipset. These memory-mapped 
registers keep track of each processor’s current priority level. They do not need to be a true 
reflection of the actual TPR registers of the processors. Update of the XTPRs can be performed by 
the OS or the System Abstraction Layer (SAL) firmware before OS boot.

The SAL Platform Features Descriptor Table can be used by the OS to determine if the platform 
supports either I/O interrupt redirection or IPI redirection. The firmware can implement different 
heuristics to control delivery of the interrupts to the processors. As an interrupt is delivered to the 
system bus, the interrupt destination may be altered by modifying the destination ID of the 
interrupt transaction based upon the XTP registers. The interrupt transaction may be diverted from 
its original target processor to another processor with a lower priority on the same bus.

Because there is a one-to-one correspondence between the XTP registers and the processor ID (as 
set by the hardware at system reset time), software should not alter the processor ID field that 
identifies the processor on the system bus. The proper sequence to program the LID register is to 
read the register, modify only the portions that identify the processor bus for interrupt routing 
purposes (which may include parts of the ID and EID fields), then write the new information back 
into the LID register.

Of course, the software can always reprogram the I/O xAPIC unit RT to change the destination 
ID/EID fields to send an interrupt to another processor, but that operation is both time consuming 
and inflexible. The redirectable interrupt delivery mechanism in the chipset is relatively 
inexpensive to change (in terms of time) because the chipset is much closer to the processor. Also, 
the destination processor can be changed dynamically at execution time depending on the 
workload being executed and the frequency of the interrupts, allowing for a more flexible solution 
in response to the changing system environment.

However, platform level interrupt redirection is optional, therefore software must be aware of 
whether the platform supports this capability or not. Because the agent that does the redirection is 
the chipset, it can only redirect interrupts that are delivered through the chipset; processor local 
interrupts cannot be redirected. Since IPIs can also be placed on the system bus with the 
redirectable hint, other processors cannot receive the interrupt message until the chipset has a 
chance to process the redirection arbitration. Therefore, the minimum requirement on any chipset 
is to turn off the Redirectable Hint bit in any interrupt message, even if it does not actually 
implement any priority arbitration to change the destination ID. If the chipset does not implement 
redirection for IPIs, any IPI placed on the system bus with the Redirectable Hint bit set will not be 
received by any agents and the interrupt will be lost. 

If the platform chipset does not implement the redirection, then any XTP register updates will not 
be useful and will only consume bus bandwidth. Therefore arbitrarily updating the XTP registers 
when the platform does not implement redirection may hurt total system performance. It is highly 
recommended that software be made aware of whether this capability is supported by the platform.
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2.4.2.1 Software Heuristics for Interrupt Redirection

Since the updating of the XTP registers is completely under the control of software, different 
heuristics can be used to accomplish various modes of operation. The following are several 
alternatives for programming the XTP registers to achieve different effects. Software can also 
determine the best trade-offs between the accuracy of delivering the interrupt to the lowest priority 
processor versus the amount of bus traffic needed to update the XTP registers. However, if two 
processors have the same XTP priorities, then which processor receives the interrupt is completely 
dependent on the chipset implementation; software must not rely on intelligent or deterministic 
behavior from the chipsets.

2.4.2.1.1 In Sync with TPR

The simplest and most straightforward method is to update the XTP registers whenever the TPR 
registers are updated. However, if the TPR registers are being changed frequently, this may take up 
some of the processor system bus bandwidth.

2.4.2.1.2 Fewer Buckets

One optimization is to divide the processor priority into a smaller number of buckets ranging from 
2 to 16 (the TPR supports 15 priority levels). For example, if the priority is divided into three 
buckets: high, medium, and low. Software will have complete flexibility in deciding when a 
processor is in a high level, a medium level, etc. And since this is completely controlled by 
software, both the number of buckets and when to transition from one bucket to another are 
dynamically adjustable at run time. A system can start out with two buckets and then add a third 
bucket as the system load changes.

2.4.2.1.3 All for One

Another method of distributing interrupts is to send them all to one processor until that processor 
becomes saturated. This can be achieved by setting the XTP value of the chosen processor very 
low, regardless of the actual value of the TPR register. Then all interrupts that can be redirected 
will be sent to that chosen processor. When the chosen processor is saturated, the XTP register of 
another processor will be reprogrammed to have a lower value and the XTP of the former chosen 
processor will be raised. This avoids the need to reprogram the individual RTE in the I/O xAPIC.

2.4.2.1.4 Round Robin

It is also possible to program the XTP registers to simulate the distribution of the redirectable 
interrupts in a round robin manner. The XTP registers are initialized so that only one processor is at 
a low priority while all the others are at the same high level. Then when a redirectable interrupt is 
delivered to the low priority processor, it will notify the next processor to lower its XTP register 
value and raise its own XTP value.

2.4.3 Interrupt Nesting

When the processor is servicing an interrupt of a certain priority, the priority of the processor is 
increased momentarily from whatever is set in the TPR to the priority of the interrupt being 
serviced; this is done to prevent a new interrupt, with priority between the TPR and the current 
interrupt, from interrupting the current ISR. However, if an interrupt of higher priority than the 
current interrupt arrives, then it must be serviced immediately. This condition results in the nesting 
of interrupt servicing.
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The SAPIC architecture fully supports nested interrupts by keeping track of the priority of all the 
interrupts currently being serviced. When a nested interrupt occurs, the new priority is 
automatically noted, and when the new ISR is finished, the priority automatically reverts back to 
the priority of the previous interrupt being serviced.

