

DP Optimized Intel[®] Itanium[®] 2 Processor Datasheet

Intel® Itanium® 2 Processor 1.40 GHz with 1.5MB L3 Cache
Intel® Itanium® 2 Processor 1.40 GHz with 3MB L3 Cache
Intel® Itanium® 2 Processor 1.60 GHz with 3MB L3 Cache at 400 and 533 MHz
System Bus
Low Voltage Intel® Itanium® 2 Processor
Low Voltage Intel® Itanium® 2 Processor 1.30 GHz with 3MB L3 Cache

Datasheet

November 2004

Document Number: 253795-004

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELL FCTUAL PROPERTY RIGHT

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium 2 processors may contain design defects or errors known as errata which, may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2004, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others.

I2C is a two-wire communication bus /protocol developed by Phillips. SMBus is a subset of the I2C bus/protocol developed by Intel. Implementation of the I2C bus/protocol or the SMBus bus/protocol may require licenses from various entities, including Phillips Electronics, N.V. and North American Phillips Corporation.

1	Introd	luction	11
	1.1 1.2	Overview Processor Abstraction Layer	11
	1.3	Mixing Processors of Different Frequencies and Cache Sizes	
	1.4 1.5	TerminologyState of Data	
	1.5 1.6	Reference Documents	
•			
2		rical Specifications	
	2.1	Itanium® 2 Processor System Bus	
		2.1.1 System Bus Power Pins	
	2.2	2.1.2 System Bus No Connect	
	2.2	System Bus Signals	
		Signal Groups 2.2.2 Signal Descriptions	
	2.3	Package Specifications	
	2.4	Signal Specifications	
		2.4.1 DC Specifications	
		2.4.2 AC Specifications for Clock and System Management Bus	
		2.4.3 Maximum Ratings	
	2.5	System Bus Signal Quality Specifications and Measurement Guidelines	22
		2.5.1 Overshoot/Undershoot Guidelines	22
		2.5.2 Overshoot/Undershoot Magnitude	22
		2.5.3 Overshoot/Undershoot Pulse Duration	
		2.5.4 Activity Factor	
		2.5.5 Reading Overshoot/Undershoot Specification Tables	24
		2.5.6 Determining if a System Meets the Overshoot/	0.4
		Undershoot Specifications	
	2.6	2.5.7 Wired-OR SignalsPower Pod Connector Signals	
	2.6	Itanium® 2 Processor System Bus Clock and Processor Clocking	
	2.8	Recommended Connections for Unused Pins	
•			
3	Pinou	t Specifications	35
4	Mech	anical Specifications	67
	4.1	Mechanical Dimensions	67
	4.2	Package Marking	
		4.2.1 Processor Top-Side Marking	
		4.2.2 Processor Bottom-Side Marking	70
5	Thern	nal Specifications	73
	5.1	Thermal Features	73
		5.1.1 Thermal Alert	
		5.1.2 Enhanced Thermal Management	74
		5.1.3 Thermal Trip	74
	5.2	Case Temperature	74

6	Syste	m Manag	ement Feature Specifications	/ /
	6.1	Systen	n Management Bus	77
		6.1.1	System Management Bus Interface	
		6.1.2	System Management Interface Signals	
		6.1.3	SMBus Device Addressing	
	6.2	Proces	ssor Information ROM	
	6.3	Scratcl	h EEPROM	83
	6.4		ssor Information ROM and Scratch EEPROM Supported s Transactions	83
	6.5		al Sensing Device	
	6.6		al Sensing Device Supported SMBus Transactions	
	6.7		al Sensing Device Registers	
	0	6.7.1	Thermal Reference Registers	
		6.7.2	Thermal Limit Registers	
		6.7.3	Status Register	
		6.7.4	Configuration Register	
		6.7.5	Conversion Rate Register	
	0:		· ·	
A	_		nce	
	A.1	•	petical Signals Reference	
		A.1.1	A[49:3]# (I/O)	
		A.1.2	A20M# (I)	
		A.1.3	ADS# (I/O)	
		A.1.4	AP[1:0]# (I/O)	
		A.1.5	ASZ[1:0]# (I/O)	
		A.1.6	ATTR[3:0]# (I/O)	
		A.1.7	BCLKp/BCLKn (I)	
		A.1.8	BE[7:0]# (I/O)	
		A.1.9	BERR# (I/O)	
			BINIT# (I/O)	
			BNR# (I/O)	
			BPM[5:0]# (I/O)	
			BPRI# (I)	
			BR[0]# (I/O) and BR[3:1]# (I)	
			BREQ[3:0]# (I/O)	
			CCL# (I/O)	
			CPUPRES# (O)	
			D[127:0]# (I/O)	
			D/C# (I/O)	
			DBSY# (I/O)	
			DBSY_C1# (O)	
			DBSY_C2# (O)	
			DEFER# (I)	
			DEN# (I/O)	
			DEP[15:0]# (I/O)	
			DHIT# (I)	
			DPS# (I/O)	
			DRDY# (I/O)	
			DRDY_C1# (O)	
			DSZ[1:0]# (I/O)	
		A. I.O.I		

int_{el®}

		A.1.32 EXF[4:0]# (I/O)	
		A.1.33 FCL# (I/O)	.96
		A.1.34 FERR# (O)	. 97
		A.1.35 GSEQ# (I)	
		A.1.36 HIT# (I/O) and HITM# (I/O)	
		A.1.37 ID[9:0]# (I)	
		A.1.38 IDS# (I)	
		A.1.39 IGNNE# (I)	
		A.1.40 INIT# (I)	
		A.1.41 INT (I)	
		A.1.42 IP[1:0]# (I)	
		A.1.43 LEN[2:0]# (I/O)	
		A.1.44 LINT[1:0] (I)	
		A.1.45 LOCK# (I/O)	
		A.1.46 NMI (I)	
		A.1.47 OWN# (I/O)	
		A.1.48 PMI# (I)	
		A.1.49 PWRGOOD (I)	
		A.1.50 REQ[5:0]# (I/O)	
		A.1.51 RESET# (I)	
		A.1.52 RP# (I/O)	
		A.1.53 RS[2:0]# (I)	
		A.1.54 RSP# (I)	
		A.1.55 SBSY# (I/O)	
		A.1.56 SBSY_C1# (O)	
		A.1.57 SBSY_C2# (O)	
		A.1.58 SPLCK# (I/O)	
		A.1.59 STBn[7:0]# and STBp[7:0]# (I/O)	
		A.1.61 TDI (I)	
		A.1.62 TDO (O)	
		A.1.64 THRMALERT# (O)	
		A.1.65 TMS (I)	
		A.1.66 TND# (I/O)	
		A.1.67 TRDY# (I)	
		A.1.68 TRST# (I)	
		A.1.69 WSNP# (I/O)	
	A.2	Signal Summaries	
Figures			
	2-1	Generic Clock Waveform	
	2-2	SMSC Clock Waveform	
	2-3	System Bus Signal Waveform Exhibiting Overshoot/Undershoot	
	2-4	Itanium [®] 2 Processor Power Tab Physical Layout	
	2-5	Processor Full, Normal and Low Power Mode with Timings	
	2-6	System Bus Reset and Configuration Timings for Cold Reset	
	2-7	System Bus Reset and Configuration Timings for Warm Reset	. 33
	3-1	Itanium® 2 Processor Pinout	.35
	4-1	Itanium [®] 2 Processor Package	.67

4-2	Itanium® 2 Processor Package	
4-3	Itanium [®] 2 Processor Package Power Tab	
4-4	Processor Top-Side Marking on IHS	
4-5	Processor Bottom-Side Marking Placement on Interposer	
5-1	Itanium® 2 Processor Thermal Features	
5-2	Itanium [®] 2 Processor Package Thermocouple Location	
6-1	Logical Schematic of SMBus Circuitry	78
2-1	Itanium® 2 Processor System Bus Signal Groups	
2-2	Itanium® 2 Processor Package Specifications	
2-3	Itanium® 2 Processor Power Supply Specifications	
2-4	AGTL+ Signals DC Specifications	18
2-6	System Bus Clock Differential HSTL DC Specifications	
2-7	TAP Connection DC Specifications	
2-8	SMBus DC Specifications	
2-5	Power Good Signal DC Specifications	
2-9	LVTTL Signal DC Specifications	20
2-10	System Bus Clock Differential HSTL AC Specifications	20
2-11	SMBus AC Specifications	
2-12	Itanium® 2 Processor Absolute Maximum Ratings	22
2-13	Source Synchronous AGTL+ Signal Group and Wired-OR Signal Group	0.5
0.44	Absolute Overshoot/Undershoot Tolerance	25
2-14	Itanium [®] 2 Processors (1.40 GHz, Low Voltage 1.0 GHz) Source Synchronous AGTL+ Signal Group Time Dependent Overshoot/	
	Undershoot Tolerance	25
2-15	Itanium [®] 2 Processors (1.60 GHz, Low Voltage 1.30 GHz) Source	∠ 、
2-10	Synchronous AGTL+ Signal Group Time-Dependent Overshoot/	
	Undershoot Tolerance for 400 MHz System Bus	25
2-16	Itanium® 2 Processors (1.60 GHz) Source Synchronous AGTL+ Signal	
	Group Time-Dependent Overshoot/Undershoot Tolerance for	
	533 MHz System Bus	26
2-18	Itanium [®] 2 Processors (1.60 GHz, Low Voltage 1.30 GHz) Wired-OR	
	Signal Group (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#) Overshoot/	
	Undershoot Tolerance for 400 MHz System Bus	27
2-19	Itanium [®] 2 Processors (1.60 GHz) Wired-OR Signal Group (BINIT#, HIT#,	
	HITM#, BNR#, TND#, BERR#) Overshoot/Undershoot Tolerance for	0-
0.47	533 MHz System Bus	21
2-17	Itanium® 2 Processors (1.40 GHz, Low Voltage 1.0 GHz) Wired-OR	
	Signal Group (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#) Overshoot /Undershoot Tolerance	27
2-20	Itanium® 2 Processor Power Pod Connector Signals	21
2-20	Processor Core Voltage Identification Code	
2-22	Processor Power States	
2-23	Itanium® 2 Processor System Bus Ratios	
2-24	Connection for Unused Pins	
3-1	Pin/Signal Information Sorted by Pin Name	
3-1	Pin/Signal Information Sorted by Pin Location	
5-1	Case Temperature Specification	
6-1	System Management Interface Signal Descriptions	
6-2	Thermal Sensing Device SMBus Addressing on the Itanium [®] 2 Processor	

