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A Formal Specification of Intel® Itanium® Processor Family Memory Ordering
1.0 Introduction

Memory ordering (also called memory consistency) is a property of shared-memory 
multiprocessors in which data can be distributed or replicated in different locations. A common 
form of such data replication is through memory caches, and a kind of memory ordering, called 
cache coherence, is important when such caches exist. In a system in which more than one 
processor can access a datum independently (i.e., each through its own cache), cache coherence 
ensures that processors appear to be accessing a single memory and not a set of separate caches. 
The requirements of cache coherence are often expressed by specifying the order in which 
processors perceive memory operations. For example, cache coherence usually specifies that all 
processors agree on the order of updates to a given cache line. It may also specify that processors 
see such updates in an order that is consistent with the order in which the processors’ programs 
generated these updates.

Cache coherence is central to the correctness of many multithreaded programs and, for this reason, 
it has largely the same properties on most shared-memory multiprocessors. Memory ordering can 
be thought of as an extension of cache coherence. The requirements of cache coherence (see above) 
apply to memory accesses on a per-cache-line (or per-byte) basis. The memory ordering properties 
of a platform include cache coherence and additionally characterize the order in which processors 
may perceive accesses to the entire memory. They may relate a processor’s accesses to different 
memory locations. Some memory ordering properties place requirements on the perceived ordering 
of accesses to different locations by different processors.

Memory ordering is more subtle and less well understood than cache coherence. Memory ordering 
properties tend to be processor or platform specific. These properties are not always clearly 
specified; for example, the memory ordering properties of some platforms can be discovered only 
by consulting microprocessor and chipset documentation, which often appears in different books 
that use different terminology and notation. It is difficult to compare even those platforms whose 
memory ordering properties have been clearly specified as each such platform is usually specified 
in its own definitional framework.

This document presents a formal and precise specification of the memory ordering properties 
provided by multiprocessors based on the Intel® Itanium® processor family microprocessors. It 
does so using a new definitional framework. While the framework was developed specifically for 
Itanium architecture-based platforms, it was designed to be flexible, and it can express the memory 
ordering properties of most known multiprocessors.

Before proceeding, we introduce the following terminology. A memory ordering model refers to a 
collection of executions; in general, we consider models that correspond to particular platforms (or 
types of platforms) and the associated executions are those that could be exhibited by those 
platforms. The specification of a memory ordering model is a definition of a model, typically given 
by a set of rules that must hold for any execution of the model. A framework is a structure for 
expressing memory ordering specifications. If the specifications of different memory ordering 
models use a common framework, they share a common structure, making them easier to compare.

Some earlier research defined memory ordering models operationally, referring explicitly to the 
real times at which certain implementation-specific events occur. While such definitions have 
value for the architects and implementers of the platforms whose models are being defined, this 
approach has significant limitations. Models defined in this way may require future platforms 
supporting the model to maintain compatibility with previous implementations instead of the 
specifications that these implementations satisfy. In addition, these operational specifications 
provide little intuition to help programmers understand the subtle distinctions between memory 
ordering models.
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A Formal Specification of Intel® Itanium® Processor Family Memory Ordering
One alternative to operational definitions is to provide specifications that use visibility orders. A 
model can be specified by requiring that every execution of the model have a visibility order (or set 
of visibility orders) that orders the execution in a certain way. A visibility order is a total (linear) 
ordering of the memory operations (reads, writes, read-modify-writes, etc.) of the execution being 
ordered. The word “visibility” refers to the fact that the order indicates how changes to memory 
(e.g., writes) become visible to different observers. Such changes become visible through 
observations of memory (e.g., reads) that are also ordered. Because specifications based on 
visibility orders abstract away implementation-specific details and because they are less 
operational in nature, these definitions have greater value for architects, system implementers, and 
programmers.

Different memory ordering models can be distinguished by the number and nature of visibility 
orders that define them. The following items detail some general issues that are considered in the 
development of such definitions:

• Consistency with program order. In general, a definition’s visibility order(s) should in some 
way respect the execution’s program order; this is a per-processor order (usually a linear 
order) that reflects the order of the memory operations in the program being executed. One 
memory ordering model—sequential consistency—requires for each execution a visibility 
order that is completely consistent with program order (i.e., if A precedes B in program order, 
A must precede B in the visibility order). All other models allow some reordering; a reordering 
occurs if operation A precedes B in program order, but B precedes A in the visibility order.

• Consistency of write visibility. Some models require all processors to agree on the order of 
writes to memory; such models are defined with a single visibility order. Examples include 
sequential consistency, IBM 370*, and the SPARC models TSO, PSO, and RMO*. The single 
visibility order applies to all memory operations in the execution. Other models allow different 
processors to observe pairs of writes in different orders. Such models might allow a separate 
visibility order for each processor; examples include DASH processor consistency, and Intel® 
architecture memory ordering1). The visibility order associated with a processor orders only 
the operations that could be observed by that processor (e.g., its own reads and all writes).

• Local bypassing: a special case of write visibility. Many models allow a processor to appear to 
observe its own writes earlier than those performed by other processors; this behavior is 
sometimes called “local bypassing” or simply “bypassing”. Models with this property include 
all those mentioned in the previous item, except sequential consistency and IBM 370. While 
this feature can be captured by using per-processor visibility orders, this is often not necessary. 
Instead, special consideration can be made for “local loads” (those that receive bypassed 
values) and how they are ordered.

The Itanium processor family memory ordering model also allows flexible ordering for a variety of 
operations. It supports two varieties of loads and stores, and the different varieties have different 
ordering properties. In addition, Itanium processor family microprocessors support several memory 
attributes, and the memory ordering properties of certain operations are determined, in part, by the 
attributes of the memory on which they are operating. This document describes a definitional 
framework that uses a single visibility order and uses this framework to specify the Itanium 
processor family memory ordering model.2

Section 2.0 gives an overview of the definitional framework. Section 3.0 gives a definition of the 
basic Itanium processor family memory ordering model in the framework. Section 4.0 gives a 
definition of the semaphore operations supported by the Itanium processor family memory 
ordering model. Appendix A gives ten sample executions from the Intel® Itanium® Architecture 
Software Developer’s Manual and explains why each is allowed or not allowed by the Itanium 
processor family memory ordering model. Appendix B provides additional examples. 

1. This document does not provide a thorough treatment of Intel® architecture memory ordering.
2. Specifications with per-processor visibility orders are also possible, though not discussed in this document. Such specifications do not easily 

capture the subtleties of the Itanium processor family memory ordering model, however.
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A Formal Specification of Intel® Itanium® Processor Family Memory Ordering
1.1 Summary Tables

Section 3.0 and Section 4.0 introduce a large amount of terminology and a number of rules to 
describe the Itanium processor family memory ordering model. This section gathers a summary of 
this material into one place for reference. Table 1 summarizes the notation and terminology that 
appear in the model.

Table 2 summarizes the operators in the Itanium processor family memory ordering model.

Table 1. Summary of the Notation in the Itanium® Processor Family Memory
Ordering Model

Notation Description Section

Proc(X) Processor that performs instruction, access, or 
operation X. 3.1

Rng(X) Set of byte addresses on which access or operation X 
operates. 3.1

RdVal(I), RdVal(I;b) Value(s) read by instruction or access I (from byte b). 3.1

WrVal(I), WrVal(I;b) Value(s) written by instruction or access I (to byte b). 3.1

InitVal(b) Initial value of byte b. 3.1

ModSEM(r) Value written by semaphore SEM that reads value r. 4.2

A»B Program Order Operator: A precedes B in program 
order (A, B are instructions or accesses). 3.1

A›B Data-Flow Order Operator: A precedes B in data-flow 
order (A, B are instructions or accesses).

3.1

A→B Visibility Order Operator: A precedes B in visibility 
order (A, B are operations). 3.1

R, W Instruction or access with read or write semantics. 3.1

ACQ, REL, FEN Instruction or access with acquire, release, or fence 
ordering semantics. 3.1

LA, UL Acquire and unordered load instructions or accesses. 3.1

SR, US Release and unordered store instructions or 
accesses.

3.1

mf Memory fence instruction or access. 3.1

sem Semaphore instructions or accesses. 4.3.1

Table 2. A Summary of the Operators in the Itanium® Processor Family Memory
Ordering Model

Operator Description Section

R(R) Operation that represents visibility of read access R. 3.2

LV(W), RVp(W) Operations that represent the visibility of write 
access W locally and at remote processor p. 3.2

F(FEN) Fence operation for access FEN. 3.2
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Table 3 summarizes the rules in the Itanium processor family memory ordering model.

1.2 Reference Documents

• Adve, Sarita V., and Kourosh Gharachorloo. Shared Memory Consistency Models: A Tutorial. 
IEEE Computer, 29(12):66–76, December 1996.

• Gharachorloo, Kourosh, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and 
John Hennessy. Memory Consistency and Event Ordering in Scalable Shared-Memory 
Multiprocessors. In Proceedings of the 17th International Symposium on Computer 
Architecture, pages 15–26, May 1990.

• IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System Programming, 
(KWWS���GHYHORSHU�LQWHO�FRP�GHVLJQ�3HQWLXP��PDQXDOV���

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture, 
(http://developer.intel.com/design/itanium).

• International Business Machines, IBM System/370 Principles of Operation. May 1983. IBM 
Publication Number GA22-7000-9, File Number S370-01.

• Lamport, Leslie. How to make a multiprocessor computer that correctly executes multiprocess 
programs. IEEE Transactions on Computers, C-28(9):690–691, September 1979.

• Peterson, Gary L. Myths about the Mutual Exclusion Problem. Information Processing 
Letters, 12(3):115–116, June 1981.

• SPARC International, Inc. (David L. Weaver and Tom Germond, editors). The SPARC 
Architecture Manual, Version 9. Prentice Hall, 1994.