For example, suppose the processor is servicing an interrupt with vector 0x50, and a new interrupt 
with vector 0x80 arrives; since vector 0x80 is of higher priority than vector 0x50, the ISR that is 
servicing vector 0x50 will be interrupted and the new interrupt 0x80 will be serviced first, if 
interrupts are enabled. When that is finished, servicing for vector 0x50 will resume until it is 
finished.

2.4.4 Interrupt Masking

It is possible to prevent interrupts from interrupting the task the processor is performing. The 
process is called interrupt masking, and there are two ways of accomplishing this, with varying 
implications and interrupt masking coverage. One way is to prevent collected interrupts from being 
accepted and keep them pending within the processor; the other way is to prevent the interrupts 
from reaching the processor itself.

The most complete “masking” of all interrupts is via the Processor Status Register (PSR) 
Interruption Enable bit, or the PSR.i. Using this bit, all interrupts are disabled (including NMI, but 
excluding PMI, INIT, and MCA) and kept pending until this bit is set. The processor will 
automatically clear this bit when an interrupt is taken so that another interrupt of higher priority 
will not interrupt the ISR until it is ready to be interrupted. An ISR should do all the necessary state 
saving before it enables interrupts again, and it should do so only when it is ready to be interrupted.

Modifications of the PSR and Control registers may require serialization to ensure that new values 
written to a register are observed by subsequent instruction reads of the same register.

The PSR.ic (interrupt collection) bit supports a nested interruption model and additional masking 
capability. When an interruption event occurs, the various interrupt resources (i.e. Interruption 
Processor Status Register [IPSR]) are overwritten with information pertaining to the PSR in effect 
at the time of the interruption. To prevent the current set of resources from being overwritten on a 
nested fault, the PSR.ic bit is cleared upon any interrupt. This will suppress writing of critical 
interrupt resources if another interrupt occurs while it is disabled. For example:

// Save processor state;

PSR.ic = 1;

srlz.d;

PSR.i = 1;

A more common method of masking interrupts is via the Mask Maskable Interrupts (MMI) field of 
the TPR. This will mask all interrupts other than the NMI. By toggling this single field of the TPR, 
it is not necessary to save and restore the current processor priority that is kept in the TPR if the 
processor priority is not changed. For example:

CR.TPR = ...;

srlz.d;

//effect of new priority is seen

When the MMI field of the TPR is not set, the processor priority is determined by the Mask 
Interrupt Class (MIC) field of the TPR. The TPR supports 15 classes of interrupt levels. When the 
TPR is set at a particular level, all interrupts of a priority equal to and lower than that level (i.e. 
having a vector number lower than the TPR class value times 16) are masked, and will be kept 
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pending until the processor’s priority is lowered to below the priority of the interrupt. For example, 
when the MIC field is 5, interrupt classes 1-5 are masked, which corresponds to vectors 0x10 to 
0x5F.

Finally, interrupts can be masked at the source. In the I/O xAPIC unit (or the equivalent LVR/LRR 
registers within the processor), each RTE has a Mask bit. When the Mask bit is set, any activities of 
the interrupt line corresponding to the RTE are prevented from generating an interrupt message. 
However, accessing the RTE of the I/O xAPIC can be a slow process, therefore it should not be 
used as a normal method of masking interrupts. Depending on the arrival, interrupts that occur 
while they are masked at the RTE may or may not be latched when the RTE is unmasked.

Besides the explicit masking of interrupts via the above methods, the Local SAPIC unit in the 
processor also does implicit priority masking. When an interrupt of a certain priority (i.e. vector 
number) is being serviced, the priority of the processor is implicitly asserted to the priority level of 
the interrupt, thereby masking all interrupts of a an equal or lower priority.

2.5 Interrupt Handling

Interrupts can be viewed in two ways: as a discrete event or as a condition. The implementation of 
these two views is through the edge-triggered interrupt and the level-triggered interrupt, 
respectively. The processor Local SAPIC unit, however, can only handle interrupts as discrete 
events; therefore, the I/O xAPIC units must convert conditions to a series of discrete events that 
need servicing if the condition still exists.

Additionally, there are a few special interrupts that require special handling, such as the NMI or the 
PMI.

Refer to the Intel® Itanium® Architecture Software Developer’s Manual, Volume 2 for further 
details on edge and level-triggered interrupt handling on Itanium Architecture-based processors.

2.5.1 Edge-Triggered Interrupts

A single edge-triggered interrupt counts as a single occurrence of an event. A new occurrence of an 
interrupt that is already pending cannot be distinguished from the previous occurrence. All 
occurrences to a given vector number are recorded in the same Internal Interrupt bit in the IRR. 
They are therefore treated as the “same” interrupt occurrence. If the second occurrence happens 
after the processing of the first occurrence has started (i.e. a read of the IVR has removed the 
pending interrupt bit from the IRR), then the second occurrence is treated as a new interrupt and 
will be recorded as pending in the IRR.

With edge-triggered interrupts, it is not necessary for the software to inform the I/O xAPIC that the 
interrupt has been serviced. The only action required of software is to write to the End of Interrupt 
(EOI) register of the Local SAPIC unit to inform it that servicing of the interrupt is completed and 
the processor is available to handle the next lower priority interrupt that is pending.