Tables

intel_®

6-3	EEPROM SMBus Addressing on the Itanium 2 Processor	80
6-4	Processor Information ROM Format	80
6-5	Current Address Read SMBus Packet	84
6-6	Random Address Read SMBus Packet	84
6-7	Byte Write SMBus Packet	84
6-8	Write Byte SMBus Packet	85
6-9	Read Byte SMBus Packet	85
6-10	Send Byte SMBus Packet	85
6-11	Receive Byte SMBus Packet	85
6-12	ARA SMBus Packet	86
6-13	Command Byte Bit Assignment	86
6-14	Thermal Sensing Device Status Register	87
6-15	Thermal Sensing Device Configuration Register	
6-16	Thermal Sensing Device Conversion Rate Register	88
A-1	Address Space Size	90
A-2	Effective Memory Type Signal Encoding	90
A-3	Special Transaction Encoding on Byte Enables	91
A-4	BR0# (I/O), BR1#, BR2#, BR3# Signals for 2P Rotating Interconnect	93
A-5	BR[3:0]# Signals and Agent IDs	93
A-6	DID[9:0]# Encoding	95
A-7	Extended Function Signals	96
A-8	Length of Data Transfers	98
A-9	Transaction Types Defined by REQa#/REQb# Signals	100
A-10	STBp[7:0]# and STBn[7:0]# Associations	102
A-11	Output Signals	103
A-12	Input Signals	104
A-13	Input/Output Signals (Single Driver)	
A-14	Input/Output Signals (Multiple Driver)	105

Revision History

Version Number	Description	Date
-004	Updated to include Low Voltage Itanium [®] 2 Processor at 1.30 GHz with 3MB L3 Cache and Itanium 2 Processor at 1.60 GHz with 3MB L3 Cache at 533 MHz system bus.	November 2004
-003	Updated to include Itanium 2 Processor at 1.60 GHz with 3MB L3 Cache.	May 2004
-002	Updated to include Itanium 2 Processor at 1.40 GHz with 3MB L3 Cache. Update Processor PWRGOOD Spec.	April 2004
-001	Initial release of this document.	September 2003

DP Optimized Intel[®] Itanium[®] 2 Processor

Intel® Itanium® 2 Processor 1.40 GHz with 1.5MB L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 3MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 3MB L3 Cache at 400 and 533 MHz System Bus

Low Voltage Intel® Itanium® 2 Processor

Low Voltage Intel® Itanium® 2 Processor 1.30 GHz with 3MB L3 Cache

Product Features

- Optimized for dual processor-based platforms and clusters:
 - Low Voltage Intel[®] Itanium[®] 2 processor features lower power consumption for higher density form factors.
- Wide, parallel hardware based on Itanium architecture for high performance:
 - Integrated on-die cache of 3MB; cache hints for L1, L2, and L3 caches for reduced memory latency.
 - 128 general and 128 floating-point registers supporting register rotation.
 - Register stack engine for effective management of processor resources.
 - Support for predication and speculation.
- Features to support flexible platform environments:
 - Support for IA-32 application binaries.
 - Bi-endian support.
 - Processor Abstraction Layer eliminates processor dependencies.

- Extensive RAS features for business-critical applications:
 - Full SMBus compatibility.
 - Enhanced machine check architecture with extensive ECC and parity protection.
 - Enhanced thermal management.
 - Built-in processor information ROM (PIROM).
 - Built-in programmable EEPROM.
- High bandwidth system bus for multiprocessor scalability:
 - 6.4 GB/s bandwidth.
 - 128-bit wide data bus.
 - 400 MHz and 533 data bus frequency.
 - 50-bits of physical memory addressing and 64bits of virtual addressing.

The Intel[®] Itanium[®] 2 processor 1.60 GHz with 3MB L3 cache and the Low Voltage Intel[®] Itanium[®] 2 processor extend the Itanium processor family to complement MP-capable Itanium 2 processors and enable lower cost, lower power dual processor (DP) systems used in front end enterprise applications or technical computing. Platforms based on the Itanium 2 processor family are designed for the most demanding enterprise and technical computing applications providing competitive advantages when compared to RISC-based systems. The Itanium 2 processor 1.60 GHz with 3MB L3 cache is ideal for high-performance computing and compute intensive custom applications where best price/performance is a key factor, and is also recommended for front end enterprise environments. The Low Voltage Itanium 2 processor enables higher density and lower cost systems and is ideal for extending Itanium architecture to network edge, security applications, and software engineering. SMBus compatibility and comprehensive reliability, availability and serviceability (RAS) features make the DP optimized Itanium 2 processors offer outstanding performance and reliability for today's applications and the scalability to address the growing e-business needs of tomorrow.

1 Introduction

1.1 Overview

The Itanium 2 processor employs Explicitly Parallel Instruction Computing (EPIC) design concepts for a tighter coupling between hardware and software. In this design style, the interface between hardware and software is designed to enable the software to exploit all available compile-time information, and efficiently deliver this information to the hardware. It addresses several fundamental performance bottlenecks in modern computers, such as memory latency, memory address disambiguation, and control flow dependencies. The EPIC constructs provide powerful architectural semantics, and enable the software to make global optimizations across a large scheduling scope, thereby exposing available Instruction Level Parallelism (ILP) to the hardware. The hardware takes advantage of this enhanced ILP, and provides abundant execution resources. Additionally, it focuses on dynamic run-time optimizations to enable the compiled code schedule to flow at high throughput. This strategy increases the synergy between hardware and software, and leads to greater overall performance.

The Itanium 2 processor provides a 6-wide and 8-stage deep pipeline, running at up to 1.60 GHz. This provides a combination of abundant resources to exploit ILP as well as increased frequency for minimizing the latency of each instruction. The resources consist of six integer units, six multimedia units, two load and two store units, three branch units, two extended-precision floating point units, and one additional single-precision floating point unit. The hardware employs dynamic prefetch, branch prediction, a register scoreboard, and non-blocking caches to optimize for compile-time non-determinism. Three levels of on-die cache minimize overall memory latency. This includes up to a 3MB L3 cache, accessed at core speed, providing up to 51.2 GB/sec of data bandwidth. The system bus is designed to support up to two processors (on a single system bus), and can be used as an effective building block for very large systems. The balanced core and memory subsystem provide high performance for a wide range of applications ranging from commercial workloads to high performance technical computing.

The Itanium 2 processor has a high performance package that is able to meet the requirements of high-end and mid-range servers and workstations. This document provides the electrical, mechanical and thermal specifications for the Itanium 2 processor for use while using systems with Itanium 2 processors.

1.2 Processor Abstraction Layer

The Itanium 2 processor requires implementation-specific Processor Abstraction Layer (PAL) firmware. PAL firmware supports processor initialization, error recovery, and other functionality. It provides a consistent interface to system firmware and operating systems across processor hardware implementations. The *Intel*[®] *Itanium*[®] *Architecture Software Developer's Manual*, Volume 2: System Architecture, describes PAL. Platforms must provide access to the firmware address space and PAL at reset to allow Itanium 2 processors to initialize.

The System Abstraction Layer (SAL) firmware contains platform-specific firmware to initialize the platform, boot to an operating system, and provide runtime functionality. Further information about SAL is available in the Intel® Itanium® Processor Family System Abstraction Layer Specification.

1.3 Mixing Processors of Different Frequencies and Cache Sizes

All Itanium 2 processors on the same system bus are required to have the same cache size and identical core frequency. Mixing components of different core frequencies and cache sizes is not supported and has not been validated by Intel. operating system support for multiprocessing with mixed components should also be considered.

While Intel has done nothing to specifically prevent processors within a multiprocessor environment from operating at differing frequencies and differing cache sizes, there may be uncharacterized errata that exist in such configurations. Customers would be fully responsible for validation of system configurations with mixed components other than the supported configurations described above.

1.4 Terminology

Throughout this document, the term "Itanium 2 processor" refers to all DP optimized Itanium 2 processors, including the Itanium 2 processor (1.40 GHz with 1.5MB L3 Cache, 1.40 GHz with 3MB L3 Cache, and 1.60 GHz with 3MB L3 Cache) and the Low Voltage Itanium 2 processor (1.0 GHz 1.5MB L3 Cache and 1.30 GHz 3MB L3 Cache).

In this document, a '#' symbol after a signal name refers to an active low signal. This means that a signal is in the active state (based on the name of the signal) when driven to a low level. For example, when RESET# is low, a processor reset has been requested. When NMI is high, a non-maskable interrupt has occurred. In the case of lines where the name does not imply an active state but describes part of a binary sequence (such as address or data), the '#' symbol implies that the signal is inverted. For example, D[3:0] = 'HLHL' refers to a hex 'A', and D [3:0] # = 'LHLH' also refers to a hex 'A' (H = High logic level, L = Low logic level).

The term "system bus" refers to the interface between the processor, system core logic and other bus agents. The system bus is a multiprocessing interface to processors, memory and I/O.

A signal name has all capitalized letters, e.g., VCTERM.

A symbol referring to a voltage level, current level, or a time value carries a plain subscript, e.g., $V_{CC.core}$, or a capitalized abbreviated subscript, e.g., T_{CO} .

1.5 State of Data

The data contained in this document is subject to change. It is the best information that Intel is able to provide at the publication date of this document.