Table 3. A Summary of the Rules in the Itanium® Processor Family Memory
Ordering Model

Rule Description Section

(WO) Write operation ordering. 3.3.1

(ACQ), (REL), (REL) Program order for acquire, release, and fence 
ordering semantics. 3.3.2

(MD:RAW), (MD:WAR), 
(MD:WAW)

Memory-data dependence. 3.3.3

(DF:RAR), (DF:RAW), 
(DF:WAR), (DF:WAW)

Data-flow dependence. 3.3.4

(COH) Coherence. 3.3.5

(RV1), (RV2), (RV3) Read value. 3.3.6

(WBR) “Total” ordering of releases to WB memory location. 3.3.7.1

(UC1), (UC2), (UC3), 
(UC4)

Sequentiality of operations on UC memory locations.
3.3.7.2

(NC) UC memory locations do not bypass. 3.3.7.3

(SM1), (SM2), (SM3) Semaphore atomicity and behavior. 4.3.1
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2.0 Overview of the Framework

This chapter gives an overview of the new framework developed for specifying memory ordering 
models. The framework is characterized by the following features.

A definition in the framework specifies the system executions allowed by the model being defined. 
An execution is considered to be a set of sequences of instructions, one sequence per processor.1 
Each sequence contains the instructions performed by the associated processor listed in program 
order. Program order is a total order when restricted to the instructions of a single processor.

Each instruction is specified by its type (e.g., unordered load, memory fence), the range of memory 
locations on which it operates (a set of byte addresses), and any values that it may have read from 
or written to that range. Instructions can read values from memory, write values to memory, do 
both in one operation, or neither read nor write memory.

Instructions are decomposed into accesses. For the purposes of this document, there is a one-to-one 
correspondence between instructions and accesses, and the two terms may be used interchangeably. 
The program order of accesses is derived from that of instructions.

Accesses are decomposed into operations. This is done to allow a finer specification of the 
ordering properties of instructions. As an example, a load instruction may be thought of as having a 
read operation, a store instruction as having a write operation, and a semaphore as having both read 
and write operations. In general, an access’s operations correspond to different aspects of the 
access or the visibility of the access at different processors.

Every execution of the model being defined has a single associated visibility order. This order must 
totally (i.e., linearly) order all the operations the execution generates. Each specification has a set 
of rules that constrain the order in which the operations can appear and how the operations affect 
memory. Some of these rules specify when operations must appear in an order consistent with 
program order (i.e., consistent with the program order of the accesses that compose the execution). 
Other rules may require some consistency between the ordering of the operations that compose a 
single memory access. Some rules constrain the values read from memory by load operations.

As noted earlier, each specification in the framework includes a set of rules that constrain the 
ordering of the operations of an execution. These rules can be classified into the following set of 
types:

• Operation order. Such rules specify requirements on the ordering of different operations of 
each individual access. They do not constrain the ordering of operations of different accesses.

• Program order. These rules specify how an execution’s visibility order must respect the 
execution’s program order and the memory ordering semantics. For this reason, they apply 
only to pairs of accesses (or operations) of individual processors. Typically, a program-order 
rule specifies that, if accesses A1 and A2 are such that A1 precedes A2 in program order, then 
some operations of A1 must precede some operations of A2 in the execution’s visibility order. 
Such rules may depend on the types of accesses A1 and A2. For example, some specifications 
include such a rule if A1 and A2 are both writes, but not if A1 is a write and A2 is a read. 
Program-order rules do not constrain the ordering of operations from different processors.

• Memory-data dependence. Memory-data dependence rules are similar to program-order rules 
in that they constrain only the order of operations by an individual processor. They differ from 
program-order rules in that they apply only to accesses whose ranges intersect (or overlap).

• Data-flow dependence. Data-flow dependence rules are similar to memory-data dependence 
rules. They apply to pairs of accesses by a processor between which there is data flow.

1. In this document, the term “processor” refers to a logical processor in the case of a multithreaded CPU.
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A Formal Specification of Intel® Itanium® Processor Family Memory Ordering
The next two rule types apply to instructions by different processors:

• Coherence. Coherence rules are used in the specification of all models that enforce a global 
ordering of writes to each memory location.

• Read value. Read-value rules indicate, for a given global visibility order, the values that any 
access that reads from memory should return. For a given operation, the values are usually 
specified on a byte-by-byte basis.

The Itanium architecture ascribes to each physical address a memory attribute, which controls 
(among other things) the cacheability of the data located at that address. This document includes 
support for the following memory attributes of the Itanium architecture: writeback (WB) memory; 
write-coalescing (WC) memory; uncacheable (UC) memory; and uncacheable-exported (UCE) 
memory. The Itanium processor family memory ordering model includes a few rules that are 
specific to memory attributes. Unless otherwise noted, this document will treat UC and UCE as the 
same attribute and uses only the notation UC.

Although memory attributes are associated with physical addresses, they are determined by entries 
in the translation lookaside buffer (TLB), which translates virtual address to physical addresses. If 
more than one virtual address translated to the same physical address, it is possible that the physical 
address would have different memory attributes depending on the virtual address used to access it. 
It is also possible that the TLBs on different processors might ascribe different memory attributes 
to the same physical address. These situations are called memory attribute aliasing. This document 
assumes that there is no memory attribute aliasing: for each physical address there is one memory 
attribute such that any processor that has a translation to that address does so only with that 
memory attribute.

3.0 The Basic Itanium® Processor Family Memory 
Ordering Model

A definition of the Itanium processor family memory ordering model is given in the Intel® 

Itanium® Architecture Software Developer’s Manual. However, that document lacks a formal 
definition of memory ordering.

This chapter presents the basic Itanium processor family memory ordering model within the 
framework established in Section 2.0. The basic model includes support only for loads, stores, and 
memory fences and assumes that all memory addresses are aligned. Section 4.0 extends the basic 
model to support semaphore instructions.

3.1 Terminology and Notation

As Section 2.0 outlines, every system execution contains a set of sequences of instructions, one per 
processor, that are decomposed into accesses (one access per instruction) and then into operations. 
The basic Itanium processor family memory ordering model adopts the following notation and 
terminology to describe aspects of instructions and operations:

• For any instruction, access, or operation X, Proc(X) is the processor that performs X.

• For any instruction, access, or operation X, Rng(X) is the range of the instruction, access, or 
operation; this is the set of byte addresses on which X operates. Ordering rules using Rng(X) 
assume that all bytes addressed by Rng(X) have the same memory attribute. If the bytes 
addressed by Rng(X) span multiple memory attributes, the order in which instructions, 
accesses, or operations occur is undefined.
10 Application Note
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Note: The rest of this document uses the term “byte” and “byte address” interchangeably. 

• If instruction, access, or operation X reads from memory, we say that X has read semantics or 
is a read. RdVal(X) is the value read by X from Rng(X). If b∈ Rng(X), RdVal(X;b) is the value 
read by X for byte b and we say that X is a read from b.

We use “R” to stand for an instruction, access, or operation with read semantics.

• If instruction, access, or operation X writes to memory, we say that X has write semantics or is 
a write. WrVal(X) is the value written by X to Rng(X). If b∈ Rng(X), WrVal(X;b) is the value 
written by X to byte b and we say that X is a write to b.

We use “W” to stand for an instruction, access, or operation with write semantics.

• Every byte in memory has an initial value that it will return to reads that occur before there are 
any writes to the byte. For byte b, this value is denoted by InitVal(b). For all the examples in 
Appendix A and Appendix B, InitVal(b)=0 for all bytes b.

To describe the ordering relationships in the global visibility order or per-processor (program-
order) sequences, the basic Itanium processor family memory ordering model adopts the following 
notation:

• For any two instructions or accesses I1 and I2, if p=Proc(I1)=Proc(I2) and I1 precedes I2 in 
program order, we write I1»I2.1

• For any two instructions or accesses I1 and I2, if I1»I2 and I1 precedes I2 in data-flow order (i.e., 
there is a data-flow dependence of I2 on I1), we write I1›I2.

• For any two operations O1 and O2, if O1 precedes O2 in the visibility order, we write O1→O2.

Note: Program order and data-flow order apply only to instructions and accesses, while visibility orders 
apply only to operations. As an example, if program order applies to a load and a store instruction, 
then the visibility order applies to the corresponding read (load) and write (for store) operations.

The Itanium architecture supports a relaxed memory ordering model that provides unordered 
memory instructions, explicitly ordered memory instructions, and fence instructions that software 
can use to implement stronger ordering. The ordering semantics and program order of an 
instruction determine the constraints the system must respect when placing operations from the 
same processor in the visibility order.

The Itanium architecture defines four ordering semantics for instructions and accesses:

• Acquire. If access I1 follows in program order an access I2 with acquire semantics, then the 
operations of I1 in general follow those of I2 in the execution’s visibility order.

This document uses “ACQ” to represent an instruction with acquire semantics.

• Release. If access I1 precedes in program order an access I2 with release semantics, then the 
operations of I1 in general precede those of I2 in the execution’s visibility order.

This document uses “REL” to represent an instruction with release semantics.

Note: All instructions with release semantics also have write semantics.

• Fence. If access I1 precedes (respectively, follows) in program order an access I2 with fence 
semantics, then the operations of I1 in general precede (respectively, follow) those of I2 in the 
execution’s visibility order.

This document uses “FEN” to represent an instruction with fence semantics.

1. Because of the close correspondence between instructions and accesses, this document uses the notation “I” to refer to both. In most cases, 
it refers to accesses. The notation “A” is reserved for reference to operations of instructions and accesses with acquire semantics.
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• Unordered (or weak). Instructions with unordered semantics do not place constraints on the 
visibility order. However, operations from instructions with acquire, release, or fence 
semantics do constrain the operations from an instruction with unordered semantics.

The constraints that the ordering semantics impose on accesses’ operations are in addition to those 
imposed by other rules such as memory-data dependence, data-flow dependence, etc.

3.2 Instructions and Operations

The basic Itanium processor family memory ordering model uses five instruction types. These 
instructions compose the basic set of application-level memory instructions in the Itanium 
architecture. For each type, we indicate the associated semantics (which apply to the instruction’s 
access) and the component operations. The instructions in the basic Itanium processor family 
memory ordering model include the following:

• Load-acquires (LA). These instructions have read semantics and acquire ordering semantics.

A load-acquire access LA is decomposed into a single operation R(LA) that represents the 
visibility of the load-acquire LA. In general, all accesses with read semantics are decomposed 
in similar fashion.