2.5.2 Level-Triggered Interrupts

Level-triggered interrupts are handled differently from edge-triggered interrupts because (1) level-
triggered interrupts are conditions that exist as opposed to events for an edge-triggered interrupt, 
and (2) level-triggered interrupts can be shared by multiple I/O devices.
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When a level-triggered interrupt occurs, the I/O xAPIC sends an interrupt assert message to the 
destination processor on the rising edge. The I/O xAPIC notes that a message has already been sent 
to the RT. When the ISR of the OS (or the device driver) has finished servicing the interrupt, it 
must write to the I/O EOI register of the I/O xAPIC that sent the original interrupt. When the I/O 
xAPIC receives the I/O EOI data, which should be the vector of the level-triggered interrupt that 
was just serviced, it will compare I/O EOI data against the entries in the RT. If the EOI vector 
matches one of the entries, the I/O xAPIC will resample the input interrupt line of that entry to see 
if it is still being held high (i.e. the condition still exists). If the interrupt line is still high, then the 
I/O xAPIC will send another interrupt assert message to the destination processor. 

Note: Because this reassertion message is a new instance of an interrupt, it may be redirected to another 
processor if the platform-level redirectable interrupt delivery mechanism is being used.

It is possible that after the I/O xAPIC has sent the interrupt assert message to the processor that the 
I/O device connected to the interrupt line has deasserted the line to indicate that the condition no 
longer exists. In this case, the original interrupt message will be received by the processor. When 
the ISR queries the I/O device, it will receive an indication that the condition no longer exists and 
there is no interrupt to service. This situation is also called a spurious interrupt, although no special 
message is used in this case to indicate the change in condition. ISRs should be written to handle 
such situations properly. See Section 2.5.2.2 for more discussion on spurious interrupts.

An advantage of implementing conditions as level-triggered interrupts is that multiple I/O devices 
can share the same interrupt line even though individually the interrupts from each device are 
discrete events. Since the interrupt line is shared, multiple I/O devices can all assert the line and it 
will register at the I/O xAPIC unit as a single condition. The process of handling these shared 
interrupts is that the ISR must be aware of the sharing, and when a level-triggered interrupt occurs, 
the ISR must poll all the devices that are sharing the interrupt line (i.e. the same vector, although 
they could be using different I/O xAPIC units or different entries in the RT of the same I/O xAPIC 
unit.).

After a level-triggered interrupt is serviced, the software must also write to the EOI register of the 
Local SAPIC unit to inform it that the servicing of the interrupt is completed and the processor is 
available to handle the next lower priority interrupt that is pending. 

2.5.2.1 EOI Handling

EOI is a mechanism for the software to inform the interrupt controller hardware that the servicing 
of an interrupt is done and that the processor is ready to handle the next interrupt. In the SAPIC 
architecture, there are two different levels of EOI, one is at the Local SAPIC unit and the other is at 
the I/O xAPIC unit.

The Local EOI register in the Local SAPIC unit is used to tell the local interrupt controller that the 
servicing of the current interrupt is done, thus restoring the priority of the processor. When the 
interrupt servicing is done, the write to the Local EOI register will revert the priority of the 
processor back to its previous level, which could be the priority of a lower priority interrupt being 
serviced (if there is a nested interrupt) or the setting of the TPR if there was no nested interrupt.

At the I/O xAPIC unit, there is an I/O EOI register. SAPIC does not support broadcast of the write 
to the Local EOI register to the I/O xAPIC units, therefore software must explicitly write to the I/O 
EOI register of the I/O xAPIC units. The write to the I/O EOI register is necessary only for level-
triggered external interrupts. The function of the I/O EOI write is to inform the I/O xAPIC unit that 
servicing of the specific interrupt vector is done, and if the line is still held high by the I/O device, 
then another interrupt should be sent to the processor (this is the process of converting a condition 
into a series of events or edges). For edge-triggered interrupts, it is not necessary to write to the I/O 
EOI register because there is no resampling involved.
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In order to do the directed I/O EOI write, the ISR of the OS (or the device driver) must be aware of 
which I/O xAPIC unit is programmed to generate a particular level-triggered interrupt vector. Since 
the OS programmed the appropriate I/O xAPIC unit, it knows exactly which I/O xAPIC unit is to 
generate the appropriate level-triggered interrupt vectors. The simplest way to do this is to keep a 
table of vectors and their respective I/O xAPIC units when the original programming of the RT of 
the I/O xAPIC unit is done.

I/O xAPIC units must be able to handle back-to-back I/O EOI writes if the I/O xAPIC is used in an 
MP platform. The back-to-back I/O EOI writes could be coming from two (or more) processors 
that are handling level-triggered interrupts originating from the same I/O xAPIC unit.

2.5.2.2 Spurious Interrupts

A spurious interrupt is an interrupt that is sent to the processor, but the condition that caused the 
interrupt is removed before the processor services the interrupt. Because servicing interrupts are 
time consuming activities, spurious interrupts should be avoided. The following discussion 
explains some of the circumstances where spurious interrupts can occur and how they can be 
avoided.

One source for spurious interrupts is from level-triggered devices. The process for servicing a 
level-triggered interrupt is as follows:

1. Processor is interrupted and enters ISR for the specific vector.

2. ISR polls all I/O devices that could generate that vector until it finds one that needs service. If 
no device needs service, then it is a spurious interrupt.

3. ISR tells the I/O device that its request is being serviced (this is typically a read or write to 
some device register). It continues to service the interrupt.

4. If the I/O device has no other reason to keep the interrupt line high, it will deassert the line.

5. ISR finishes servicing the interrupt and writes to the I/O EOI register of the I/O xAPIC.

6. Upon receipt of the I/O EOI write, the I/O xAPIC resamples the interrupt line connected to the 
RT that had the specific vector. If the line is still high, then another interrupt is sent to the 
processor; otherwise nothing happens.