1.6 Reference Documents

The reader of this datasheet should also be familiar with material and concepts presented in the following documents:

Title	Document Number
Intel [®] Itanium [®] 2 Processor Specification Update	251141
Intel® Itanium® Architecture Software Developer's Manual, Volume 1: Application Architecture	245317
Intel® Itanium® Architecture Software Developer's Manual, Volume 2: System Architecture	245318
Intel® Itanium® Architecture Software Developer's Manual, Volume 3: Instruction Set Reference	245319
Intel [®] Itanium [®] 2 Processor Reference Manual for Software Development and Optimization	251110
Intel®Itanium® Processor Family System Abstraction Layer Specification	245359
ITP700 Debug Port Design Guide	249679
System Management Bus Specification	http://www.smbus.org/specs

Note: Contact your Intel representative or check http://developer.intel.com for the latest revision of the reference documents.

2 Electrical Specifications

This chapter describes the electrical specifications of the Itanium 2 processor.

2.1 Itanium[®] 2 Processor System Bus

Most Itanium 2 processor signals use the Itanium processor's assisted gunning transceiver logic (AGTL+) signaling technology. The termination voltage, V_{CTERM} , is generated on the baseboard and is the system bus high reference voltage. The buffers that drive most of the system bus signals on the Itanium 2 processor are actively driven to V_{CTERM} during a low-to-high transition to improve rise times and reduce noise. These signals should still be considered open-drain and require termination to V_{CTERM} which provides the high level. The Itanium 2 processor system bus is terminated to V_{CTERM} at each end of the bus. There is also support of off-die termination in which case the termination is provided by external resistors connected to V_{CTERM} .

AGTL+ inputs use differential receivers which require a reference signal (V_{REF}). V_{REF} is used by the receivers to determine if a signal is a logical 0 or a logical 1. The Itanium 2 processor generates V_{REF} on-die, thereby eliminating the need for an off-chip reference voltage source.

2.1.1 System Bus Power Pins

VCTERM (1.2 V) input pins on the Itanium 2 processor provides power to the driver buffers and on-die termination. The GND pins, which, in addition to the GND input at the power tab connector, provide ground to the processor. Power for the processor core is provided through the power tab connector by $V_{CC,PS}$. The 3.3 V pin is included on the processor to provide power to the system management bus (SMBus). The V_{CTERM} , 3.3 V, and GND pins must remain electrically separated from each other.

2.1.2 System Bus No Connect

All pins designated as "N/C" or "No Connect" must remain unconnected.

2.2 System Bus Signals

2.2.1 Signal Groups

Table 2-1 contains Itanium 2 processor system bus signals that have been combined into groups by buffer type and whether they are inputs, outputs or bidirectional with respect to the processor.

Table 2-1. Itanium[®] 2 Processor System Bus Signal Groups

Group Name	Signals
AGTL+ Input Signals	BPRI#, BR[3:1]#, DEFER#, GSEQ#, ID[9:0]#, IDS#, RESET# ¹ , RS[2:0]#, RSP#, TRDY#
AGTL+ I/O Signals	A[49:3]#, ADS#, AP[1:0]#, BERR#, BINIT#, BNR#, BPM[5:0]# ¹ , BR0#, D[127:0]#, DBSY#, DEP[15:0]#, DRDY#, HIT#, HITM#, LOCK#, REQ[5:0]#, RP#, SBSY#, STBN[7:0]#, STBP[7:0]#, TND#
AGTL+ Output Signals	FERR#, THRMTRIP#, DBSY[1:0]#, DRDY[1:0]#, SBSY[1:0]#
Special AGTL+ Asynchronous Interrupt Input Signals	A20M#, IGNNE#, INIT#, LINT[1,0], PMI#
Power Good Signal ¹	PWRGOOD
HSTL Clock Signals	BCLKn, BCLKp
TAP Input Signals ¹	TCK, TDI, TMS, TRST#
TAP Output Signals ¹	TDO
System Management Signals ¹	3.3V, SMA[2:0], SMSC, SMSD, SMWP, THRMALERT#
Power Signals	GND, VCTERM
LVTTL Power Pod Signals ¹	CPUPRES#, OUTEN, PPODGD#
Other	TERMA, TERMB, TUNER1, TUNER2, VCCMON, VSSMON

All system bus outputs should be treated as open drain signals and require a high level source provided by the V_{CTERM} supply.

AGTL+ inputs have differential input buffers which use V_{REF} as a reference level. AGTL+ output signals require termination to V_{CTERM} . In this document, "AGTL+ Input Signals" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output Signals" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving.

The Power Good (PWRGOOD) signal and Test Access Port (TAP) connection input signals use a non-differential receiver with levels that are similar to AGTL+. No reference voltage is required for these signals. The TAP Connection Output signals are AGTL+ output signals.

The Itanium 2 processor system bus requires termination on both ends of the bus. The Itanium 2 processor system bus supports both on-die and off-die termination controlled by two pins, TERMA and TERMB. Please see the TERMA and TERMB pin description in Section 2.2.2.

The HSTL clock signals are the differential clock inputs for the Itanium 2 processor. The SMBus signals and LVTTL power pod signals are driven using the 3.3 V CMOS logic levels listed in Table 2-8 and Table 2-9, respectively.

2.2.2 Signal Descriptions

Appendix A, "Signals Reference" contains functional descriptions of all system bus signals and LVTTL power pod signals. Further descriptions of the system management signals are contained in Chapter 6. The signals listed under the "Power" and "Other" group are described here:

Signals will not be terminated on-die even when on-die termination (ODT) is enabled. See Intel[®] Itanium[®] 2 Processor Hardware Developer's Manual for further details.

V_{CTERM} System bus termination voltage.

GND System ground.

N/C No connection can be made to these pins.

TERMA, TERMB

The Itanium 2 processor uses two pins to control the on-die termination

function, TERMA and TERMB. Both of these termination pins must be pulled to VCTERM in order to terminate the system bus using the on-die termination resistors. Both of these termination pins must be pulled to

GND in order to use off-die termination.

TUNER1, TUNER2 TUNER1 is used to control the slew rate of the system bus I/O buffers.

The nominal value for the TUNER1 resistor is 150 ohms for the 400 MHz system bus and 100 ohms for the 533 MHz system bus. A lower resistance will cause a faster slew rate. TUNER2 is used to control the termination resistance for the system bus I/O buffers. The nominal value for the TUNER2 resistor is 150 ohms. A lower resistance will cause a lower on-die termination resistance. On-die termination mode will only be selected if the TERMA and TERMB pins are terminated as

indicated above.

VCCMON, VSSMON These pins provide a remote sense connection from the processor to the

power pod. No connections that constitute a current load can be made to

these pins.

2.3 Package Specifications

Table 2-2 through Table 2-9 list the DC voltage, current and power specifications for the Itanium 2 processor. The voltage and current specifications are defined at the Itanium 2 processor pins. Operational specifications listed in Table 2-2 through Table 2-9 are only valid while meeting specifications for case temperature, clock frequency, and input voltages.

Table 2-2. Itanium® 2 Processor Package Specifications

Symbol	Parameter	Minimum	Тур	Maximum	Unit	Notes
V _{CTERM}	Termination Voltage	1.2 –1.5%	1.2	1.2 +1.5%	V	1
R _{TERM}	Recommended Termination Resistance		45		Ω	2
V _{TAP}	Test Access Port Voltage (VCC _{TAP})	1.35	1.5	1.65	V	
I _{CTERM}	Termination Voltage Current			7.2	Α	3
PWR _{TDP}	Thermal Design Power - Itanium [®] 2 Processor (1.40 GHz, 1.5 MB and 3MB)			91	W	4
PWR _{TDP}	Thermal Design Power - Itanium 2 processor (1.60 GHz, 3MB)			99	W	4
PWR _{TDP}	Thermal Design Power – Low Voltage Itanium 2 Processor			62	W	4

NOTES:

^{1.} This is the tolerance requirement, across a 200 MHz bandwidth, at the processor pins. The requirement at the processor pins account for voltage drops (and impedance discontinuities) at the processor pins and to the processor core. In addition to the ±1.5% DC tolerance, there is a ±3.5% AC tolerance for a total of ±5% tolerance.

^{2.} The Itanium[®] 2 processor system bus is terminated at each end of the system bus. The Itanium 2 processor supports both on-die and off-die termination which is selected by the TERMA and TERMB pins. Termination tolerance is ±15% for on-die termination measured at V_{OL} and ±1% for off-die termination.

^{3.} Maximum termination voltage current on one terminating agent.

^{4.} Represents highest expected sustainable power per processor running known realistic power-intensive benchmarks (i.e., LinPack). TDP can be used to design a thermal solution for a processor. TDP does not represent the maximum power that the processor can dissipate.

Table 2-3. Itanium® 2 Processor Power Supply Specifications

Symbol	Parameter	Minimum	Тур	Maximum	Unit	Notes
V _{CC,PS}	V _{CC} from the Power Supply	VID -1.5%	VID	VID +1.5%	V	1, 2
I _{CC,PS}	Current Required from Power Supply			100	Α	3
PS _{slew_rate}	Power Supply Slew Rate at the Processor Power Pod Connector			100	A/µs	
PS _{TT}	Power Supply Slew Rate for the Termination Voltage at the Processor Pins			0.05	A/ns	

- The power pod DC set point accuracy is ±1.5%. Included for reference only, under worst case switching activity, the power pod tolerance is ±7%.
- 2. The V_{CC,PS} for the processor is defined by the VID bits specified in Table 2-21.
- The maximum current (I_{CC,PS}) specification is intended for system power supply design. The maximum current values are defined to be based on worst-case V_{CC,PS}, temperature and application mix.