• Store-releases (SR). These instructions have write semantics and release ordering semantics. 
For WB and WC memory, store-releases are bypassing writes in the sense that a processor may 
appear to observe its own writes earlier than those performed by other processors (see “local 
bypassing” on page 6). For UC memory, store-releases are not bypassing. Store-releases to 
WB memory also have the property that they become visible in the same order at all remote 
processors in a coherence domain.1

A store-release access SR is decomposed into several operations: local visibility operation 
LV(SR) that represents the visibility of SR to the local processor, and, for each processor p, 
remote visibility operation RVp(SR) that represents the visibility of SR to processor p. In 
general, all instructions with write semantics are decomposed in similar fashion.

Note that, for an instruction W with write semantics, there is a “remote” RVp(W) even for 
p=Proc(W). The interval between LV(W) and RVp(W) (with p=Proc(W)) represents the period 
of time during which a read by p can receive a local bypass for bytes written by W.

• Unordered loads (UL). These instructions have read semantics and unordered semantics.

Like load-acquires, an unordered load access UL is decomposed into one read operation, 
R(UL).

• Unordered stores (US). These instructions have write semantics and unordered semantics. For 
WB and WC memory, unordered stores are bypassing writes; for UC memory, they are not 
bypassing.

Like store-releases, an unordered store access US is decomposed into LV(US) and RVp(US) 
operations (one RVp(US) for each processor p).

• Memory fences (MF). These instructions have neither read nor write semantics and they have 
fence ordering semantics.

A memory fence, MF, is decomposed into a single fence operation F(MF).

Section 3.1 and this section introduce a variety of notation for instructions. For example, “R”, 
“ACQ”, or “LA” might be used to denote a load-acquire. We use “R” when we want to emphasize 
that it is a read; we use “ACQ” to emphasize its ordering semantics; we use “LA” to explicitly denote 
that it is a load-acquire.

1. A coherence domain is a collection of processors and memory for which the hardware ensures that all members of the domain observe 
changes in memory values. Identifications of the collections comprising coherence domains are platform specific.
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3.3 Visibility Order Rules

This section presents the set of rules for the basic Itanium processor family memory ordering 
model that an execution’s visibility order must satisfy. If there is no visibility order for an execution 
that satisfies all of these rules, the execution is not permitted by the Itanium architecture.

3.3.1 Write Operation Order

There is one write operation rule that specifies how the RV and LV operations that compose an 
access with write semantics must be ordered:

(WO) No write can become visible remotely before it becomes visible locally.
For every write access W, LV(W)→RVp(W) for p=proc(W), and RVp(W)→RVq(W) for 
p=proc(W) and q≠proc(W).

3.3.2 Program Order

The program-order rules specify constraints on how each processor’s operations must become 
visible based on the program order of their accesses and the memory ordering semantics of their 
instructions. If two accesses from a processor are program ordered, it may be necessary for their 
operations to become visible in that order. These rules place no requirements on the order of 
operations from different processors. In addition, they do not depend on the range of memory being 
accessed (rules dependent on address range are given in Section 3.3.3).

Program-order rules fall into three categories, corresponding to the different ordering semantics 
that constrain the ordering of operations (acquire, release, and fence):

(ACQ) No operation can become visible before a preceding acquire.
If ACQ»I, A is an operation of instruction ACQ, and O is an operation of instruction I, 
then A→O.

(REL) No release can become visible before a preceding instruction’s operations.

• If I»REL, instruction I does not have write semantics, and operation O is an opera-
tion of I, then O→LV(REL).

• If I»REL and instruction I has write semantics, then LV(I)→LV(REL) and 
RVp(I)→RVp(REL) for each processor p.

Recall that all instructions with release semantics also have write semantics and 
thus have LV and RV operations.

(REL) Operations become visible in-order with respect to memory fences.

• If FEN»I and O is an operation of instruction I, then F(FEN)→O.

• If I»FEN and O is an operation of instruction I, then O→F(FEN).

Notice that either case implies that any two memory fences become visible in 
program order: if FEN1»FEN2, then F(FEN1)→F(FEN2).

There are no rules that explicitly mention operations of accesses with unordered memory ordering 
semantics (i.e., unordered loads and stores). These operations have no intrinsic ordering 
requirements. The ordering of their visibility is constrained only by how they are ordered with 
respect to acquires, releases, and fences, as well as the rules given in the other subsections.

3.3.3 Memory-Data Dependence

Memory-data dependence rules specify constraints on how the operations of a processor’s read and 
write accesses to common locations (address locations with overlapping ranges) become visible (to 
that processor) based on the accesses’ program order. Like the program-order rules, these rules 
apply only to pairs of operations from the same processor. These rules may specify orderings even 
Application Note 13



A Formal Specification of Intel® Itanium® Processor Family Memory Ordering
for unordered loads and stores (which the program-order rules of Section 3.3.2 do not explicitly 
mention). In general, operations of two accesses from a processor to a common location must 
become visible to that processor in program order unless both operations are reads.1 Memory-data 
dependence rules do not affect the ordering of the remotely visible operations of write accesses.

There are three memory-data dependence rules that express the read-after-write, write-after-read, 
and write-after-write requirements that the Itanium architecture imposes on instructions with read 
semantics (R) and write semantics (W):

(MD:RAW) No read may become visible locally before an earlier write to a common location.

• If Rng(W)∩Rng(R)≠∅  and W»R, then LV(W)→R(R).

(MD:WAR) No write may become visible locally before an earlier read of a common location.

• If Rng(R)∩Rng(W)≠∅  and R»W, then R(R)→LV(W).

(MD:WAW) Writes by a processor to a common location become visible to that processor in 
program order.

• If Rng(W1)∩Rng(W2)≠∅  and W1»W2, then LV(W1)→LV(W2) and 
RVp(W1)→RVp(W2) for processor p=Proc(W1)=Proc(W2).

Notice that there is no read-after-read requirement in the Itanium architecture. Thus, if UL1 and UL2 
are two unordered loads, the following is possible: UL1»UL2, Rng(UL1)∩Rng(UL2)≠∅ , (even 
Rng(UL1)=Rng(UL2)), and R(UL2)→R(UL1).

Notice also that these rules constrain only the local visibility of writes. Thus, (MD:WAW) does not 
imply that W1 and W2 become visible remotely in program order. However, if W1 and W2 are both to 
WB memory or both to UC memory, then the coherence rule (see Section 3.3.5) will ensure that 
they become visible in program order to all processors.

3.3.4 Data-Flow Dependence

An execution’s data-flow order is a subset of its program order. That is, if accesses I1 and I2 are 
data-flow ordered (I1›I2), then they are also program ordered (I1»I2). Two program-ordered 
instructions are also data-flow ordered if the associated instruction semantics are such that I2 must 
follow I1. For example, I1 may be a load into a register and I2 may be a store that uses that register 
as address or data. Alternatively, I1 might be a load and I2 an instruction that follows a branch that 
is conditional on the value returned by that load. A formal definition of data-flow order is external 
to the framework adopted in this document and can be found in the pseudo-code of the Intel® 

Itanium® Architecture Software Developer’s Manual.

There are four data-flow dependence rules that ensure that a processor’s operations become 
internally visible in data-flow order.

(DF:RAR) If R1›R2, then R(R1)→R(R2).

(DF:RAW) If W›R, then LV(W)→R(R).

(DF:WAR) If R›W, then R(R)→LV(W).

(DF:WAW) If W1›W2, then LV(W1)→LV(W2).

As in Section 3.3.3, these rules constrain only the local visibility of writes. (DF:WAW) does not 
imply that W1 and W2 become visible remotely in program order. This will be ensured by the 
memory-data dependence rule (MD:WAW) and the coherence rule (see Section 3.3.5) if W1 and W2 
are to common locations and both to WB memory or both to UC memory.

1. Because of (ACQ) in Section 3.3.2, if the first read has acquire semantics, then the read operations must appear in program order.
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3.3.5 Coherence

The coherence rule constrains the visibility of writes to a common location. It ensures that all 
processors agree on the order in which such writes become remotely visible. The coherence rule 
controls only operations to addresses with the same memory attribute, where that attribute is either 
WB or UC.

The rules states that, if two writes to a location in either WB or UC memory become visible to a 
processor in some order, then they become visible to all processors in that order.

(COH) Suppose that W1 and W2 are write accesses to the same non-WC memory attribute 
and that Rng(W1)∩Rng(W2)≠∅ . The following must hold:

• If LV(W1)→LV(W2) and Proc(W1)=Proc(W2), then RVp(W1)→RVp(W2) for all 
processors p.

• If RVp(W1)→RVp(W2) for processor p, then RVq(W1)→RVq(W2) for all 
processors q.

Notice that the second part of (COH) applies even if proc(W1)≠proc(W2). This is the first rule 
presented that can constrain the ordering of operations of accesses from different processors.

If unordered stores US1 and US2 do not write to a common location (i.e., Rng(US1)∩Rng(US2)=∅ ), 
then they may become visible to processors in different orders (e.g., RVp(US1)→RVp(US2) and 
RVq(US2)→RVq(US1)), if they are not subject to other constraints.

Suppose that unordered stores US1 and US2 are both writes to UC memory or both writes to WB 
memory and that p=Proc(US1)=Proc(US2). If Rng(US1)∩Rng(US2)≠∅  and US1»US2, then it must be 
that RVq(US1)→RVq(US2) for all processors q. This is because (MD:WAW) implies 
LV(W1)→LV(W2); (COH) then implies the desired result.

3.3.6 Read Value

This section uses the following definition. A read access R is local for byte b if b∈ Rng(R) and there 
is a write W to b with p=Proc(W)=Proc(R) such that LV(W)→R(R)→RVp(W). If R is local for b, this 
means that R will return a value for b that is being “bypassed” from a local write.

Informally, if a read access is local for a byte, then it reads the value written by the latest preceding 
write by the same processor (RV1). If it is not local, it reads the value written by the latest 
preceding write that is remotely visible to the reading processor (RV2); if there is no such write, the 
read returns the initial value (RV3).

Formally, the value returned by each read access R with Proc(R)=p is determined using the 
following for each byte b∈ Rng(R):

(RV1) Suppose that R is local for b. Let W be a write to b such that Proc(W)=p, 
LV(W)→R(R), and there is no other write W′  to b with Proc(W′)=p and 
LV(W)→LV(W′)→R(R). Then RdVal(R;b)=WrVal(W;b).