7. ISR writes to the Local SAPIC EOI register to indicate that servicing of the interrupt is done.

Since there is a window of time between when the I/O device is indicated to deassert its line and 
when the interrupt line is resampled by the I/O xAPIC, there is a possibility for the I/O xAPIC to 
send an interrupt to the processor just before the line is deasserted by the I/O device. This is the 
spurious interrupt window. In order to minimize this window, the ISR tells the I/O device to 
deassert its line as soon as possible before it starts to service the interrupt. By the time the I/O EOI 
is written to the I/O xAPIC and the I/O xAPIC resamples the line, the I/O device will have 
deasserted the line, so that there is no chance for a spurious interrupt.

If the time to service the interrupt is shorter than the time required by the I/O device to deassert its 
interrupt line, then by the time the line is resampled by the I/O xAPIC it would still be held high. 
Keep in mind that the mechanism to tell an I/O device to deassert its line (typically either a read or 
write to an I/O register on the device) could be blocked or delayed en route to the I/O device, so it 
may take longer for the device to receive such notice. To ensure that the I/O device has received the 
command, it may be necessary for the ISR (or device driver) to query the device before it writes to 
the I/O EOI register.
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A spurious interrupt can occur if an I/O device sends an interrupt and decides it does not need 
service from the processor after all. There is nothing software can do to eliminate spurious 
interrupts. An example would be if a condition existed causing an interrupt to be sent, and the 
condition being removed before the processor is interrupted. There is nothing for the processor to 
do in response to this kind of interrupt.

When a level-triggered spurious interrupt is received by the processor, the ISR must still send a 
directed I/O EOI back to the I/O xAPIC unit because when it sent the original interrupt to the 
processor, it recorded that an interrupt had been sent but not yet serviced. Therefore the I/O xAPIC 
unit will not resample the interrupt line again until the I/O EOI is received. If the ISR fails to send 
the directed I/O EOI write to the I/O xAPIC unit, then the interrupt line will forever be unsampled 
and the device is effectively hung, with no further interrupts serviced.

2.5.3 Greater than 240 Devices

There are 256 individual interrupt vectors, but since the lower 16 are reserved, only 240 interrupt 
vectors can be used by interrupts sources (or devices). However, There are several ways to have 
more then 240 sources in the system.

One method is to share level-triggered interrupts. With a single interrupt vector, all level-triggered 
interrupts may be routed through a single RTE. The ISR/device driver must be aware that there is 
more than one I/O device sharing the level-triggered interrupt line and thus polls all the devices 
when an interrupt is received. With this method, it does not matter how many processors are in the 
system, since they can all share the memory and OS services.

When there is more than one node in the system, another method can be used. In this case the 
processors, I/O devices, and I/O xAPIC units are partitioned into smaller domains. Then, within the 
domains, the I/O xAPIC units and the processors can reuse the same vector numbers. But any 
interrupt that can be routed to a processor outside of the domain must have a unique vector number. 
With this method, the processors in different domains cannot share the same ISRs or device drivers 
because the ISR must deal directly with the I/O xAPIC units or I/O devices.

A third method is to share the same vector number with multiple RTEs and even across multiple 
I/O xAPIC units. The two different triggering methods will also make a significant difference in 
the way vectors are reused.The ISR must be fully aware of the sharing and must poll all the 
possible devices that can generate the interrupt vector to determine if it needs servicing. Beyond 
that, handling of edge-triggered and level-triggered interrupts that reuse the same vector numbers 
are quite different.

Each interrupt is a separate instance of an event with edge-triggered interrupts. If two devices exist 
that are both using the same interrupt vector (but different RTEs), then if they both send an 
interrupt message to the processor simultaneously, only one interrupt is registered at the Local 
SAPIC unit’s IRR. Therefore, it is up to the ISR or device driver to poll all the devices to ensure 
those that need service are handled. If this is not done, then the interrupt from the other device will 
be lost and will never be serviced.

With level-triggered interrupts, the situation is slightly different. All level-triggered ISRs (or 
device drivers) are already required to poll all possible devices that can generate the same interrupt 
vector, regardless of whether they share the same interrupt line or not. But because level-triggered 
interrupts require an explicit directed EOI write to the I/O xAPIC unit, the software must ensure 
that all I/O xAPIC units capable of generating the reused interrupt vector are informed that the 
servicing of the interrupt has finished and the line should be resampled.
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2.5.4 NMI Handling

NMI is used for platform-level machine check (typically parity error) on IA-32 platforms. 
However, Itanium architecture-based platforms signal CMCs using the Corrected Platform Error 
Interrupt (CPEI). Machine check aborts are signaled using BERR#, BINIT#, or the hard-fail bus 
response. Note that NMI can be masked in the Itanium architecture (via the PSR.i field, but not via 
the TPR). NMI can be sent either through an I/O xAPIC unit using an IPI, or through the NMI pin 
of the processor. An OS should always be ready to handle interrupt vector 0x02, which is the NMI 
vector in Itanium architecture-based systems.

2.5.5 ExtINT Handling

ExtINT is used to support legacy interrupt controllers (i.e. 8259 support) in an Itanium 
architecture-based platform. ExtINT should always be programmed as edge-triggered. ExtINT is 
maskable by the MMI field of the TPR or the PSR.i. The external interrupts do not have any 
priority relationship with the other interrupts, therefore IRR bits are not maintained for them. If 
more than one ExtINT is directed to a Local SAPIC unit, it treats them as only one ExtINT; 
therefore no more than one interrupt should be programmed as ExtINT for each destination in a 
system. However, there can be more than one ExtINT type of interrupt in a system if each is 
directed to a different destination processor. In that case, the routing of the INTA cycle must be 
governed by the chipset so that the proper 8259 interrupt controller will receive the INTA and 
deliver up the interrupt vector number.