2.4 Signal Specifications

2.4.1 DC Specifications

This section describes the DC specifications of the system bus signals. The processor signal's DC specifications are defined at the Itanium 2 processor pins. through Table 2-9 describe the DC specifications for the AGTL+, PWRGOOD, HSTL clock, TAP port, system management, and LVTTL signals. Please refer to the *ITP700 Debug Port Design Guide* for the TAP connection signals DC specifications at the debug port.

Table 2-4. AGTL+ Signals DC Specifications

Symbol	Parameter	Minimum	Тур	Maximum	Unit	Notes
V _{IL}	Input Low Voltage			0.625	V	1
V _{IH}	Input High Voltage	0.875			V	1
V _{IL}	Input Low Voltage - Low Voltage Itanium® 2 Processor			0.65	V	1
V _{IH}	Input High Voltage - Low Voltage Itanium 2 processor	0.85			V	1
V _{OL}	Output Low Voltage		0.3	0.4	V	2
V _{OH}	Output High Voltage	V _{CTERM} , minimum	V _{CTERM}	V _{CTERM} , maximum	V	
I _{OL}	Output Low Current @ 0.3V	34			mA	3
I _{OL}	Output Low Current @ 0.3V	17			mA	4
IL	Leakage Current			±100	μA	5
C _{AGTL+}	AGTL+ Pad Capacitance			3	pF	6
C _{AGTL+}	AGTL+ Pad Capacitance			1.5	pF	7

NOTES:

- The typical transition point between V_{IL} and V_{IH} assuming 125 mV V_{REF} uncertainty for ODT. V_{REF_high} and V_{REF_low} levels are V_{REF} ±100 mV respectively, for a system bus agent using on-board termination. V_{REF_high} and V_{REF_low} levels are V_{REF} ±125 mV respectively, for a system bus agent using on-die termination.
- 2. Parameter measured into a 22.5 ohm resistor to 1.2 V. Minimum V_{OI} and I_{OI} are guaranteed by design/characterization.
- 3. Calculated using off-die termination through two 45 ohm ±1% resistors in parallel.
- 4. Calculated using on-die termination to a 45 ±15% resistor measured at V_{OL}.
- 5. At 1.2 V ±1.5%. V_{CTERM}, minimum ≤Vpin ≤V_{CTERM}, maximum.

- 6. Refers to signals on Itanium® 2 processors at 1.0 GHz and 1.40 GHz. Total of I/O buffer with ESD structure and processor parasitics if applicable. Capacitance values guaranteed by design for all AGTL+ buffers.
- 7. Refers to signals on Itanium 2 processors at 1.30 GHz and 1.60 GHz. Total of I/O buffer with ESD structure and processor parasitics if applicable. Capacitance values guaranteed by design for all AGTL+ buffers.

Table 2-5. Power Good Signal DC Specifications

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V _{IL}	Input Low Voltage		0.440	V	
V _{IH}	Input High Voltage	0.875		V	

Table 2-6. System Bus Clock Differential HSTL DC Specifications

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V _{IH}	Input High Voltage	0.78	1.3	V	
V _{IL}	Input Low Voltage	-0.3	0.5	V	
V _X	Input Crossover Voltage	0.55	0.85	V	
C _{CLK}	Input (Pad) Capacitance		1.75	pF	

Table 2-7. TAP Connection DC Specifications

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V _{IL}	Input Low Voltage	-0.3	0.5	V	1
V _{IH}	Input High Voltage	1.1	1.57	V	1, 2
V _{OL}	Output Low Voltage		0.3	V	
V _{OH}	Output High Voltage	1.2		V	2, 3
I _{OL}	Output Low Current	20		mA	
lic	Input Current		690	uA	4

NOTES:

- 1. There is a 100 mV hysteresis on TCK.
 2. V_{IH, MAX} = 1.5 V + 5%, V_{OH, MAX} = 1.2 V + 5%.
 3. There is no internal pull-up. An external pull-up is always assumed. Max voltage tolerated at TDO is 1.5V.
- 4. Per input pin.

Table 2-8. SMBus DC Specifications

Symbol	Parameter	Minimum	Тур	Maximum	Unit	Notes
3.3V	V _{CC} for the System Management Components	3.14	3.3	3.47	V	3.3 V ±5%
V _{IL}	Input Low Voltage	-0.3		0.3*3.3 V	V	
V _{IH}	Input High Voltage	0.7*3.3 V		3.465	V	Max = 3.3 +5%
V _{OL}	Output Low Voltage			0.4	V	
I _{3.3V}	3.3V Supply Current		5.0	30.0	mA	
I _{OL}	Output Low Current			3	mA	1
I _{OL2}	Output Low Current	6			mA	2
ILI	Input Leakage Current			10	μA	
I _{LO}	Output Leakage Current			10	μA	

NOTES:

- The value specified for I_{OL} applies to all signals except for THRMALERT#.
 The value specified for I_{OL2} applies only to THRMALERT# which is an open drain signal.

Table 2-9. LVTTL Signal DC Specifications

Symbol	Parameter	Minimum	Maximum	Unit	Notes
V _{IL}	Input Low Voltage		0.8	V	
V _{IH}	Input High Voltage	2.0	3.63	V	
V _{OL}	Output Low Voltage		0.4	V	
V _{OH}	Output High Voltage	2.4		V	

2.4.2 AC Specifications for Clock and System Management Bus

Table 2-10 through Table 2-11 list the AC specifications for the Itanium 2 processor's clock and SMBus (timing diagrams begin with Figure 2-1). The Itanium 2 processor uses a differential HSTL clocking scheme with a frequency of 200 MHz. The SMBus is a subset of the I2C* interface which supports operation of up to 100 kHz.

Table 2-10. System Bus Clock Differential HSTL AC Specifications

Symbol	Parameter	System Bus Clock	Minimum	Тур	Maximum	Unit	Figure	Notes
T _{period}	BCLKp Period	200		5.0		ns	Figure 2-1	
T _{skew}	System Clock Skew	200		100		ps		1
f _{BCLK}	BCLKp Frequency	200	200		200	MHz	Figure 2-1	2
T _{jitter}	BCLKp Input Jitter	200			100	ps	Figure 2-1	3
T _{high}	BCLKp High Time	200	2.25	2.5	2.75	ns	Figure 2-1	4
T _{low}	BCLKp Low Time	200	2.25	2.5	2.75	ns	Figure 2-1	3
T _{period}	BCLKp Period	266		3.75		ns	Figure 2-1	
T _{skew}	System Clock Skew	266			60	ps		5
f _{BCLK}	BCLKp Frequency	266	266		266	MHz	Figure 2-1	2
T _{jitter}	BCLKp Input Jitter	266			50	ps	Figure 2-1	3
T _{high}	BCLKp High Time	266	1.69	1.88	2.06	ns	Figure 2-1	4
T _{low}	BCLKp Low Time	266	1.69	1.88	2.06	ns	Figure 2-1	4
T _{rise}	BCLKp Rise Time	All	333	500	667	ps	Figure 2-1	20-80%
T _{fall}	BCLKp Fall Time	All	333	500	667	ps	Figure 2-1	20-80%
V _{PP}	Minimum Input Swing	All		600		mV	Figure 2-1	6

NOTES:

- 1. The system clock skew is ±100 ps.
- 2. Measured on cross point of rising edge of BCLKp and falling edge of BCLKn. Long term jitter is defined as peak-to-peak variation measured by accumulating a large number of clock cycles and recording peak-to-peak jitter.
- 3. Cycle-to-cycle jitter is defined as peak-to-peak variation measured over 10000 cycles peak-to-peak jitter.
- 4. Measured on cross point of rising edge of BCLKp and falling edge of BCLKn.
- 5. The system clock skew is ±60 ps.
- 6. V_{PPmin} is defined as the minimum input differential voltage which will cause no increase in the clock receiver timing.

Table 2-11. SMBus AC Specifications (Sheet 1 of 2)

Symbol	Parameter	Minimum	Maximum	Unit	Notes
f _{SMSC}	SMSC Clock Frequency		100	kHz	
T _{SMSC}	SMSC Clock Period	10		μs	
t _{high}	SMSC Clock High Time	4.0		μs	1
t _{low}	SMSC Clock Low Time	4.7		μs	1

Symbol	Parameter	Minimum	Maximum	Unit	Notes	
t _{rise}	SMSC Clock Rise Time		1.0	μs	1	
t _{fall}	SMSC Clock Fall Time		0.3	μs	1	
t _{VALID}	SMBus Output Valid Delay		1.0	μs		
t _{SU}	SMBus Input Setup Time	250		ns		
t _{HLD}	SMBus Input Hold Time	0		ns		
tenee	Bus Free Time	4.7		US	2	

Table 2-11. SMBus AC Specifications (Sheet 2 of 2)

- 1. Please refer to Figure 2-2 for the Standard Microsystems Corporation (SMSC)* clock waveform.
- 2. Bus Free Time is the minimum time allowed between request cycles.

Figure 2-1. Generic Clock Waveform

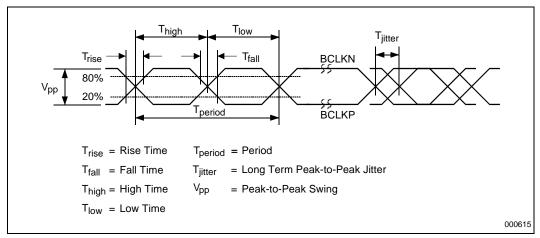
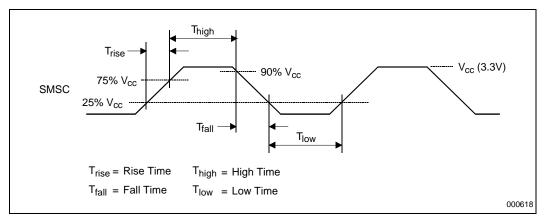



Figure 2-2. SMSC Clock Waveform

2.4.3 Maximum Ratings

Table 2-12 contains the Itanium 2 processor stress ratings. Functional operation at the absolute maximum and minimum is neither implied nor guaranteed. The processor should not receive a clock while subjected to these conditions. Functional operating conditions are given in the DC

tables. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although the processor contains protective circuitry to resist damage from static electric discharge, one should always take precautions to avoid static voltages or electric fields.