(RV2) Suppose that R is not local for b, there is a write W to b such that RVp(W)→R(R), 
and there is no other write W′ to b with RVp(W)→RVp(W′)→R(R). Then 
RdVal(R;b)=WrVal(W;b).

(RV3) Suppose R is not local for b and there is no write W to b such that RVp(W)→R(R). 
Then RdVal(R;b)=InitVal(b).
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3.3.7 Rules Specific to Memory Attribute

This section considers properties that apply only to operations on certain memory attributes.

3.3.7.1 Total Ordering of WB Releases

Store-releases to writeback (WB) memory have a property that does not apply to the other memory 
attributes: they become remotely visible to all processors in the same order. This is enforced by 
requiring that WB releases have a property commonly referred to as remote write atomicity:

(WBR) Store-releases that write to WB memory become remotely visible atomically.

• If SR writes to WB memory and RVp(SR)→O→RVq(SR) for processors p and q, 
then O=RVr(SR) for some processor r.

3.3.7.2 Sequentiality of UC Operations

Sequentiality is a property that applies only to operations on UC memory. Each location in UC 
memory belongs to a peripheral domain.1 Sequentiality ensures that a processor’s operations on a 
peripheral domain become visible in program order. These rules are very similar to the memory 
data-dependence rules of Section 3.3.3 but they also apply to pairs of reads:

(UC1) If R1 and R2 are read accesses from UC memory in the same peripheral domain and 
R1»R2, then R(R1)→R(R2).

(UC2) If R and W are accesses to UC memory in the same peripheral domain and R»W, 
then R(R)→LV(W).

(UC3) If W and R are accesses to UC memory in the same peripheral domain and W»R, then 
LV(W)→R(R).

(UC4) If W1 and W2 are write accesses to UC memory in the same peripheral domain and 
W1»W2, then LV(W1)→LV(W2).

3.3.7.3 No UC Bypassing

Uncacheable (UC) memory is non-cacheable. With regard to memory ordering, this means that 
there can be no local bypassing from UC writes:

(NC) If W is a write to UC memory, p=Proc(W), and LV(W)→R(R)→RVp(W), then either 
p≠Proc(R) or Rng(W)∩Rng(R)=∅ .

4.0 Semaphores

Documentation of the Itanium architecture uses the term semaphore instructions (or, simply, 
semaphores) to refer to those with read-modify-write functionality. That is, semaphores atomically 
read a location in memory, perform some function on the value read, and write the modified data 
back to memory. The Itanium architecture supports three operations: exchange (xchg), compare-
and-exchange (cmpxchg), and fetch-and-add (fetchadd). In the Itanium architecture, 
semaphores operate only on WB memory, with the exception of fetchadd, which can also 
operate on UCE memory.

1. For memory addresses that control memory-mapped I/O, a peripheral domain is a platform-specific subset of the platform’s I/O subsystem 
that all observes memory accesses in a common order. Two UC addresses that map to system memory (instead of memory-mapped I/O) are 
considered to be in the same peripheral domain if they are in the same coherence domain.
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Semaphores differ from each other in their ordering semantics and the function that they use to 
modify the value being read. The ordering semantics is the main subject of this subsection. The 
functions that semaphores use to modify values are not important to the model but are included 
here for completeness: xchg writes into the memory location the value of a specified register; 
cmpxchg does the same but only if the old value of the location equals the contents of the CCV 
application register; and fetchadd increments the old value of the memory location that it 
accesses.

4.1 Extensions to the Notation and Terminology

Supporting semaphore instructions in the memory ordering model requires additions to the 
notation and terminology introduced for the basic Itanium processor family memory ordering 
model:

• Each semaphore access SEM has a modification function ModSEM that computes the new value 
of the memory location from the original value of the location.

• Because semaphores have both read and write semantics, they have both a read value, 
RdVal(SEM), and a write value, WrVal(SEM).

4.2 Extensions to the Instructions and Operations

Supporting semaphores requires extending the basic set of instructions and accesses with two 
additional types:

• Acquire semaphores. These accesses have read semantics, write semantics, and acquire 
semantics. In the Itanium architecture, acquire semaphores may apply exchange (xchg), 
compare-and-exchange (cmpxchg), and fetch-and-add (fetchadd) functions to memory.

• Release semaphores. These accesses have read semantics, write semantics, and release 
semantics. In the Itanium architecture, release semaphores may apply compare-and-exchange 
(cmpxchg) and fetch-and-add (fetchadd) functions to memory.

This document uses SEM to refer to a semaphore access. Each semaphore SEM is decomposed into 
the following operations: R(SEM) that represents the visibility of the semaphore’s read; LV(SEM) 
represents the visibility of the semaphore’s write to the local processor; and, for each processor p, 
RVp(SEM) represents the visibility of the semaphore’s write to processor p. Note that this set of 
operations follows as one would expect from the operations for accesses that perform reads or 
writes.

4.3 Extensions to the Visibility Order Rules

This section details the additions to the visibility order rule set as well as the interactions between 
semaphores and the existing rules in the basic Itanium processor family memory ordering model.

4.3.1 Semaphores

Despite having multiple operations, each semaphore appears to execute atomically; this is called 
semaphore atomicity and requires an extension to the rules of the basic Itanium processor family 
memory ordering model:

(SM1) Nothing can intervene between a semaphore’s operations:

• If s1 and s2 are operations of SEM and s1→O→s2, then O is also a operation of 
SEM.
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Semaphores must obey the following semaphore read-write rule:

(SM2) A semaphore access’s read operation precedes its locally visible write operation:

• For semaphore access SEM, R(SEM)→LV(SEM).

In addition, all semaphores must obey the following read-modify-write rule:

(SM3) A semaphore writes the value computed by its modification function on its read 
value.

• For any semaphore SEM, WrVal(SEM)=ModSEM(RdVal(SEM)).

Rule (SM1) implies that semaphores have a single total order; they become remotely visible to all 
processors in the same order. Rule (SM3) does not directly relate to the ordering of memory 
operations; it uses neither » nor →. Its treatment of the read and write values of semaphores is 
included here only for completeness. 

Note: RdVal(SEM) is determined by applying read-value rules (RV1) – (RV3) to R(SEM). 

4.3.2 Interactions with Rules of the Basic Itanium® Processor Family 
Memory Ordering Model

As described earlier, the Itanium architecture allows a semaphore to have either acquire ordering 
semantics or release ordering semantics, but not both. Semaphores with acquire semantics obey 
acquire program-order rule (ACQ) given in Section 3.3.2 above; similarly, those with release 
semantics obey release program-order rule (REL) of that section.

As semaphore accesses contain both read and write operations, they must obey the rules for reads 
and writes that were presented in Section 3.3. These items are not new rules that semaphores must 
obey. Rather, they simply observe that semaphores must obey the rules in Section 3.3 for reads and 
writes.

• Write operation order rule (WO). Because all semaphores have write semantics, they are 
subject to this rule.

• Acquire program-order rule (ACQ). As noted above, this applies to semaphores with acquire 
ordering semantics.

• Release program-order rule (REL). As noted above, this applies to semaphores with release 
ordering semantics.

• Memory-fence program order rule (REL). Semaphores must obey these rules in the same way 
that other instructions and operations do. However, semaphores themselves are not memory 
fences.

• Memory-data dependence rules (MD:RAW), (MD:WAR), and (MD:WAW). Because all 
semaphores have read and write semantics, they are subject to all these rules.

• Data-flow dependence rules (DF:RAR) – (DF:WAW). Because all semaphores have read and 
write semantics, they are subject to all these rules.

• Coherence rule (COH). Because all semaphores have write semantics and because all 
semaphores are to either WB or UCE memory, they are subject to this rule.

• Read-value rules (RV1) – (RV3). Semaphores follow these rules both in their satisfaction of 
their read semantics (i.e., these rules determine the value that a semaphore reads) and of their 
write semantics (i.e., the rules determine how the value written by a semaphore can be read).

• UC-operation rules (UC1) – (UC4). Because they have read and write semantics, fetchadd 
operations on UCE memory must obey these rules.
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4.4 Semaphores Do Not Allow Bypassing

The following results show certain properties of semaphores with respect to bypassing. Lemma 1 
shows that no semaphore can read a value through bypassing. Lemma 2 shows that no read can be 
bypassed a value from a semaphore. These results apply to semaphores with both acquire and 
release semantics.

Lemma 1: No semaphore can be local for any byte that it reads.

Proof: Recall that b must be in either WB memory or UC memory. Semaphore SEM by 
p=Proc(SEM) is local for b (as a read) only if b∈ Rng(SEM) and there is a write W to b by p such that 
Proc(W)=p and LV(W)→R(SEM)→RVp(W). Suppose this is the case.

Semaphore read-write rule (SM2) implies R(SEM)→LV(SEM); thus, LV(W)→LV(SEM). Memory-
data dependence rule (MD:WAW) then implies RVp(W)→RVp(SEM). This means 
R(SEM)→RVp(W)→RVp(SEM), which contradicts semaphore-atomicity rule (SM1). QED

Since a semaphore cannot be local for any byte that it reads, it cannot receive values bypassed from 
other local writes.

Lemma 2: No read that is local for a byte can read the value written to that byte by a semaphore.

Proof: Let R be a load-acquire or unordered load that is local for b and let p=Proc(R) (Lemma 1 
showed that no semaphore can be local for b). Assume for a contradiction that R reads the value 
written to b by semaphore SEM to b with Proc(SEM)=p. This implies that b must be in either WB 
memory or UC memory. Read-value rule (RV1) implies that LV(SEM)→R(R) and that there is no 
write W′  to b with Proc(W′)=p and that LV(SEM)→LV(W′)→R(R). Let W be the write to b that 
makes R local; that is, Proc(W)=p and LV(W)→R(R)→RVp(W). Consider the following two cases:

• W=SEM. In this case, we have R(R)→RVp(SEM).

• W≠SEM. Since there is no write W′  to b with Proc(W′)=p and LV(SEM)→LV(W′)→R(R), it must 
be that LV(W)→LV(SEM). Memory-data dependence rule (MD:WAW) implies 
RVp(W)→RVp(SEM). The transitivity of → then gives R(R)→RVp(SEM).