2.5.6 Timer Interrupt Handling

If the timer is programmed for intervals that are too short, then all the processor cycles are 
consumed in handling the timer interrupts and no forward progress can be made. The time to 
modify a register must be less than the programmed timer interval.

2.5.7 PMI Handling

PMIs are different from other interrupts because they do not interrupt the executing software and 
pass control to a software ISR. When a PMI is received by the processor, control is first passed on 
to the PAL firmware, then control is passed on to the SAL. 

There are several ways of generating a PMI: from the processors using IPI, from an I/O device, or 
by asserting the PMI pin. When the PMI is delivered via an interrupt message, a parameter can be 
passed in a vector field to ensure those needing service are handled. But when the PMI is delivered 
via the pin, there is no parameter (parameter of zero is assumed). Vector values 0x0 to 0xF are used 
by system firmware and they have specific meanings to PAL/SAL. All other values are reserved.

2.6 8259 Interrupt Controller Support (Optional)

Note: The 8259 interrupt controller interrupt signal can be connected to the processor’s external interrupt 
input pin. All interrupt lines that are connected to the 8259 interrupt controller must be connected 
to an I/O xAPIC. Itanium architecture-based operating systems must handle all interrupts via the 
SAPIC and should never program the 8259 interrupt controller for interrupt delivery.

Itanium architecture-based processors do not generate the INTA transaction automatically upon 
receipt of the interrupt from the 8259 interrupt controller. Software will read the IVR to find the 
vector number assigned to the ExtINT interrupt, then it is up to the software to generate the INTA 
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special transaction on the bus to ask the 8259 interrupt controller to return the interrupt vector 
number. Within the Itanium architecture-based processor address space, there is a byte within the 
PIB that controls the generation of the INTA transaction (see Section 2.7.1). Byte loads from the 
INTA address will cause an Itanium architecture-based processor to emit the INTA transaction onto 
the processor system bus. External interrupt controllers, such as the 8259 interrupt controller, must 
respond with the actual interrupt vector, which will become the data loaded by the load instruction.

After servicing an interrupt, the software must issue an EOI directly to the 8259 interrupt controller 
to clear the interrupt. Then the software must write to the processor EOI register to clear the 
interrupt in the processor SAPIC. This is the same as servicing any other external interrupt.

2.7 SAPIC Memory Map

An Itanium architecture-based system has up to 263 bytes of addressable physical memory. The 
memory is divided into compatibility, low extended, medium extended, and high extended 
memory. The area of focus is the medium extended memory area (see Figure 2-6) which covers the 
16 MB to 4 GB range (0x0100_0000 to 0xFFFF_FFFF). The Default PIB and the Default I/O 
xAPIC Configuration Space are located in this area.

Figure 2-6. Expanded View of the Medium Extended Memory Range
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2.7.1 Processor Interrupt Block

The PIB defines the location of the Interrupt Delivery regions. This 2 MB block is relocateable in 
the processor, but corresponding changes are required in the PAL and chipset; the address given is 
the default address if it is not relocated. Although PAL services are provided to relocate this block, 
this block should not be relocated by SAL or software for compatibility. This address block must 
have the uncacheable attribute regions (shown in Figure 2-7).

Note: No memory resources can be mapped to the address space where this PIB is located. Reads into 
this space from the I/O bus will result in a target abort.

2.7.1.1 XTP Register Update (Optional)

The XTP register is used for platform level interrupt redirection. This capability is explained in 
Section 2.4.2. The format of the eight bits of data to be stored is shown in Figure 2-8.

Figure 2-7. Default Processor Interrupt Block
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Figure 2-8. XTP Register Format
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2.7.1.2 INTA Byte (Optional)

Byte loads from the INTA address will cause an Itanium architecture-based processor to emit the 
INTA cycle onto the processor system bus. External interrupt controllers, such as the 8259 interrupt 
controller, will respond with the actual interrupt vector, which will become the data loaded by the 
load instruction.

2.7.1.3 Interrupt Delivery Area

Stores into this memory space are directed as processor system bus interrupt transactions. A 
processor generates IPIs by storing a 64-bit interrupt command to an 8-byte aligned address in this 
region. The address specifies the target processor to receive the interrupt message, as shown in 
Figure 2-9. The format of the 64-bit interrupt command is shown in Figure 2-10. All IPIs are 
treated as edge-triggered. Writing to an improperly aligned address within this region or storing 
less than 64 bits, is an invalid operation. Reading from this region will result in an invalid 
operation. See the Intel® Itanium® Architecture Software Developer’s Manual for more detail about 
IPIs.

• Hint (H): When this bit is set, it allows the platform to redirect the interrupt to another 
processor as the destination identified by the ID/EID fields. See Section 2.4.2.

• Destination ID and EID: Specifies a processor ID and EID. Processors receiving an interrupt 
message compare these fields to the corresponding fields in their LID registers to determine if 
the interrupt is the interrupt is to be received by them.

Note: Certain delivery modes will only operate as intended when used in conjunction with a specific 
trigger mode. These restrictions are indicated in the list for each delivery mode.

• Vector: An 8-bit field containing the interrupt vector.

• Delivery Mode (DM): The delivery mode is a 3-bit field that specifies how the processors 
listed in the destination field should act upon reception of this signal.

000 (INT) Deliver the signal to the processor listed in the destination. Trigger mode 
can be edge or level. The vector value can range between 0x10 and 0xFF.