Table 2-12. Itanium® 2 Processor Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Unit	Notes
T _{storage}	Processor Storage Temperature	-10	45	°C	1
T _{shipping}	Processor Shipping Temperature	-45	75	°C	2
V _{CC,Processor}	Any V _{CC,Processor} Voltage with Respect to GND	-0.1	2.1	V	3
3.3V	Any 3.3V Supply Voltage with Respect to GND	-0.3	5.5	V	4
V _{in, SMBus}	SMBus Buffer DC Input Voltage with Respect to GND	-0.1	6.0	V	4
V _{in, AGTL+}	AGTL+ Buffer DC Input Voltage with Respect to GND	-0.1	1.9	V	5, 6
V _{CTERM}	Any V _{CTERM} Voltage with Respect to GND	-0.1	1.9	V	3
V _{in,TAP}	TAP Buffer DC Input Voltage with Respect to GND.	-0.1	2.1	V	5

NOTES:

- 1. Storage temperature is temperature in which the processor can be stored for up to one year.
- 2. Shipping temperature is temperature in which the processor can be shipped for up to 24 hours.
- 3. See Table 2-4 through Table 2-9 inclusive for operating voltages.
- 4. Parameters are from third party vendor specifications.
- 5. Maximum instantaneous voltage at receiver buffer input.
- 6. Specification includes V_{in,AGTL+} and V_{in,AGTL+} ASYNCHRONOUS (AGTL+ asynchronous buffer DC input voltage with respect to

2.5 System Bus Signal Quality Specifications and Measurement Guidelines

2.5.1 Overshoot/Undershoot Guidelines

Overshoot (or undershoot) is the absolute value of the maximum voltage above the nominal V_{CTERM} voltage (or below GND), as shown in Table 2-3. The overshoot/undershoot specifications limit transitions beyond V_{CTERM} or GND due to the fast signal edge rates. The processor can be permanently damaged by repeated overshoot or undershoot events on any input, output, or I/O buffer if the charge is large enough (i.e., if the overshoot/undershoot is great enough). Determining the impact of an overshoot/undershoot condition requires knowledge of the magnitude, the pulse duration, and the activity factor (AF).

2.5.2 Overshoot/Undershoot Magnitude

Magnitude describes the maximum potential difference between a signal and its voltage reference level. For the Itanium 2 processor, both are referenced to GND as shown in Figure 2-3. It is important to note that overshoot and undershoot conditions are separate and their impact must be determined independently. Overshoot/undershoot magnitude levels must observe the absolute maximum specifications listed in Table 2-13 through Table 2-19. These specifications must not be violated at any time regardless of bus activity or system state. Within these specifications are threshold levels that define different allowed pulse duration. Provided that the magnitude of the

overshoot/undershoot is within the absolute maximum specifications (1.8 V for overshoot and -0.60 V for undershoot), the pulse magnitude, duration and activity factor must all be used to determine if the overshoot/undershoot pulse is within specifications.

Maximum Absolute Overshoot

VMAX

VCTERM

VREF

VOL

GND

Maximum Time-dependent
Undershoot

Maximum Absolute
Undershoot

Overshoot

Overshoot

Overshoot

Overshoot

Overshoot

Overshoot

Overshoot

Overshoot

Overshoot

Figure 2-3. System Bus Signal Waveform Exhibiting Overshoot/Undershoot

2.5.3 Overshoot/Undershoot Pulse Duration

Pulse duration describes the total time an overshoot/undershoot event exceeds the overshoot/undershoot reference voltage (V_{CTERM}/GND). The total time could encompass several oscillations above the reference voltage. Multiple overshoot/undershoot pulses within a single overshoot/undershoot event may need to be measured to determine the total pulse duration.

Note: Oscillations below the reference voltage cannot be subtracted from the total overshoot/undershoot pulse duration.

2.5.4 Activity Factor

Activity factor (AF) describes the frequency of overshoot (or undershoot) occurrence relative to a clock. Since the highest frequency of assertion of any common clock signal is every other clock, an AF = 1 indicates that the specific overshoot (or undershoot) waveform occurs every other clock cycle. Thus, an AF = 0.01 indicates that the specific overshoot (or undershoot) waveform occurs one time in every 200 clock cycles. For source synchronous signals (data, and associated strobes), the activity factor is in reference to the strobe edge. The highest frequency of assertion of any source synchronous signal is every active edge of its associated strobe. So, an AF = 1 indicates that the specific overshoot (or undershoot) waveform occurs every other strobe cycle. The specifications provided in Table 2-14 through Table 2-19 show the maximum pulse duration allowed for a given overshoot/undershoot magnitude at a specific activity factor. Each table entry is independent of all others, meaning that the pulse duration reflects the existence of overshoot/undershoot events of that magnitude ONLY. A platform with an overshoot/undershoot that just meets the pulse duration for a specific magnitude where the AF <1, means that there can be no other overshoot/undershoot events, even of lesser magnitude (if AF = 1, then the event occurs at all times and no other events can occur).

Note: AF for the common clock AGTL+ signals is referenced to BCLKn, and BCLKp frequency. The wired-OR Signals (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#) are common clock AGTL+ signals.

Note: AF for source synchronous (2x) signals is referenced to STBP#[7:0], and STBN#[7:0].

2.5.5 Reading Overshoot/Undershoot Specification Tables

The overshoot/undershoot specification for the processor is not a simple single value. Instead, many factors are needed in order to correctly interpret the overshoot/undershoot specification. In addition to the magnitude of the overshoot, the following parameters must also be known: the width of the overshoot and the AF. To determine the allowed overshoot for a particular overshoot event, the following must be done:

- 1. Determine the *signal group* that the particular signal falls into. For AGTL+ signals operating in the 2x source synchronous domain, use Table 2-14 or Table 2-16. If the signal is a wired-OR AGTL+ signal operating in the common clock domain, use Table 2-17 or Table 2-19.
- 2. Determine the *magnitude* of the overshoot, or the undershoot (relative to GND).
- 3. Determine the *activity factor* (how often does this overshoot occur?).
- 4. Next, from the appropriate specification table, determine the *maximum pulse duration* (in nanoseconds) allowed.
- 5. Compare the specified maximum pulse duration to the signal being measured. If the pulse duration measured is less than the pulse duration shown in the table, then the signal meets the specifications.
- Undershoot events must be analyzed separately from overshoot events as they are mutually exclusive.

2.5.6 Determining if a System Meets the Overshoot/Undershoot Specifications

The overshoot/undershoot specifications listed in Table 2-13 through Table 2-19 specify the allowable overshoot/undershoot for a single overshoot/undershoot event. However, most systems will have multiple overshoot and/or undershoot events that each have their own set of parameters (duration, AF and magnitude). While each overshoot on its own may meet the overshoot specification, the total impact of all overshoot events may cause the system to fail. A guideline to ensure a system passes the overshoot and undershoot specifications is shown below:

- 1. Ensure no signal ever exceeds V_{CTERM} or GND.
- 2. If only one overshoot/undershoot event magnitude occurs, ensure it meets the specifications listed in Table 2-13 through Table 2-19.
- 3. If multiple overshoots and/or multiple undershoots occur, measure the worst-case pulse duration for each magnitude and compare the results against the AF = 1 specifications. If all of these worst-case overshoot or undershoot events meet the specifications (measured time < specifications) in the table (where AF = 1), then the system passes.

Table 2-13. Source Synchronous AGTL+ Signal Group and Wired-OR Signal Group Absolute
Overshoot/Undershoot Tolerance

Parameter	Description	Specification	Units
V _{CTERM}	I/O power supply voltage (nominal).	1.20	V
V _{MAX}	Maximum absolute voltage for system bus signals at the input of the receiver buffers.	1.80	V
V _{MIN}	Minimum absolute voltage for system bus signals at the input of the receiver buffers.	-0.60	V
Overshoot	Time dependent overshoot amount above V _{CTERM} .	1	
Undershoot	Time dependent undershoot amount below GND.	1	

NOTES: The following notes apply to Table 2-14 and Table 2-19:

- 1. Absolute maximum overshoot magnitude of 1.8V must never be exceeded.
- Absolute maximum overshoot is measured referenced to GND. Pulse duration of overshoot is measured relative to VCTERM.
- 3. Absolute maximum undershoot and pulse duration of undershoot is measured relative to VCTERM.
- 4. Ringback below VCTERM cannot be subtracted from overshoots/undershoots.
- 5. Lesser undershoot does not allocate overshoot with longer duration or greater magnitude.
- 6. All values specified by design characterization.

Table 2-14. Itanium[®] 2 Processors (1.40 GHz, Low Voltage 1.0 GHz) Source Synchronous AGTL+ Signal Group Time Dependent Overshoot/Undershoot Tolerance

Abso Maxim		Pulse Duration (ns)						
Over- shoot	Under- shoot	AF = 1 ¹	AF = 0.75	AF = 0.5	AF = 0.25	AF = 0.1	AF = 0.05	AF = 0.01
1.8	-0.6	0.0083	0.0089	0.0137	0.02750	0.0688	0.1376	0.6863
1.75	-0.55	0.0206	0.0276	0.0413	0.0827	0.2067	0.4139	2.0680
1.7	-0.5	0.0621	0.0828	0.1239	0.2480	0.6207	1.2420	2.5
1.65	-0.45	0.1851	0.2470	0.3702	0.7392	1.8500	2.5	2.5
1.6	-0.4	0.5477	0.7296	1.0972	2.1915	2.5	2.5	2.5
1.55	-0.35	1.6100	2.1451	2.5	2.5	2.5	2.5	2.5
1.5	-0.3	2.5	2.5	2.5	2.5	2.5	2.5	2.5
1.45	-0.25	2.5	2.5	2.5	2.5	2.5	2.5	2.5

NOTES:

Table 2-15. Itanium[®] 2 Processors (1.60 GHz, Low Voltage 1.30 GHz) Source Synchronous AGTL+ Signal Group Time-Dependent Overshoot/Undershoot Tolerance for 400 MHz System Bus (Sheet 1 of 2)

Abso Maxim	olute um (V)	Pulse Duration (ns)						
Over- shoot	Under- shoot	AF = 1 ¹	AF = 0.75	AF = 0.5	AF = 0.25	AF = 0.1	AF = 0.05	AF = 0.01
1.8	-0.6	0.0083	0.0090	0.0143	0.0287	0.0717	0.1431	0.7169

^{1.} These parameters cannot be specified in absolute terms.