In either case, R(R)→RVp(SEM). Since LV(SEM)→R(R), this contradicts semaphore-atomicity 
rule (SM1). QED
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Appendix A  Examples

This appendix presents ten of the sample executions that were given in the Intel® Itanium® 

Architecture Software Developer’s Manual and shows why each is or is not allowed by the Itanium 
processor family memory ordering model as defined in this document.

Some of the examples illustrate “weaknesses” in the Itanium processor family memory ordering 
model, showing that certain behaviors are allowed, a behavior being a certain execution coupled 
with the values returned to its read instructions. Behaviors are shown to be allowed by exhibiting a 
visibility order that is consistent with the rules of Section 3.3; these examples apply to all memory 
attributes. After the first such example, arguments regarding a visibility order’s consistency with 
these rules will be abbreviated; rules from Section 3.3 will be cited only for emphasis.

Other examples illustrate “strengths” in the Itanium processor family memory ordering model, 
showing that certain behaviors are not allowed. This is done by assuming that the behavior is 
allowed and then using the read values and the rules from Section 3.3 to draw conclusions about 
the execution’s visibility order. These conclusions will be contradictory, implying that the original 
assumption (that the execution is allowed by the Itanium processor family memory ordering 
model) was incorrect. These examples will apply to all memory attributes unless noted otherwise.

The examples assume that all instructions are properly aligned. Unless stated otherwise, it is 
assumed that all separately named memory locations (x, y, etc.) are disjoint in memory.

A.1 Itanium® Architecture Provides a Relaxed Ordering Model

Table 4 shows the weakness of unordered loads and stores and how they can be reordered.

This execution has the following program order relations: US1»US2 and UL1»UL2. In addition, 
WrVal(US1)=WrVal(US2)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model allows the return values of r1=1 and r2=0. That is, it allows RdVal(UL1)=1 and 
RdVal(UL2)=0.

The indicated read values are supported by the following visibility order:

• LV(US1)→LV(US2)→RVp(US1)→RVp(US2)→RVq(US2)→R(UL1)→R(UL2)→RVq(US1).

This order respects write operation rule (WO). The program-order rules of Section 3.3.2 do not 
apply because there are only unordered loads and unordered stores in this execution. The memory 
data-dependence rules of Section 3.3.3 do not apply because neither processor has two operations 
on a single data location. The data-flow dependence rules of Section 3.3.4 do not apply because 
there is no data-flow ordering in this execution. Regardless of the memory attributes of the physical 
addresses involved, coherence rule (COH) does not apply because there is only one write to each 
location. Neither load is local (in the sense of Section 3.3.6); RdVal(UL1)=1 by read-value 
rule (RV2); and RdVal(UL2)=0 by read-value rule (RV3). Finally, the rules specific to memory 
attribute from Section 3.3.7 do not apply because all operations are on WB memory and none are 
store-releases.

Table 4. Itanium® Architecture Provides a Relaxed Ordering Model

p q

US1: st [x] = 1 UL1: ld r1 = [y]

US2: st [y] = 1 UL2: ld r2 = [x]
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There are several other visibility orders that would justify the indicated return values.

A.2 Enforcing Basic Ordering

Table 5 shows that the reorderings of the previous example can be eliminated with load-acquires 
and store-releases.

This execution has the following program order relations: US»SR and LA»UL. In addition, 
WrVal(US)=WrVal(SR)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model does not allow the return values of r1=1 and r2=0. That is, it does not allow RdVal(LA)=1 
and RdVal(UL)=0.

Assume that the execution with the indicated read values is allowed by the Itanium processor 
family memory ordering model. The rules given in Section 3.3 imply the following orderings:

• Consider RVq(US) and RVq(SR). Since US»SR, program-order rule (REL) implies 
RVq(US)→RVq(SR).

• Consider R(LA). Because q does not write to y, LA is not local for y and read-value rule (RV1) 
does not apply. Because RdVal(LA)=1≠InitVal(x), read-value rule (RV3) does not apply. This 
means that LA must follow the remote visibility (to q) of some write to y. The only choice is SR, 
so RVq(SR)→R(LA).

• Consider R(UL). Because LA»UL, program-order rule (ACQ) implies R(LA)→R(UL).

• Consider RdVal(UL). Because q does not write to x, UL is not local for x and read-value 
rule (RV1) cannot apply. From the items above, we have RVq(US)→RVq(SR)→R(LA)→R(UL). 
Because → is transitive, RVq(US)→R(UL). Finally, since Rng(US)=Rng(UL), read-value 
rule (RV2) must apply to UL. Since US is the only write to x, (RV2) implies 
RdVal(UL)=WrVal(US)=1. This contradicts the assumption RdVal(UL)=0, and we conclude that 
the execution is not allowed by the Itanium processor family memory ordering model.

A.3 Allow Loads to Pass Stores to Different Locations

Table 6 illustrates that even load-acquires and store-releases can be reordered in some cases.

This execution has the following program order relations: SR1»LA1 and SR2»LA2. In addition, 
WrVal(SR1)=WrVal(SR2)=1. There are no data-flow relations.

Table 5. Acquire and Release Semantics Order Itanium® Architecture 
Memory Operations

p q

US: st [x] = 1 LA: ld.acq r1 = [y]

SR: st.rel [y] = 1 UL: ld r2 = [x]

Table 6. Loads May Pass Stores to Different Locations

p q

SR1: st.rel [x] = 1 SR2: st.rel [y] = 1

LA1: ld.acq r1 = [y] LA2: ld.acq r2 = [x]
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We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model allows the return values of r1=r2=0. That is, it allows RdVal(LA1)=RdVal(LA2)=0.

The indicated read values are supported by the following visibility order:

• R(LA1)→R(LA2)→LV(SR1)→LV(SR2)→RVp(SR1)→RVq(SR1)→RVq(SR2)→RVp(SR2).

There are no rules that prevent a load-acquire operation from passing any operation of a preceding 
store-release. The memory-data dependence rules of Section 3.3.3 do not apply because, for each 
processor, its two operations are to disjoint memory ranges.

A.4 Preventing Loads From Passing Stores to Different 
Locations

Table 7 shows how memory fences can prevent loads and stores from being reordered.

This execution has the following program order relations: US1»MF1»UL1 and US2»MF2»UL2. In 
addition, WrVal(US1)=WrVal(US2)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium architecture does not allow the return 
values of r1=r2=0. That is, it does not allow RdVal(LA)=RdVal(UL)=0.

Assume that the execution with the indicated read values is allowed by the Itanium architecture. 
The rules given in Section 3.3 imply the following orderings:

• Consider RVq(US1) and F(MF1). By program-order rule (REL), RVq(US1)→F(MF1).

• Consider R(UL1). By program-order rule (REL), F(MF1)→R(UL1).

• Consider RVp(US2). Because p does not write to y, UL1 is not local for y and read-value 
rule (RV1) does not apply to UL1. If RVp(US2)→R(UL1), read-value rule (RV2) will imply 
RdVal(UL1)=WrVal(US2), which is not the case. Thus, R(UL1)→RVp(US2).

• Consider F(MF2). By program-order rule (REL), RVp(US2)→F(MF2).

• Consider R(UL2). By program-order rule (REL), F(MF2)→R(UL2).

• Consider RdVal(UL2). Because q does not write to x, UL2 is not local for x and read-value 
rule (RV1) cannot apply. From the items above, we have the following requirement on →:

— RVq(US1)→F(MF1)→R(UL1)→RVp(US2)→F(MF2)→R(UL2).

Because → is transitive, RVq(US1)→R(UL2). Finally, since Rng(US1)=Rng(UL2), read-value 
rule (RV2) must apply to UL2. Since US1 is the only write to x, (RV2) implies 
RdVal(UL2)=WrVal(US1)=1. This contradicts the assumption RdVal(UL2)=0, and we conclude that 
the execution is not allowed in the Itanium architecture.

Table 7. Loads May Not Pass Stores in the Presence of a Memory Fence

p q

US1: st [x] = 1 US2: st [y] = 1

MF1: mf MF2: mf

UL1: ld r1 = [y] UL2: ld r2 = [x]
22 Application Note



A Formal Specification of Intel® Itanium® Processor Family Memory Ordering
A.5 Data Dependency Does Not Establish MP Ordering

The tables in this section illustrates some subtle properties of the memory-data and data-flow 
dependence rules.

Table 8 emphasizes that these rules affect only local visibility.

This execution has the following program order relations: US1»UL1»US2 and LA»UL2. There is one 
data-flow relation: UL1›US2. Finally, WrVal(US1)=1. (The value of WrVal(US2) is RdVal(UL1), 
which depends on the execution.)

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model allows the return values of r1=r2=1 and r3=0. That is, it allows RdVal(UL1)=RdVal(LA)=1 
and RdVal(UL2)=0.

The indicated read values are supported by the following visibility order:

• LV(US1)→R(UL1)→LV(US2)→RVp(US2)→RVq(US2)→R(LA)→R(UL2)→RVp(US1)
→RVq(US1).

There are no program-order rules that apply to p’s operations. Memory-data dependence 
rule (MD:RAW) is respected because LV(US1)→R(UL1). Data-flow dependence rule (DF:WAR) is 
respected because R(UL1)→LV(US2). However, there is no rule that infers RVq(US1)→RVq(US2) 
from LV(US1)→LV(US2) (memory-data dependence rule (MD:WAW) and cache-coherence 
rule (COH) do not apply here because Rng(US1)∩Rng(US2)=∅ ).

Information in Table 9 is similar to that in Table 4 and shows that, if certain data-flow 
dependencies exist, an unordered load can function locally as if it were a load-acquire.

This execution has the following program order relations: US»SR and UL1»UL1. There is one data-
flow relation: UL1›UL2. Finally, WrVal(US)=1 and WrVal(SR)=x (i.e., the memory address).

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model does not allow the return values of r1=x and r2=0. That is, it does not allow RdVal(UL1)=x 
and RdVal(UL2)=0.

Assume that the execution with the indicated read values is allowed by the Itanium processor 
family memory ordering model. The rules given in Section 3.3 imply the following orderings:

• Consider RVq(US) and RVq(SR). Since US»SR, program-order rule (REL) implies 
RVq(US)→RVq(SR).