010 (PMI) Deliver the interrupt on the PMI signal of the processor listed in the 
destination. The interpretation of the vector field is implementation 
defined: the vector ranges from 0x1-0xF (0x1 - 0x3 are useable by SAL; 
all other values are Intel reserved). The trigger mode must be edge. This 
delivery mode is compatible with the SMI delivery mode of the APIC 
when the vector is 0x0.

100 (NMI) Deliver the signal on the NMI signal of the processor listed in the 
destination; vector information is ignored, but the vector read by the 
Itanium architecture-based processor will be 0x2. NMI is always 
delivered as an edge triggered interrupt; the trigger mode field is ignored.

Figure 2-9. Format of Address to Generate IPIs
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101 (INIT) Deliver the signal on the INIT signal of the processor listed in the 
destination; vector information is ignored.

111 (ExtINT) Deliver the signal to the processor listed in the destination as an interrupt 
that originated in an 8259 compatible external interrupt controller. Be 
aware that the software-initiated INTA transaction that corresponds to 
this ExtINT delivery will be routed to the 8259 compatible external 
controller that is expected to supply the vector and not the processor that 
originated the IPI. A delivery mode of ExtINT requires an edge trigger 
mode. SAPIC architecture supports only one ExtINT source in a system. 
Vector information is ignored, but the vector read by the Itanium 
architecture-based processor will be 0x0.

2.7.2 I/O xAPIC Configuration Space

The I/O xAPIC base address defines where the individual I/O xAPIC device configuration registers 
are located. The I/O xAPIC may be relocated to any address depending on the chipset 
implementation.

The base addresses for each I/O xAPIC are reported to the operating system by the platform using 
the ACPI Multiple APIC Descriptor Table. Please refer to the Advanced Configuration and Power 
Interface Specification v2.0 for more information.
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Platform Level Implementation 3

3.1 Platform Interrupt Delivery Overview

This chapter describes how various interrupt messages are delivered to the Local SAPIC units. As 
described in Section 2.2, interrupts can originate from remote I/O devices (I/O xAPIC, MSI), other 
processors (IPI), local I/O devices (PMI, NMI, LINT0/1 pins), and from the processor itself. Since 
interrupts originating from the local processor do not involve the platform, they are not discussed 
in this chapter.

3.2 External I/O Interrupt Delivery

The following section describes how an interrupt originating from an external I/O device is 
delivered to a single system bus for service by a processor.

3.2.1 I/O xAPIC Duties

All external pin-based I/O interrupts must be routed through the I/O xAPIC. When a signal is 
asserted on an I/O xAPIC input interrupt pin, the signal must remain asserted for a minimum of one 
bus clock cycle in order for it to be recognized. The delivery status bit within the I/O xAPIC is set 
when this occurs and remains pending until its interrupt message is sent on the I/O bus. The I/O 
xAPIC accepts level- and edge-triggered interrupts as pin input, but converts the level-triggered 
interrupts into an interrupt message (identical to an edge-triggered interrupt) that gets delivered to 
the processors.

Upon receiving an interrupt signal at the pin, the I/O xAPIC selects the corresponding entry in the 
I/O RT and uses the information in the I/O RTE to translate an incoming interrupt signal into the 
appropriate interrupt request message. This message is then sent across the I/O bus as a memory 
write transaction.

The ID and EID fields of the interrupt transaction uniquely identify a particular processor in the 
platform. The two fields can be considered as one 16-bit field.

For platforms that have multiple processor system buses, the Itanium architecture-based operating 
systems must be used to program both the ID and EID fields of the RTEs for routing interrupt 
transactions to the appropriate system bus. In this case, the concatenation of the ID/EID fields can 
be thought of as a single 16-bit identifier. One potential implementation would be to use EID as the 
system bus identifier and ID as the processor identifier on the bus.

3.2.2 Interrupt Transaction on the I/O Bus

Interrupts are signaled on the I/O bus with a 32-bit default address at 0xFEEx_xxxx, where x_xxxx 
is the encoding of the destination processor. This default address is the beginning of the PIB. The 
bridge controllers can use the leading bits in the address as a signature for interrupt transactions.

When the I/O xAPIC sends interrupt messages on the I/O bus, the messages are implemented as 
32-bit transactions. This ensures that the I/O bus maintains ordering rules for memory write cycles 
that were generated prior to the interrupt message. The address of the memory write cycle is 
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determined by the destination ID fields located in the I/O xAPIC’s RT. In addition to the 
destination ID, the Redirectable Hint bit is also transmitted. The Redirectable Hint bit informs the 
bridge controller that it may optionally change the destination ID. The vector, delivery mode, and 
trigger level are transferred during the data phase of the memory write transaction. The delivery 
mode is always specified as a fixed delivery mode and the Redirectable Hint bit from the RT is sent 
when the I/O xAPIC sends the interrupt. The 32-bit write cycle data is defined also by entries in the 
RT.

The address (AD[31:00]) for the 32-bit memory write cycle is defined in Figure 3-1. The data of 
the 32-bit write is defined by the lower 32-bits of the corresponding RTE in the I/O xAPIC, as 
shown in Figure 3-2.

Figure 3-1. Format of Interrupt Address on I/O Bus

Figure 3-2. Format of Interrupt Data on I/O Bus
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The processors on the same system bus with their corresponding XTP registers enabled are able to 
accept redirected interrupt transactions. If the XTP register is disabled through software control, 
then the corresponding processor will not be considered as a redirected destination. The interrupt 
transaction will not be redirected if all of the XTP registers are disabled.