^{1.} Activity factor = 1 means signal toggles every 5 ns.

Table 2-15. Itanium[®] 2 Processors (1.60 GHz, Low Voltage 1.30 GHz) Source Synchronous AGTL+ Signal Group Time-Dependent Overshoot/Undershoot Tolerance for 400 MHz System Bus (Sheet 2 of 2)

	olute ium (V)		Pulse Duration (ns)						
1.75	-0.55	0.0216	0.0287	0.0430	0.0861	0.2157	0.4313	2.1552	
1.7	-0.5	0.0646	0.0861	0.1291	0.2584	0.6457	1.2914	2.5	
1.65	-0.45	0.1925	0.2572	0.3858	0.7700	1.9264	2.5	2.5	
1.6	-0.4	0.5713	0.7625	1.1408	2.2831	2.5	2.5	2.5	
1.55	-0.35	1.1.676	2.2351	2.5	2.5	2.5	2.5	2.5	
1.5	-0.3	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
1.45	-0.25	2.5	2.5	2.5	2.5	2.5	2.5	2.5	

Table 2-16. Itanium[®] 2 Processors (1.60 GHz) Source Synchronous AGTL+ Signal Group Time-Dependent Overshoot/Undershoot Tolerance for 533 MHz System Bus

	olute um (V)			Pul	se Duration	(ns)		
Over- shoot	Under- shoot	AF = 1 ¹	AF = 0.75	AF = 0.5	AF = 0.25	AF = 0.1	AF = 0.05	AF = 0.01
1.8	-0.6	0.0032	0.0035	0.0107	0.0214	0.0538	0.1074	0.5371
1.75	-0.55	0.0161	0.0215	0.0323	0.0647	0.1619	0.3230	1.6161
1.7	-0.5	0.0494	0.0646	0.0969	0.1937	0.4853	0.9692	1.875
1.65	-0.45	0.1444	0.1924	0.2894	0.5776	1.4465	1.875	1.875
1.6	-0.4	0.4279	0.5705	0.8561	1.7130	1.875	1.875	1.875
1.55	-0.35	1.2573	1.6763	1.875	1.875	1.875	1.875	1.875
1.5	-0.3	1.875	1.875	1.875	1.875	1.875	1.875	1.875
1.45	-0.25	1.875	1.875	1.875	1.875	1.875	1.875	1.875

NOTES:

2.5.7 Wired-OR Signals

System bus signals must meet certain overshoot and undershoot requirements. The maximum absolute overshoot voltage is 1.8 V and the minimum absolute undershoot voltage is -0.6 V. The system bus wired-OR signals (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#) have the same absolute overshoot and undershoot specification as the Source Synchronous AGTL+ Signals, but they have different time dependent overshoot/undershoot requirements. Please refer to Table 2-17 and Table 2-19 for the wired-OR time dependant overshoot/undershoot limits.

^{1.} Activity Factor = 1 means signal toggles every 5 ns.

^{1.} Activity Factor = 1 means signal toggles every 3.75 ns.

Table 2-17. Itanium[®] 2 Processors (1.40 GHz, Low Voltage 1.0 GHz) Wired-OR Signal Group (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#)¹ Overshoot/Undershoot Tolerance

	olute ium (V)			Pul	se Duration	(ns)		
Over- shoot	Under- shoot	AF = 1 ²	AF = 0.75	AF = 0.5	AF = 0.25	AF = 0.1	AF = 0.05	AF = 0.01
1.8	-0.6	0.0493	0.06576	0.0985	0.1968	0.4923	0.9852	4.9228
1.75	-0.55	0.1485	0.1977	0.2966	0.5933	1.4834	2.9659	5
1.7	-0.5	0.4444	0.5932	0.8898	1.7798	4.4448	5	5
1.65	-0.45	1.3290	1.7670	2.6529	5	5	5	5
1.6	-0.4	3.9270	5	5	5	5	5	5
1.55	-0.35	5	5	5	5	5	5	5
1.5	-0.3	5	5	5	5	5	5	5

- 1. Wired-OR signals operate at 200 MHz.
- 2. Activity factor = 1 means signal toggles every 10 ns.

Table 2-18. Itanium[®] 2 Processors (1.60 GHz, Low Voltage 1.30 GHz) Wired-OR Signal Group (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#) Overshoot/Undershoot Tolerance for 400 MHz System Bus

Abso Maxim				Pul	se Duration	(ns)		
Over- shoot	Under- shoot	AF = 1 ¹	AF = 0.75	AF = 0.5	AF = 0.25	AF = 0.1	AF = 0.05	AF = 0.01
1.8	-0.6	0.0513	0.0685	0.1026	0.2054	0.5129	1.0258	5
1.75	-0.55	0.1547	0.2059	0.3088	0.6192	1.5458	3.0902	5
1.7	-0.5	0.4640	0.6191	0.9265	1.8536	4.6313	5	5
1.65	-0.45	1.3836	1.8410	2.7641	5	5	5	5
1.6	-0.4	4.0947	5	5	5	5	5	5
1.55	-0.35	5	5	5	5	5	5	5
1.5	-0.3	5	5	5	5	5	5	5

NOTES:

Table 2-19. Itanium[®] 2 Processors (1.60 GHz) Wired-OR Signal Group (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#) Overshoot/Undershoot Tolerance for 533 MHz System Bus (Sheet 1 of 2)

Absolute Maximum (V)			Pulse Duration (ns)												
Over- shoot	Under- shoot	AF = 1 ¹	AF = 0.75	AF = 0.5	AF = 0.25	AF = 0.1	AF = 0.05	AF = 0.01							
1.8	-0.6	0.0385	0.0513	0.0770	0.1541	0.3853	0.7690	3.75							
1.75	-0.55	0.1161	0.1548	0.2317	0.4641	1.1593	2.3177	3.75							
1.7	-0.5	0.3473	0.4643	0.6945	1.3895	3.4738	3.75	3.75							

^{1.} Activity Factor = 1 means signal toggles every 10 ns.

Table 2-19. Itanium[®] 2 Processors (1.60 GHz) Wired-OR Signal Group (BINIT#, HIT#, HITM#, BNR#, TND#, BERR#) Overshoot/Undershoot Tolerance for 533 MHz System Bus (Sheet 2 of 2)

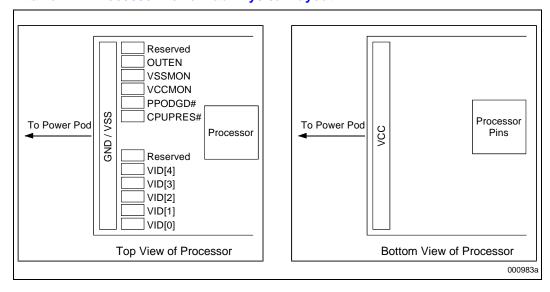
Abso Maxim				Pul	se Duration	(ns)		
1.65	-0.45	1.0365	1.3801	2.0731	3.75 3.75		3.75	3.75
1.6	-0.4	3.0710	3.75	3.75	3.75	3.75	3.75	3.75
1.55	-0.35	3.75	3.75	3.75	3.75	3.75	3.75	3.75
1.5	-0.3	3.75	3.75	3.75	3.75	3.75	3.75	3.75

2.6 Power Pod Connector Signals

Power delivery for the Itanium 2 processor is from a DC-DC converter called the "power pod". The power pod consists of a DC-DC converter and a semi-flexible connector which delivers the voltage to the processor.

Table 2-20 lists all of the signals which are part of the Itanium 2 processor power pod connector.

Table 2-20. Itanium[®] 2 Processor Power Pod Connector Signals


Group Name	Signals
Power Pod Connector	OUTEN, CPUPRES#, PPODGD#, VCC, VCCMON, GND, VSSMON, VID[4:0]

Warning:

If the power supply cannot supply the voltages requested by the components in the Itanium 2 processor, then it must disable itself.

Figure 2-4 shows the top and bottom views of the power tab connector. The processor ground, $V_{SS,Processor}$, connection is provided on the power tab connector as well.

Figure 2-4. Itanium® 2 Processor Power Tab Physical Layout

^{1.} Activity Factor = 1 means signal toggles every 7.5 ns.

The power pod provides a selectable output voltage controlled via multiple binary weighted Voltage Identification (VID) inputs. The VID value (high = 1; low = 0) is defined in Table 2-21. VID pads shall be considered as LVTTL inputs to the power pod, having resistive pull-ups (5k Ω) included inside the power pod to the internal 3.3 V power supply. The VID pads on the power connector tab will be pulled low with 10 Ω resistors that are internal to the processor. The 10 Ω resistive pulldowns are controlled by Intel and will not be externally adjustable.