Table 8. Data Dependencies Do Not Establish MP Ordering (1)

p q

US1: st [x] = 1 LA: ld.acq r2 = [y]

UL1: ld r1 = [x] UL2: ld r3 = [x]

US2: st [y] = r1

Table 9. Data Dependencies Do Not Establish MP Ordering (2)

p q

US: st [x] = 1 UL1: ld r1 = [y]

SR: st.rel [y] = x UL2: ld r2 = [r1]
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• Consider R(UL1). Because q does not write to y, UL1 is not local for y and read-value 
rule (RV1) does not apply. Because RdVal(UL1)=x≠InitVal(y), read-value rule (RV3) does not 
apply. This means that UL1 must follow the remote visibility (to q) of some write to y. The only 
choice is SR, so RVq(SR)→R(UL1).

• Consider R(UL2). Because UL1›UL2, data-flow dependence rule (DF:RAR) implies 
R(UL1)→R(UL2).

• Consider RdVal(UL2). Because q does not write to x, UL2 is not local for x and read-value 
rule (RV1) cannot apply. From the items above, we have 
RVq(US)→RVq(SR)→R(UL1)→R(UL2). Because → is transitive, RVq(US)→R(UL2). Finally, 
since Rng(US)=Rng(UL2), read-value rule (RV2) must apply to UL2. Since US is the only write 
to x, (RV2) implies RdVal(UL2)=WrVal(US)=1. This contradicts the assumption RdVal(UL2)=0, 
and we conclude that the execution is not allowed by the Itanium architecture.

A.6 Store Buffers May Satisfy Local Loads

Table 10 illustrates what can happen in an execution in which some loads are satisfied locally and 
others are not (see Section 3.3.6): a remotely satisfied load can appear to pass an earlier load-
acquire that is satisfied locally.

This execution has the following program order relations: SR1»LA1»WR1 and SR2»LA2»WR2. In 
addition, WrVal(SR1)=WrVal(SR2)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model allows the return values of r1=r3=1 and r2=r4=0. That is, it allows 
RdVal(LA1)=RdVal(LA2)=1 and RdVal(UL1)=RdVal(UL2)=0.

The indicated read values are supported by the following visibility order:

• LV(SR1)→R(LA1)→LV(SR2)→R(LA2)→R(UL1)→R(UL2)→RVp(SR1)→RVq(SR1)
→RVq(SR2)→RVp(SR2).

Memory data-dependence rule (MD:RAW) ensures LV(SR1)→R(LA1) and LV(SR2)→R(LA2). 
However, it does not keep the load-acquires from passing the remotely visible operations of the 
store-releases. Notice that the two load-acquires are each local and are thus satisfied by read-value 
rule (RV1). The two unordered loads are each satisfied by read-value rule (RV3).

Table 10. Store Buffers May Satisfy Loads if the Stored Data is Not Yet Globally Visible

p q

SR1: st.rel [x] = 1 SR2: st.rel [y] = 1

LA1: ld.acq r1 = [x] LA2: ld.acq r3 = [y]

UL1: ld r2 = [y] UL2: ld r4 = [x]
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A.7 Preventing Store Buffers From Satisfying Local Loads

Table 11 shows how memory fences can be used to prevent a load from being satisfied locally.

This execution has the following program order relations: US1»MF1»LA1»WR1 and 
US2»MF2»LA2»WR2. In addition, WrVal(US1)=WrVal(US2)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model does not allow the return values of r1=r3=1 and r2=r4=0. That is, it does not allow 
RdVal(LA1)=RdVal(LA2)=1 and RdVal(UL1)=RdVal(UL2)=0.

Assume that the execution with the indicated read values is allowed by the Itanium architecture. 
The rules given in Section 3.3 imply the following orderings:

• Consider RVq(US1) and F(MF1). By program-order rule (REL), RVq(US1)→F(MF1).

• Consider R(LA1). By program-order rule (REL), F(MF1)→R(LA1).

• Consider R(UL1). By program-order rule (ACQ), R(LA1)→R(UL1).

• Consider RVp(US2). Because p does not write to y, UL1 is not local for y and read-value 
rule (RV1) does not apply to UL1. If RVp(US2)→R(UL1), read-value rule (RV2) will imply 
RdVal(UL1)=WrVal(US2), which is not the case. Thus, R(UL1)→RVp(US2).

• Consider F(MF2). By program-order rule (REL), RVp(US2)→F(MF2).

• Consider R(LA2). By program-order rule (REL), F(MF2)→R(LA2).

• Consider R(UL2). By program-order rule (ACQ), R(LA2)→R(UL2).

• Consider RdVal(UL2). Because q does not write to x, UL2 is not local for x and read-value 
rule (RV1) cannot apply. From the items above, we have the following requirement on →:

— RVq(US1)→F(MF1)→R(LA1)→R(UL1)→RVp(US2)→F(MF2)→R(LA2)→R(UL2).

Because → is transitive, RVq(US1)→R(UL2). Finally, since Rng(US1)=Rng(UL2), read-value 
rule (RV2) must apply to UL2. Since US1 is the only write to x, (RV2) implies 
RdVal(UL2)=WrVal(US1)=1. This contradicts the assumption RdVal(UL2)=0, and we conclude that 
the execution is not allowed in the Itanium architecture.

A.8 Ordered Cacheable Operations Seen in Same Order

Table 12 illustrates WB release atomicity: two WB store-releases must be remotely observed in the 
same order globally. This section applies only to WB memory.

.

Table 11. Preventing Store Buffers from Satisfying Local Loads

p q

US1: st [x] = 1 US2: st [y] = 1

MF1: mf MF2: mf

LA1: ld.acq r1 = [x] LA2: ld.acq r3 = [y]

UL1: ld r2 = [y] UL2: ld r4 = [x]

Table 12. Enforcing the Same Visibility Order to All Observers in a Coherency Domain

p q r s

SR1: st.rel [x] = 1 LA1: ld.acq r1 = [x] SR2: st.rel [y] = 1 LA2: ld.acq r3 = [y]

UL1: ld r2 = [y] UL2: ld r4 = [x]
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This execution has the following program order relations: LA1»UL1 and LA2»UL2. In addition, 
WrVal(SR1)=WrVal(SR2)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model does not allow the return values of r1=r3=1 and r2=r4=0. That is, it does not allow 
RdVal(LA1)=RdVal(LA2)=1 and RdVal(UL1)=RdVal(UL2)=0.

Assume that the execution with the indicated read values is allowed by the Itanium processor 
family memory ordering model. The rules given in Section 3.3 imply the following orderings:

• Consider RVs(SR1) and R(LA1). Because q does not write to x, LA1 is not local for x and read-
value rule (RV1) does not apply to LA1. If R(LA1)→RVq(SR1), read-value rule (RV3) will 
imply RdVal(LA1)=0, which is not the case. Thus, RVq(SR1)→R(LA1). If R(LA1)→RVs(SR1), 
we have RVq(SR1)→R(LA1)→RVs(SR1), contradicting the remote atomicity of WB store-
releases (WBR). Thus, RVs(SR1)→R(LA1).

• Consider R(UL1). By program-order rule (ACQ), R(LA1)→R(UL1).

• Consider RVq(SR2). Because q does not write to y, UL1 is not local for y and read-value 
rule (RV1) does not apply to UL1. If RVq(SR2)→R(UL1), read-value rule (RV2) will imply 
RdVal(LA1)=WrVal(SR2), which is not the case. Thus, R(UL1)→RVq(SR2)

• Consider R(LA2). Because s does not write to y, LA2 is not local for y and read-value 
rule (RV1) does not apply to LA2. If R(LA2)→RVs(SR2), read-value rule (RV3) will imply 
RdVal(LA2)=0, which is not the case. Thus, RVs(SR2)→R(LA2). If R(LA2)→RVq(SR2), we have 
RVs(SR2)→R(LA2)→RVq(SR2), contradicting the remote atomicity of WB store-
releases (WBR). Thus, RVq(SR2)→R(LA2).

• Consider R(UL2). By program-order rule (ACQ), R(LA2)→R(UL2).

• Consider RdVal(UL2). Because s does not write to x, UL2 is not local for x and read-value 
rule (RV1) cannot apply. From the items above, we have the following requirement on →:

— RVs(SR1)→R(LA1)→R(UL1)→RVq(SR2)→R(LA2)→R(UL2).

Because → is transitive, RVs(SR1)→R(UL2). Finally, since Rng(SR1)=Rng(UL2), read-value 
rule (RV2) must apply to UL2. Since SR1 is the only write to x, (RV2) implies 
RdVal(UL2)=WrVal(SR1)=1. This contradicts the assumption RdVal(UL2)=0, and we conclude that 
the execution is not allowed in the Itanium architecture.

A.9 Obeying Causality

Table 13 shows how WB release atomicity can be important even in executions with only one 
store-release. It shows an execution in which the Itanium processor family memory ordering model 
must respect causality. This section applies only to WB memory.

This execution has the following program order relations: LA1»US and LA2»UL. In addition, 
WrVal(SR)=1 and WrVal(US)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering 
model does not allow the return values of r1=1, r2=1, and r3=0. That is, it does not allow the 
following: RdVal(LA1)=1; RdVal(LA2)=1; and RdVal(UL)=0.

Table 13. Itanium® Processor Family Memory Ordering Obeys Causality

p q r

SR: st.rel [x] = 1 LA1: ld.acq r1 = [x] LA2: ld.acq r2 = [y]

US: st [y] = 1 UL: ld r3 = [x]
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Assume that the execution with the indicated read values is allowed by the Itanium processor 
family memory ordering model. The rules given in Section 3.3 imply the following orderings:

• Consider RVq(SR) and R(LA1). Because q does not write to x, LA1 is not local for x and read-
value rule (RV1) does not apply. Because RdVal(LA1)=1≠InitVal(x), read-value rule (RV3) 
does not apply. This means that LA1 must follow the remote visibility (to q) of some write to x. 
The only choice is SR, so RVq(SR)→R(LA1).

• Consider RVr(SR). If R(LA1)→RVr(SR), we have RVq(SR)→R(LA1)→RVr(SR), which 
contradicts WB store-release atomicity (WBR). Thus, RVr(SR)→R(LA1).