If the Redirectable Hint bit is set, the bridge controller must always clear this bit within the bus 
transaction before placing the transaction on the system bus. This will allow the redirection of IPIs. 
Thus, only after the chipset has intercepted an interrupt transaction and cleared the Redirectable 
Hint bit, can processors accept any interrupt transactions.

3.2.4 Interrupt Transactions on the System Bus

The bridge controller issues an interrupt transaction to interrupt a processor on the system bus. 
With the SAPIC architecture, the ID and EID fields specify a specific processor as the destination 
for an interrupt transaction. When a processor recognizes the interrupt transaction, it compares the 
ID/EID fields with its LID register to determine if it is indeed the targeted destination. 

3.3 IPI Delivery

Local SAPIC units can exchange interrupt information via the system bus. The message format is 
not visible to software. Software generates IPIs by storing a 64-bit interrupt command to an 8-byte 
aligned address in the interrupt delivery region of the processor I/O block. The default address 
range for the Interrupt Delivery region is 0xFEE0_0000 to 0xFEEF_FFFF. The address being 
stored into designates the target processor which will receive the interrupt message. All IPIs are 
treated as edge-triggered. Writing to an improperly aligned address within the Local SAPIC 
address range or storing less than 64 bits, is an invalid operation. Reading from the Local SAPIC 
address range will result in an invalid operation. Refer to the Intel® Itanium® 2 Processor 
Hardware Developer’s Manual for the format of the address store.

3.4 Ordering Issues

Although delivering interrupts through the system bus has eliminated many of the potential 
ordering issues with regard to data and interrupt synchronization, it does not completely eliminate 
the possibility that data traffic and interrupt traffic can get out of sync with each other. For 
example, in a distributed system where there are multiple paths for data and interrupt traffic, an I/O 
device can send the data to the memory system via one path, and after the data transfer is 
completed, the interrupt is sent to the processor via a different path. The platform must ensure that 
the order of the data transfer and the interrupt message is maintained.

3.5 Platform Topology and Routing Issues

The SAPIC architecture uses two separate elements to identify the destination processor of each 
interrupt, although both of these elements are packaged together in the ID and EID fields. One 
element uniquely identifies the processor on one system bus, while the remaining bits forming the 
other element uniquely identify the system bus within the whole platform. The architecture does 
not specify the width of these different elements because the width is implementation dependent. 
For example, in an implementation where only two processors are supported on one system bus, 
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only one bit is required to uniquely identify the processor on the bus. In an implementation where 
eight processors are supported on one system bus, three bits are required to uniquely identify the 
processor.

The SAPIC architecture uses a memory-mapped interface for interrupt routing. Interrupt messages 
outside of the system bus are just normal memory transactions. In a system with distributed 
memory, consideration must be given to the way these interrupt transactions are routed throughout 
the system.

If the memory traffic routing agent in a system is not intelligent with regard to interrupt messages, 
then all interrupt messages are routed the same as normal memory transactions. If the distributed 
memory in the system is interleaved, then the granularity of the memory interleave will have a 
direct impact on the distribution of the interrupts. If the memory in such a system is not interleaved 
and exists as contiguous blocks, then the processors on the same bus as the memory system that 
contains the PIB physical address will be the destination for all interrupt messages.

In order to route interrupt messages independently of the normal memory traffic, there must be 
some intelligence in the system routing agent to recognize interrupt messages and treat them 
differently.
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The SAPIC architecture differs from the APIC architecture in several ways, but these differences 
are only visible to software running in an Itanium architecture system environment.

A.1 Addressing

APIC supports Logical Mode addressing, along with destination format and ID registers and the 
destination shorthand field of the Interrupt Command Register (ICR), while SAPIC only supports 
physical addressing.

All APIC units on one private serial APIC bus must have a unique ID, including all Local APIC 
units and I/O APIC units, for a maximum of 15 units per APIC bus (an ID of 0x0F indicates 
broadcast in physical mode). The SAPIC has no such restrictions — the I/O xAPIC units do not 
need an ID, and there are no similar constraints on the ID/EID fields of the Local SAPIC units.

A.2 Interrupts

A local APIC is designed to handle a local timer interrupt. This 32-bit programmable timer 
generates periodic interrupts and a one-shot interrupt when the timer count reaches zero. The 
SAPIC architecture does not implement this feature.

The vector number for spurious interrupts is programmable in the APIC, but it is fixed at 15 with 
the SAPIC.

The Local APIC unit, in conjunction with the processor, automatically vectors an interrupt to 
different ISRs. The Local SAPIC unit does not provide hardware vectoring of interrupts. A new 
IVR is added to the Local SAPIC unit.

APIC interrupts are typically processed one at a time by the processor, but SAPIC interrupts can be 
processed in batches by reading the IVR.

Local APIC units generate the INTA cycle automatically when the ExtINT interrupt is received. 
Local SAPIC units generate the INTA cycle only when the INTA byte is read.

The lowest 16 interrupt vectors are not used in the APIC; these vectors are reserved for pre-
assigned non-vectored interrupts (such as ExtINT and NMI) in the SAPIC.

A.3 Interrupt Delivery

The APIC architecture relies on a three-wire serial APIC bus to deliver interrupts to the processor 
as well as for other services. The SAPIC architecture eliminates this private bus and uses the I/O 
and system bus for interrupt delivery. Without the APIC serial bus, interrupts can be delivered 
much faster and the platform can be simplified because there is not another bus to be routed around 
the platform.
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A processor generates IPIs to pass messages or interrupts to other processors. In an APIC system, 
this was initiated by writing to an ICR within the APIC. The SAPIC no longer uses a command 
register but uses a memory store to generate an IPI. For delivery of the interrupt to its correct 
destination, the address of the store as well as the information being stored contains the 32-bit 
routing information. With the APIC, it takes two 32-bit writes to completely program the ICR; with 
the SAPIC, a single 64-bit store is used (unaligned or shorter accesses to the IPI block are 
undefined).