Table 2-21. Processor Core Voltage Identification Code¹

V (VD)		GND; 1 = Open	: 0 = Connected to	Processor Pins	
V _{CC} (VDC	VID0	VID1	VID2	VID3	VID4
Output O	1	1	1	1	1
0.95	0	1	1	1	1
0.975	1	0	1	1	1
1.0	0	0	1	1	1
1.025	1	1	0	1	1
1.05	0	1	0	1	1
1.075	1	0	0	1	1
1.1	0	0	0	1	1
1.125	1	1	1	0	1
1.15	0	1	1	0	1
1.175	1	0	1	0	1
1.2	0	0	1	0	1
1.225	1	1	0	0	1
1.250	0	1	0	0	1
1.275	1	0	0	0	1
1.3	0	0	0	0	1
1.325	1	1	1	1	0
1.35	0	1	1	1	0
1.375	1	0	1	1	0
1.4	0	0	1	1	0
1.425	1	1	0	1	0
1.45	0	1	0	1	0
1.475	1	0	0	1	0
1.5	0	0	0	1	0
1.525	1	1	1	0	0
1.55	0	1	1	0	0
1.575	1	0	1	0	0
1.6	0	0	1	0	0
1.625	1	1	0	0	0
1.65	0	1	0	0	0
1.675	1	0	0	0	0
1.7	0	0	0	0	0

NOTES:

The processor has several power levels as shown in Table 2-22 and in Figure 2-5. Full power to the processor is defined in Table 2-2.

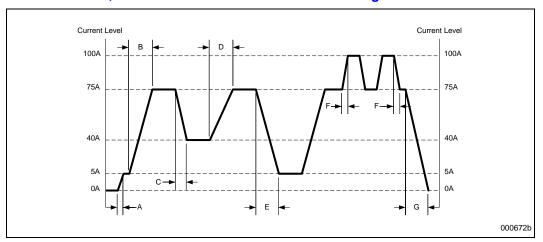

^{1.} Nominal settings require regulation to $\pm 7\%$ at $V_{CC,PS}$ pins at the power tab under all conditions.

Table 2-22. Processor Power States

State Transition	Ramp Rate	Comment
Zero to 1st Power State (A)	10 μs	Off state to initial power on.
1st Power State to 2nd Power State (B)	10 μs	1st power state is defined as the system minimum operating load. Fastest power up sequence.
2nd Power State to 3rd Power State (C)	10 μs	2nd power state is defined as 75% of full power.
3rd Power State to 2nd Power State (D)	10 μs	3rd power state is defined as 40% of full power.
2nd Power State to 1st Power State (E)	10 μs	Typical fast power down to initial power on.
Normal Operating Range (F)	100 A/μs max	Defined as 75% to 100% of full power.
Thermal Trip (G)	1 ns ±250 ps or one processor core cycle.	Processor over temperature condition emergency shutdown.

Figure 2-5. Processor Full, Normal and Low Power Mode with Timings

2.7 Itanium® 2 Processor System Bus Clock and Processor Clocking

The BCLKn and BCLKp inputs control the operating frequency of the Itanium 2 processor system bus interface. All Itanium 2 processor system bus timing parameters are specified with respect to the falling edge of BCLKn and rising edge of BCLKp. The Itanium 2 processor core to bus ratio must be configured during system reset by using the A[21:17]# pins (see Table 2-23). The value on these pins during the system reset sequence determines the multiplier that the PLL will use for the internal core clock. Because the A[21:17]# signals pins have different uses after a system reset is complete, these signals must be multiplexed for configuration during reset and for normal use after reset. See the Intel® Itanium® 2 Processor Hardware Developer's Manual for complete information on Itanium 2 processor system bus clock and processor clocking.

Listed in Table 2-23 are the system bus ratios defined for the Itanium 2 processor. The Itanium 2 processor supports bus ratios of 2/10, 2/13, 2/14 and 2/16. Processors that support bus ratios of 2/13 and 2/16 are locked at the correct ratios.

Table 2-23. Itanium® 2 Processor System Bus Ratios

Core Frequency	Ratio of Bus Frequency to Processor Frequency	A21#	A20#	A19#	A18#	A17#
1.0 GHz	2/10	1(L)	0(H)	1(L)	0(H)	1(L)
1.30 GHz	2/13	1(L)	0(H)	0(H)	1(L)	0(H)
1.40 GHz	2/14	1(L)	0(H)	0(H)	0(H)	1(L)
1.60 GHz	2/16	0(H)	1(L)	1(L)	1(L)	1(L)
F	Reserved ¹		All other	possible er	ncodings	

The Itanium 2 processor bus to core ratio is configured during system reset by using the A[21:17]# signal pins. These bus ratio configuration pins are required to be stable and valid during the duration of the reset sequence as defined below.

Cold Reset Sequence:

- The bus ratio configuration pins (A[21:17]#) must be asserted the entire time RESET# is asserted.
- RESET# must be asserted before PWRGOOD is asserted.
- The duration from the assertion of PWRGOOD to the deassertion of RESET# must be 1 millisecond minimum.
- After RESET# is deasserted, all the configuration, including the bus ratio configuration pins A[21:17]#, must remain valid for 2 BCLKs (minimum) to 3 BCLKs (maximum).
- BCLK is shown as a time reference to the BCLK period. It is not a requirement that this is BCLKn or BCLKp signal.
- Configuration signals other than A[21:17]# must be asserted 4 BCLKs prior to the deasserted edge of RESET# and must remain valid for 2 BCLKs (minimum) to 3 BCLKs (maximum) after the deasserted edge of RESET#.

Figure 2-6 outlines the timing relationship between the bus ratio configuration pins, RESET# and PWRGOOD for cold reset.

^{1.} Reserved bus ratio encodings should never be driven on the bus during reset, otherwise it may cause damage to the processor.

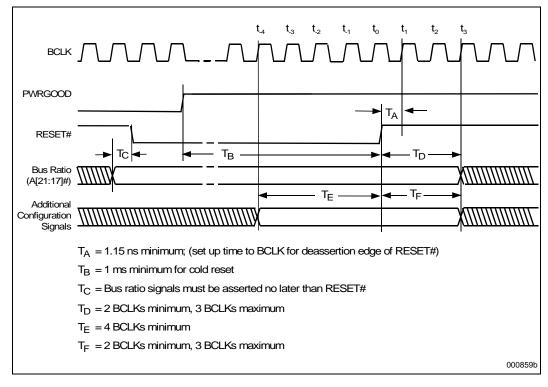


Figure 2-6. System Bus Reset and Configuration Timings for Cold Reset

Warm Reset Sequence:

- PWRGOOD remains high throughout the entire sequence as power is already available and stable to the processor.
- The bus ratio configuration pins (A[21:17]#) must be asserted the entire time RESET# is asserted
- The duration from the assertion of RESET# to the deassertion of RESET# must be 1
 millisecond minimum.
- After RESET# is deasserted, the configuration pins must remain valid for 2 BCLKs (minimum) to 3 BCLKs (maximum).
- BCLK is shown as a time reference to the BCLK period. It is not a requirement that this is BCLKn or BCLKp signal.
- Configuration signals other than A[21:17]# must be asserted 4 BCLKs prior to the deasserted edge of RESET# and must remain valid for 2 BCLKs (minimum) to 3 BCLKs (maximum) after the deasserted edge of RESET#.

Figure 2-7 outlines the timing relationship between the bus ratio configuration pins, RESET# and PWRGOOD for warm reset

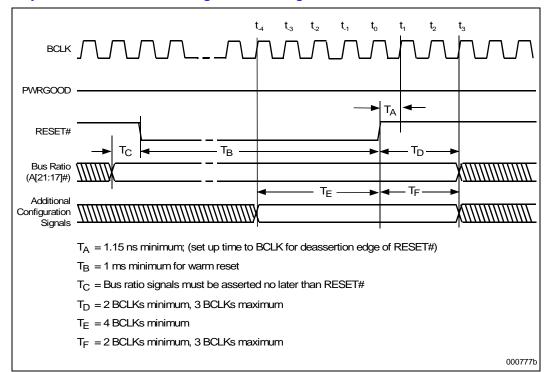


Figure 2-7. System Bus Reset and Configuration Timings for Warm Reset

2.8 Recommended Connections for Unused Pins

Pins that are unused in an application environment (as opposed to testing environment) should be connected to the states listed in Table 2-24. Pins that must be used in an application are stated as such and do not have a recommended state for unused connection

Table 2-24. Connection for Unused Pins (Sheet 1 of 2)

Pins/Pin Groups	Recommended Connections	Notes
AGTL+ pins	Н	1, 2
HSTL Clock Signals	Must be used	
All Power Signals	Must be used	
PWRGOOD	Must be used	
TUNER[2:1]	Must be used	
TAP Signals		
TCK	L	1, 3
TRST#	L	1, 3
TDI	Н	1, 3
TDO	Н	1, 3
TMS	Н	1, 3

Table 2-24. Connection for Unused Pins (Sheet 2 of 2)

Pins/Pin Groups	Recommended Connections	Notes
System Management Signals		
3.3V	GND	
SMA[2:0]	N/C	
SMSC	N/C	
SMSD	N/C	
SMWP	N/C	
THRMALERT#	Н	1, 4
LVTTL Power Pod Signals		
OUTEN	Must be used	
PPODGD#	Must be used	
CPUPRES#	Must be used	
Reserved Pins		
N/C	N/C	

- NOTES:

 1. L = GND, H = V_{CTERM}.

 2. AGTL+ output signals SBSY[0:1]#, DBSY[0:1]#, and DRDY[0,1]# may be left as N/C if not used on platform.

 3. Should be properly terminated through a resistor.

 4. THRMALERT# should be pulled up to 3.3 V through a resistor.

3 Pinout Specifications

This chapter describes the Itanium 2 processor signals and pinout.

Note: The pins labeled "N/C" must remain unconnected. The Itanium 2 processor uses a JEDEC standard pin naming convention.

In this chapter, pin names are the actual names given to each physical pin of the processor. System bus signal names are the names associated with the functions of those pins. For those pins associated with multiple functions, their pin names and system bus signal names are not necessarily identical.

Figure 3-1 shows the Itanium 2 processor pin location diagram from the top view.