• Consider RVr(US). Since LA1»US, program-order rule (ACQ) implies R(LA1)→RVr(US).

• Consider R(LA2). Because r does not write to y, LA2 is not local for y and read-value 
rule (RV1) does not apply. Because RdVal(LA2)=1≠InitVal(y), read-value rule (RV3) does not 
apply. This means that LA2 must follow the remote visibility (to r) of some write to y. The only 
choice is US, so RVr(US)→R(LA2).

• Consider R(UL). Because LA2»UL, program-order rule (ACQ) implies R(LA2)→R(UL).

• Consider RdVal(UL). Because r does not write to x, UL is not local for x and read-value 
rule (RV1) cannot apply. From the items above, we have the following:

— RVr(SR)→R(LA1)→LV(US)→RVr(US)→R(LA2)→R(UL).

Because → is transitive, RVr(SR)→R(UL). Finally, since Rng(SR)=Rng(UL), read-value rule (RV2) 
must apply to UL. Since SR is the only write to x, (RV2) implies RdVal(UL)=WrVal(SR)=1. This 
contradicts the assumption RdVal(UL)=0, and we conclude that the execution is not allowed by the 
Itanium architecture.
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Appendix B  Additional Examples

This appendix presents a number of other sample executions that highlight certain features of the 
Itanium processor family memory ordering model.

As in Appendix A, all instructions in the examples are assumed to be properly aligned. The 
examples that indicate allowed behaviors apply to all memory attributes. The examples that 
indicate disallowed behaviors apply to all memory attributes unless noted otherwise. It is assumed 
that all separately named memory locations (x, y, etc.) are disjoint in memory unless otherwise 
noted.

B.1 Store Buffers May Satisfy Local Loads: A Variant

Table 14 is another example of local loads being satisfied from store buffers. It is given here 
because it is this example that causes Peterson’s algorithm for mutual exclusion to fail on Itanium 
architecture-based platforms.

.

This execution has the following program order relations: SR1»SR3»LA1»UL1 and 
SR2»SR4»LA2»UL2. In addition, WrVal(SR1)=WrVal(SR2)=WrVal(SR3)=1 and WrVal(SR4)=2. There 
are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=InitVal(z)=0, the Itanium processor family memory 
ordering model allows the return values of r1=1, r2=2, and r3=r4=0. That is, it allows 
RdVal(LA1)=1, RdVal(LA2)=2, and RdVal(UL1)=RdVal(UL2)=0.

The indicated read values are supported by the following visibility order:

• LV(SR1)→LV(SR2)→LV(SR3)→LV(SR4)→R(LA1)→R(LA2)→R(UL1)→R(UL2)→RVp(SR1)
→RVq(SR1)→RVq(SR2)→RVp(SR2)→RVp(SR3)→RVq(SR3)→RVq(SR4)→RVp(SR4).

B.2 Ordered Cacheable Operations Seen in Same Order: A 
Variant

Table 15 gives an example similar to that given in Appendix A.8. In this case, however, there is no 
write operation that is observed by more than one processor. Like that section, this one applies only 
to WB memory.

Table 14. Store Buffers May Satisfy Local Loads: A Variant

p q

SR1: st.rel [x] = 1 SR2: st.rel [y] = 1

SR3: st.rel [z] = 1 SR4: st.rel [z] = 2

LA1: ld.acq r1 = [z] LA2: ld.acq r2 = [z]

UL1: ld r3 = [y] UL2: ld r4 = [x]

Table 15. Ordered Cacheable Operations Seen in Same Order: A Variant

p q r s

US1: st [w] = 1 LA1: ld.acq r1 = [x] US2: st [y] = 1 LA2: ld.acq r3 = [z]

SR1: st.rel [x] = 1 UL1: ld r2 = [y] SR2: st.rel [z] = 1 UL2: ld r4 = [w]
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This execution has the following program order relations: US1»SR1, LA1»UL1, US2»SR2, and 
LA2»UL2. In addition, WrVal(US1)=WrVal(SR1)=WrVal(US2)=WrVal(SR2)=1. There are no data-
flow relations.

We wish to prove that, if InitVal(w)=InitVal(x)=InitVal(y)=InitVal(z)=0, the Itanium processor 
family memory ordering model does not allow the return values of r1=r3=1 and r2=r4=0. That is, it 
does not allow RdVal(LA1)=RdVal(LA2)=1 and RdVal(UL1)=RdVal(UL2)=0.

Assume that the execution with the indicated read values is allowed by the Itanium processor 
family memory ordering model. The rules given in Section 3.3 imply the following orderings:

• Consider RVs(US1) and RVs(SR1). Because US1»SR1, program-order rule (REL) implies 
RVs(US1)→RVs(SR1).

• Consider RVq(SR1). If RVq(SR1)→RVs(US1), we have RVq(SR1)→RVs(US1)→RVs(SR1), which 
contradicts WB store-release atomicity (WBR). Thus, RVs(US1)→RVq(SR1).

• Consider R(LA1). Because q does not write to x, LA1 is not local for x and read-value 
rule (RV1) does not apply to LA1. If R(LA1)→RVq(SR1), read-value rule (RV3) will imply 
RdVal(LA1)=0, which is not the case. Thus, RVq(SR1)→R(LA1).

• Consider R(UL1). By program-order rule (ACQ), R(LA1)→R(UL1).

• Consider RVq(US2). Because q does not write to y, UL1 is not local for x and read-value 
rule (RV1) does not apply to UL1. If RVq(US2)→R(UL1), read-value rule (RV2) will imply 
RdVal(LA1)=WrVal(US2), which is not the case. Thus, R(UL1)→RVq(US2).

• Consider RVq(SR2). Because US2»SR2, program-order rule (REL) implies 
RVq(US2)→RVq(SR2).

• Consider RVs(SR2). If RVs(SR2)→RVq(US2), we have RVs(SR2)→RVq(US2)→RVq(SR2), which 
contradicts WB store-release atomicity (WBR). Thus, RVq(US2)→RVs(SR2).

• Consider R(LA2). Because s does not write to y, LA2 is not local for y and read-value 
rule (RV1) does not apply to LA2. If R(LA2)→RVs(SR2), read-value rule (RV3) will imply 
RdVal(LA2)=0, which is not the case. Thus, RVs(SR2)→R(LA2).

• Consider R(UL2). By program-order rule (ACQ), R(LA2)→R(UL2).

• Consider RdVal(UL2). Because s does not write to x, UL2 is not local for x and read-value 
rule (RV1) cannot apply. From the items above, we have the following requirement on →:

— RVs(US1)→RVq(SR1)→R(LA1)→R(UL1)→RVq(US2)→RVq(SR2)→R(LA2)→R(UL2).

Because → is transitive, RVs(US1)→R(UL2). Finally, since Rng(US1)=Rng(UL2), read-value 
rule (RV2) must apply to UL2. Since US1 is the only write to w, (RV2) implies 
RdVal(UL2)=WrVal(SR1)=1. This contradicts the assumption RdVal(UL2)=0, and we conclude that 
the execution is not allowed in the Itanium architecture.

B.3 Using Memory Fences to Control Disjoint Accesses to a 
Location

This section gives an example in which there are writes to disjoint parts of a single memory 
location. It shows how memory fences can be used to control the order in which these writes are 
observed (see Table 16 and Table 17).
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In this execution, b0 and b1 are two bytes that together compose word w. The execution has the 
following program order relations: US1»MF1»UL1 and US2»MF2»UL2. In addition, WrVal(US1)=0x11 
and WrVal(US2)=0x22. There are no data-flow relations.

We wish to prove that, if InitVal(b0)=InitVal(b1)=0x00 (i.e., InitVal(w)=0x0000), the Itanium 
architecture does not allow the return values of r1=0x0011 and r2=0x2200. That is, it does not 
allow RdVal(UL1)=0x0011 and RdVal(UL2)=0x2200.

Assume that the execution with the indicated read values is allowed by the Itanium architecture. 
The rules given in Section 3.3 imply the following orderings:

• Consider RVq(US1) and F(MF1). Because US1»MF1, program-order rule (REL) implies 
RVq(US1)→F(MF1).

• Consider R(UL1). Because MF1»UL1, program-order rule (REL) implies F(MF1)→R(UL1).

• Consider RVp(US2). Because p does not write to b1, UL1 is not local for b1 and read-value 
rule (RV1) does not apply to UL1 (with regard to the value it returns for b1). If 
RVp(US2)→R(LA1), read-value rule (RV2) would imply that UL1 returns 0x22 for b1, which it 
does not (RdVal(UL1)=0x0011). Thus, R(UL1)→RVp(US2).

• Consider F(MF2). By program-order rule (REL), RVp(US2)→F(MF2).

• Consider R(UL2). Because MF2»UL2, program-order rule (REL) implies F(MF2)→R(UL2).

• Consider the value UL2 returns for b0. Because q does not write to b0, UL2 is not local for b0 
and read-value rule (RV1) cannot apply. From the items above, we have the following 
requirement on →:

— RVq(US1)→F(MF1)→R(UL1)→RVp(US2)→F(MF2)→R(UL2).

Because → is transitive, RVq(US1)→R(UL2). Finally, since b0∈ Rng(US1)∩Rng(UL2), read-value 
rule (RV2) must apply to UL2. Since US1 is the only write to b0, (RV2) implies that UL2 returns for 
b0 the value written by US1, which is 0x11. This contradicts the assumption RdVal(UL2)=0x2200, 
and we conclude that the execution is not allowed in the Itanium architecture.

The execution in Table 17 shows that both memory fences are required to prevent the undesired 
results in the previous return values.

This execution has the following program order relations: SR1»MF1»UL1 and SR2»UL2. As before, 
WrVal(SR1)=0x11 and WrVal(SR2)=0x22 and there are no data-flow relations.