The APIC architecture supports a lowest priority delivery mode by implementing this capability 
through the arbitration mechanism in the APIC bus. Since the SAPIC architecture does not use a 
private bus, the implementation of delivering an interrupt to the lowest priority processor is done at 
the platform level with control by platform firmware. See Section 2.4.2 for more information. 

The APIC supports the SMI delivery mode; the SAPIC does not support this delivery mode, but it 
supports the equivalent PMI delivery mode.

The APIC supports the start-up delivery mode; the SAPIC does not support this delivery mode.

A.4 Messages

Software must poll the ICR to ensure that the previous interrupt message was sent before writing 
into the ICR with the APIC; such polling is not necessary with the SAPIC.

An APIC design allows for remote read messages. A remote read message is a request to read the 
contents of another processor’s local APIC register. This remote capability is not implemented in a 
SAPIC design. 

The APIC architecture allows processor messages to be broadcast over the APIC bus to a specific 
agent or multiple agents on the APIC bus. Message broadcasting is not supported in a SAPIC 
design due to the implementation complexity in a scalable fashion across multiple system buses.

A.5 Processor Support

The SAPIC architecture supports 65536 processors while the IA-32 APIC architecture is able to 
support 15 clusters of 4 processors each (60 total). For an IA-32 APIC-based system, external 
interrupt logic would be required to support greater than 60 processors.

A.6 Registers

A processor compares its processor ID against the destination ID of the interrupt to determine if it 
is the processor to service the interrupt. This processor ID is a 4-bit ID in an APIC design, and a 
16-bit ID in a SAPIC design. This 16-bit field consists of the destination ID and EID. Operating 
systems running on platforms implementing multiple processor nodes must program the ID and 
EID fields to ensure interrupt routing to the appropriate system bus. 

Local APIC registers are memory-mapped, while Local SAPIC registers are control registers.

There are many more registers visible to the OS with APIC. Only a subset of the equivalent 
function control registers are OS visible with SAPIC.

The TPR of the SAPIC has been extended to mask the non-vectored interrupts.
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Writing into the EOI register of the Local APIC unit will broadcast an EOI message on the private 
serial APIC bus to send a deassert message to the I/O APIC that initiated the level-triggered 
interrupt. Writing into the EOI register of the Local SAPIC unit does not send any messages out. 
This change may result in the processor receiving fewer spurious interrupts than with the APIC.

The APIC handles errors detected in the private serial APIC bus or the remote read delivery mode. 
The SAPIC does not handle errors because these features are not supported. SAPIC does not 
include support for the error interrupt or the error status register.

A.7 Support Disabling

With both a SAPIC and APIC, the local controller is integrated into the processor. The APIC 
support can be disabled at reset based on the state of the APIC-enable signal. The interrupts are 
then processed using 8259 interrupt controllers. The Local SAPIC unit is an integral part of the 
processor and cannot be disabled.
Intel® Itanium® Processor Family Interrupt Architecture Guide A-3



Differences from APIC
A-4 Intel® Itanium® Processor Family Interrupt Architecture Guide


	1 Introduction
	1.1 About this Manual
	1.2 Reference Documents
	1.3 Objectives of SAPIC
	1.4 Terminology
	1.4.1 Glossary

	1.5 Revision History

	2 SAPIC Interrupt Architecture
	2.1 Platform Interrupt Architecture
	2.2 Intel® Itanium® Architecture Interrupt Delivery Overview
	2.2.1 I/O Interrupts from Remote I/O xAPIC
	2.2.2 Processor Local Interrupts (ITV, CMC, Performance Monitor)
	2.2.3 Interprocessor Interrupts

	2.3 Software Model
	2.3.1 Local SAPIC
	2.3.2 I/O xAPIC
	2.3.3 Interprocessor Interrupts

	2.4 Interrupt and Processor Priorities
	2.4.1 Batch Processing of Interrupts
	2.4.2 Redirectable Interrupt Delivery
	2.4.3 Interrupt Nesting
	2.4.4 Interrupt Masking

	2.5 Interrupt Handling
	2.5.1 Edge-Triggered Interrupts
	2.5.2 Level-Triggered Interrupts
	2.5.3 Greater than 240 Devices
	2.5.4 NMI Handling
	2.5.5 ExtINT Handling
	2.5.6 Timer Interrupt Handling
	2.5.7 PMI Handling

	2.6 8259 Interrupt Controller Support (Optional)
	2.7 SAPIC Memory Map
	2.7.1 Processor Interrupt Block
	2.7.2 I/O xAPIC Configuration Space


	3 Platform Level Implementation
	3.1 Platform Interrupt Delivery Overview
	3.2 External I/O Interrupt Delivery
	3.2.1 I/O xAPIC Duties
	3.2.2 Interrupt Transaction on the I/O Bus
	3.2.3 Bridge Controller Duties
	3.2.4 Interrupt Transactions on the System Bus

	3.3 IPI Delivery
	3.4 Ordering Issues
	3.5 Platform Topology and Routing Issues

	A Differences from APIC
	A.1 Addressing
	A.2 Interrupts
	A.3 Interrupt Delivery
	A.4 Messages
	A.5 Processor Support
	A.6 Registers
	A.7 Support Disabling