Table 16. Using Memory Fences to Control Disjoint Accesses to a Location

p q

US1: st1 [b0] = 0x11 US2: st1 [b1] = 0x22

MF1: mf MF2: mf

UL1: ld2 r1 = [w] UL2: ld2 r2 = [w]

Table 17. Two Memory Fences are Necessary to Control Disjoint Accesses to a Location

p q

SR1: st.rel [b0] = 0x11 SR2: st.rel [b1] = 0x22

MF1: mf

UL1: ld r1 = [w] UL2: ld r2 = [w]
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In this case, it is possible, if InitVal(b0)=InitVal(b1)=0x00, to have RdVal(UL1)=0x0011 and 
RdVal(UL2)=0x2200. In particular, this is allowed by the following visibility order:

• LV(SR2)→R(UL2)→LV(SR1)→RVp(SR1)→RVq(SR1)→F(MF1)→R(UL1)→RVq(SR2)
→RVp(SR2).

For UL1 to return the required value, it must appear before RVp(SR2) and, because of WB release 
atomicity (WBR), RVq(SR2). Because of MF1, it must appear after RVq(SR1). For UL2 to return the 
required value, it must appear after LV(SR2) and before RVq(SR1). This means that it must also 
appear before RVp(SR2) and RVq(SR2). Because there is no memory fence at q, UL2 may pass the 
remotely visible operations of access SR2.

B.4 The Global Nature of Memory Fences

This section gives an example that illustrates the global nature of memory fences in that their 
presence can indirectly place restrictions on the visibility of WB store-releases by other processors 
(see Table 18 and Table 19). This section applies only to WB memory.

This execution has the following program order relations: US»MF»UL1 and LA»UL2. In addition, 
WrVal(US)=WrVal(SR)=1. There are no data-flow relations.

We wish to prove that, if InitVal(x)=InitVal(y)=0, the Itanium architecture does not allow the return 
values of r1=r3=0 and r2=1. That is, it does not allow RdVal(UL1)=RdVal(UL2)=0 and 
RdVal(LA)=1.

Assume that the execution with the indicated read values is allowed by the Itanium processor 
family memory ordering model. The rules given in Section 3.3 imply the following orderings:

• Consider RVr(US) and F(MF). Because US»MF, program-order rule (REL) implies 
RVr(US)→F(MF).

• Consider R(UL1). Because MF»UL1, program-order rule (REL) implies F(MF)→R(UL1).

• Consider RVp(SR). Because p does not write to y, UL1 is not local for y and read-value 
rule (RV1) does not apply to UL1. If RVp(SR)→R(UL1), read-value rule (RV2) would imply that 
RdVal(UL1)=WrVal(SR)=1, which is not true. Thus, R(UL1)→RVp(SR).

• Consider RVr(SR). If RVr(SR)→R(UL1), RVr(SR)→UL1→RVp(SR), violating WB release 
atomicity (WBR). Thus, R(UL1)→RVr(SR).

• Consider R(LA). Because r does not write to y, LA is not local for x and read-value rule (RV1) 
does not apply to LA. If R(LA)→RVr(SR), read-value rule (RV3) and the fact that there is no 
other write to x would imply that RdVal(LA)=InitVal(x)=0, which is not true. Thus, 
RVr(SR)→R(LA).

• Consider R(UL2). Because LA»UL2, program-order rule (ACQ) implies R(LA)→R(UL2).

• Consider RdVal(UL2). Because r does not write to y, UL2 is not local for y and read-value 
rule (RV1) cannot apply. From the items above, we have the following requirement on →:

— RVr(US)→F(MF)→R(UL1)→RVr(SR)→R(LA)→R(UL2).

Table 18. The Global Nature of Memory Fences

p q r

US: st [x] = 1 SR: st.rel [y] = 1 LA: ld.acq r2 = [y]

MF: mf UL2: ld r3 = [x]

UL1: ld r1 = [y]
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Because → is transitive, RVr(US1)→R(UL2). Because Rng(US)=Rng(UL2), read-value rule (RV2) 
applies to UL2. Since US is the only write to y, (RV2) implies that RdVal(UL2)=WrVal(US)=1. This 
contradicts the assumption RdVal(UL2)=0, and we conclude that the execution is not allowed in the 
Itanium architecture.

The execution in Table 19 is a modification of the one given in Table 17. It changes only which 
store is unordered and which is a store-release. With the changed labeling, the return values given 
above are now allowed.

This execution has the following program order relations: SR»MF»UL1 and LA»UL2. In addition, 
WrVal(SR)=WrVal(US)=1. There are no data-flow relations.

In this case, if InitVal(x)=InitVal(y)=0, the Itanium processor family memory ordering model 
allows the return values of r1=r3=0 and r2=1. That is, it allows RdVal(UL1)=RdVal(UL2)=0 and 
RdVal(LA)=1. In particular, this is allowed by the following visibility order:

• LV(US)→RVq(US)→RVr(US)→R(LA)→R(UL2)→LV(SR)→RVp(SR)→RVq(SR)→RVr(SR)
→F(MF)→R(UL1)→RVp(US).

Because q’s store is unordered, it can become visible at p long after it becomes visible at r; the 
memory fence at p has little effect in this case.

B.5 Supposedly “Flickering” Writes

This section gives an example in which there are writes to different parts of a multi-byte memory 
location (see Table 20). It shows that, while the order of writes to each byte is unique by coherence, 
processors may not perceive a common order even of overlapping writes.

In this execution, the address x is accessed by both 1-byte and 2-byte instructions. In what follows, 
we use x to refer to the byte addressed by address x and y to refer to the other byte accessed by the 
two-byte instructions. The execution has the following program order relations: UL1»SR1»LA1»UL2 
and UL3»SR2»LA2»UL4. In addition, WrVal(SR1)=0xFFFF and WrVal(SR2)=0x77. There are no data-
flow relations.

We wish to prove that, if InitVal(x)=0x0000, the Itanium processor family memory ordering model 
allows the return values of r1=r4=0x0000, r2=0xFFFF, r5=0x0077, and r3=r6=0xFF77. That is, it 
allows RdVal(UL1)=RdVal(UL3)=0x0000, RdVal(LA1)=0xFFFF, RdVal(LA2)=0x0077 and 
RdVal(UL2)=RdVal(UL4)=0xFF77.

Table 19. Limitations on the Global Nature of Memory Fences

p q r

SR: st.rel [x] = 1 US: st [y] = 1 LA: ld.acq r2 = [y]

MF: mf UL2: ld r3 = [x]

UL1: ld r1 = [y]

Table 20. Supposedly “Flickering” Writes

p q

UL1: ld2 r1 = [x] UL3: ld2 r4 = [x]

SR1: st2.rel [x] = 0xFFFF SR2: st1.rel [x] = 0x77

LA1: ld2.acq r2 = [x] LA2: ld2.acq r5 = [x]

UL2: ld2 r3 = [x] UL4: ld2 r6 = [x]
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These return values are of interest for the following reason. Clearly, the final (2-byte) value of x is 
0xFF77. Processor q sees first 0x0000, 0x0077, and finally 0xFF77. To q, it seems that its store (of 
0x77) takes place first (as evidenced by the return value 0x0077) but later it appears that its store 
took place second (as evidenced by 0xFF77). The store by q appears to “flicker”, taking place 
twice.

In reality, there is nothing truly anomalous about these return values. The fact that they are allowed 
follows from local bypassing at both processors. In particular, they are allowed by the following 
visibility order:

• R(UL1)→R(UL3)→LV(SR1)→LV(SR2)→R(LA1)→R(LA2)→RVp(SR1)→RVq(SR1)
→RVq(SR2)→RVp(SR2)→R(UL2)→R(UL4).

We consider the value returned by each load operation:

• RdVal(UL1), RdVal(UL3). Clearly, neither (RV1) nor (RV2) apply to these unordered loads as 
they precede all writes. By (RV3), they each return the initial values of x and y, which are both 
0, so RdVal(UL1)=RdVal(UL3)=0x0000, as desired.

• RdVal(LA1). Since Rng(LA1)=Rng(SR1)={x,y}, LV(SR1)→R(LA1)→RVp(SR1), and 
Proc(LA1)=Proc(SR1), LA1 is local for both x and y. Thus, by read-value rule (RV1), 
RdVal(LA1)=WrVal(SR1)=0xFFFF, as desired.

• RdVal(LA2). For LA2, the values returned for x and y must be considered separately:

— x. Since Rng(LA2)∩Rng(SR2)={x}, LV(SR2)→R(LA2)→RVp(SR2), and 
Proc(LA2)=Proc(SR2), LA2 is local for x. Thus, by read-value rule (RV1), LA2 returns 
WrVal(SR2)=0x77 for x.

— y. Since y∉ Rng(SR2), neither (RV1) nor (RV2) apply to y. By (RV3), LA2 returns 
InitVal(y)=0x00 for y.

Thus, RdVal(LA2)=0x0077, as desired.

• RdVal(UL2), RdVal(UL4). Clearly, (RV1) applies to these unordered loads as they are not local 
for any byte. Moreover, (RV2) applies to each read for each byte read as follows:

— x. Each read sees SR2 to be the most recent write to x and thus returns 0x0077 for x.

— y. Each read sees SR1 to be the most recent write to y and thus returns 0xFF for y.

Thus, RdVal(UL2)=RdVal(UL4)=0xFF77, as desired.
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Appendix C  Glossary

The following is a list of some of the technical terms used in this document.

Bypassing (or Local Bypassing) A feature of some memory ordering models by which write (or 
store) operations by a processor appear to become visible to that 
processor before others.

Coherence Domain A collection of processors and memory for which the hardware 
ensures that all members of the domain observe changes in 
memory values. Identifications of the collections comprising 
coherence domains are platform specific.

Linear (Total) Order A binary relation on a set that is irreflexive, transitive, and that 
relates any two elements in the set.

Memory Ordering Model A collection of multiprocessor executions corresponding to a 
particular platform architecture.

Memory Ordering Specification The definition of a memory ordering model, typically given by 
a set of rules that must hold for any execution in the model.

Peripheral Domain For memory addresses that control memory-mapped I/O, a 
peripheral domain is a platform-specific subset of the 
platform’s I/O subsystem that all observes memory accesses in 
a common order. Two UC addresses that map to system 
memory (instead of memory-mapped I/O) are considered to be 
in the same peripheral domain if they are in the same coherence 
domain.

Program Order The per-processor order (usually, but not always, linear) that 
reflects the order of memory accesses in the program being 
executed.

Visibility Order A linear order of operations in a system execution that 
corresponds to the order in which the operations become visible 
to the processors.
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