Figure 3-1. Itanium[®] 2 Processor Pinout

	АН	AG	AF	Æ	AD	AC	AB	AA	Υ	w	V	U	т	R	Р	N	М	L	K	J	н	G	F	E	D	С	В	Α	
1	© GND		G/VD		© GND		G/√D		O GND		GND GND			o vc				o vc		G/VD			GND GND		O GND	o vc		GND GND	1
2		GND :	O TERMA	O GND	O ID0#	© GND	O ID1#	O GND	O A07#	© GND			O D30#	GND GND	0	VC	O D20#	GND GND	0	o vc	O D11#	TERM O GND	O D07#		D04#	GND GND	0	O VC	2
3	O TUNER[1]	O TUNER	[2]	O TERME	(D) GND	O ID2#	© GND	O ID3#	© GND	O A06#	0	TERM O A05#				TERM O D23#		O D17#	O GND	TERM O D13#	0	O D14#	0	TERM O D01#		0	© GND	TERM © GND	3
4		O GND	O		O ID4#		O ID6#		O A13#		O A10#	O GND	O DEP3#			GVD				G/VD	O D12#			(O) # GND	O D03#		O NC	O NC	2
5	O NC	0	O GND	O ID6#	© GND	O ID7#	© GND	O A11#	(I) (GND			0	© GND	TERM O D29#			0	TERM O D19#		O DEP1#		TERM O D08#		O STBP0#	(D # GND	TERM O D02#	© GND	© GND	Ę
6		© GND	O RSP#		O ID8#		O ID9#		O A08#				O DEP2#	ł	O D26#		O D28#		O D18#	VC	O D09#					O GND	0		6
7	О ТДО	О ПО	© GND	O RS0#	© GND	O IDS#	G/DI	O DRDY0#	(OND	O A14#	© GND	TERM O A09#	© GND	O D31#	G/VD	TERM O D22#	© GND	O D21#	O GND	TERM O DEPO#	© GND	O D15#		TERM O D10#	0	O D00#	G/VD	THRM	7
8		© GND	O INIT#		O RS1#		O RS2#		O A17#		O A15#		O DEP6#	0	O D54#		O D48#	o vc	O D49#	© GND	O D42#	O VC	O D45#	© GND	O D37#	o vc	0 00	ALERT# O GND	έ
9	O TMS	O TOK	O GND	O REQ0#	GND		(GND)		(OND		© GND			DE3#		O D58#		ΤΕRΜ D63#				ТЕВМ D38#	© GND	O D40#	© GND	ТЕВМ D35#	(GND)	O vssvo	N
10		© GND	O REQ1#		O REQ2#		O HIT#		O A24#				O DEP7#	ı.	O D61#		O STBP34	#	O D50#	vc			STBN2#			© GND	GND V	O VCTERI	
11	O NC	O NC	GND GND	O REQ3#		O DRDY#	© GND	O A23#	© GND	O A26#		TERM O NC		O D60#		TERM O STBN3		O D56#		TERM O DEP5#	0	O D41#		TERM O STBP2#		O D33#	GND\		
12		© GND	O REQ4#		O REQ6#		O HITTM#		O A25#		O A19#		O D62#	O VC TERM				O VC TERM		G/VD	O D46#	O VC TERM	O D44#	GND GND	O D36#	O VC TERM			1
13	O BOLKN		G/VD O			O RP#			O GND	O A22#		O A16#		0		O D55#		0		O D47#		0	0	O D39#	© GND	0		© GND	1
14		GND :	O TRDY#		O GSEO#	: [O DEFER	#	O A34#		O A31#	o vc	O D94#		O D87#	o vc	O D84#		0 NC	o vc	O D75#					Ø Ø		O VC TERM	1
15	O PWR GOOD		ďΩ	0 L00K#		O TND#				O A37#	© GND	O A28#	O GND	O D92#	GND O	O D91#	O GND	O D81#	0		•		0	TERM O D67#		00	GND GND	0	1
16	GLLD.	GNDE	0	<i>‡</i> I	O BREQ1#	#	O NC		O A36#		O A38#		O DEP11;							G/VD		O VC S TERM	STBN#		O D66#		00	© GND	1
17	O NC	O NC	(OND	O NC		O NC		O A33#	0 GND	O A32#	© GND		© GND	0				0		O DEP9#		0		O STBP#		O D73#	© GND	O SMA1	1
18		© GNDE	O REQ3#		0	ı	O BREQ2#	#	O A35#				DEP10	#	O D95#		O D86#			vc			O D69#	o vc	O D64#	G/VD	O SMAO	o vc	1
19	O NC	O NC	GND GND	O BPRI#	_	0 9BSY1#			O GND			TERM O A27#		O D90#	© GND	TERM O D85#		O D82#		-		O D79#	© GND	D74#	O GND	O D70#	© GND	GND GND	1
20		© GND	O PPOD GD#	ı	O RESET#	#	O ADS#	© GND	O A39#		O A45#	GND GND					O D118#	O VC	O D117#	© GND				G/VD		O VC TERM	0	© GND	2
21	O NC	O NC	0	O TRST#		NC NC		O DRDY1#		O A44#	© GND	O A48#		TERM O D124#				TERM O D112#		0 DEP12#	0	D101#	0	O D96#		0	© GND	O SMMP	2
22		G/VD	O UNTO		O BPM0#	ŀ	O BERR#		O A49#			O VC TERM	O DEP15	#	O D125#	VC	O STBP7#	#		VC	D105#			# VC		GND GND	O SIMSD	O VC TERM	2
23	O A20M#	O IGNNE#		О ВРМ2#	GND	O BPM3#	© GND	O AP1#	© GND	O A46#		Ö	0		GND GND	TERM O STBN7		O D116#	0	TERM O DEP13#	0	O D108#	0	TERM O STBP6#	0	O D97#	© GND	0	2
24		© GND		© GND		GND GND	O BPM5#	(QND	O A43#			GND GND	D123#	VC	D120#	GND	D115#	VC	NC	G/VD 0	D109#		D103#	G/VD ©	D104#	O VC TERM	O swec		2
25	O FERR#	O TH_TR	P#	O PM#	GND GND	O BPM1#	GND GND		O GND	O A41#	GND	O VC TERM	G/VD	O D121#	GND GND	O D119#	O GND	O D113#	O GND	O D110#	O GND	0		O D100#		0	GND GND	O VC TERM	2
	АН	AG	AF				AB	AA	Υ	W				R	Р	N	М	L	K	J	Н	G	F	E	D	С	В	A	
	-			— P	ower F	bd																							000

Table 3-1 provides the Itanium 2 processor pin list in alphabetical order.

Table 3-2 provides the Itanium 2 processor pin list by pin location.

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 1 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
3.3 V		B02	IN	SMBus supply voltage
A003#	AA03#/EXF0#	V06	IN/OUT	
A004#	AA04#/EXF1#	V02	IN/OUT	
A005#	AA05#/EXF2#	U03	IN/OUT	
A006#	AA06#/EXF3#	W03	IN/OUT	
A007#	AA07#/EXF4#	Y02	IN/OUT	
A008#	AA08#/BE0#	Y06	IN/OUT	
A009#	AA09#/BE1#	U07	IN/OUT	
A010#	AA10#/BE2#	V04	IN/OUT	
A011#	AA11#/BE3#	AA05	IN/OUT	
A012#	AA12#/BE4#	W05	IN/OUT	
A013#	AA13#/BE5#	Y04	IN/OUT	
A014#	AA14#/BE6#	W07	IN/OUT	
A015#	AA15#/BE7#	V08	IN/OUT	
A016#	AA16#/DID0#	U13	IN/OUT	
A017#	AA17#/DID1#	Y08	IN/OUT	
A018#	AA18#/DID2#	U09	IN/OUT	
A019#	AA19#/DID3#	V12	IN/OUT	
A020#	AA20#/DID4#	V10	IN/OUT	
A021#	AA21#/DID5#	W09	IN/OUT	
A022#	AA22#/DID6#	W13	IN/OUT	
A023#	AA23#/DID7#	AA11	IN/OUT	
A024#	AA24#/DID8#	Y10	IN/OUT	
A025#	AA25#/DID9#	Y12	IN/OUT	
A026#	AA26#/AB26#	W11	IN/OUT	
A027#	AA27#/xTPRValue0#	U19	IN/OUT	
A028#	AA28#/xTPRValue1#	U15	IN/OUT	
A029#	AA29#/xTPRValue2#	V18	IN/OUT	
A030#	AA30#/xTPRValue3#	W19	IN/OUT	
A031#	AA31#/xTPRDisable#	V14	IN/OUT	
A032#	AA32#/ATTR0#	W17	IN/OUT	
A033#	AA33#/ATTR1#	AA17	IN/OUT	
A034#	AA34#/ATTR2#	Y14	IN/OUT	
A035#	AA35#/ATTR3#	Y18	IN/OUT	
A036#	AA36#/AB36#	Y16	IN/OUT	
A037#	AA37#/AB37#	W15	IN/OUT	
A038#	AA38#/AB38#	V16	IN/OUT	
A039#	AA39#/AB39#	Y20	IN/OUT	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 2 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
A040#	AA40#/AB40#	V24	IN/OUT	
A041#	AA41#/AB41#	W25	IN/OUT	
A042#	AA42#/AB42#	U23	IN/OUT	
A043#	AA43#/AB43#	Y24	IN/OUT	
A044#	AA44#/AB44#	W21	IN/OUT	
A045#	AA45#/AB45#	V20	IN/OUT	
A046#	AA46#/AB46#	W23	IN/OUT	
A047#	AA47#/AB47#	V22	IN/OUT	
A048#	AA48#/AB48#	U21	IN/OUT	
A049#	AA49#/AB49#	Y22	IN/OUT	
A20M#	A20M#	AH23	IN	
ADS#	ADS#	AB20	IN/OUT	
AP0#	AP0#	AA25	IN/OUT	
AP1#	AP1#	AA23	IN/OUT	
BCLKn	BCLKN	AH13	IN	
BCLKp	BCLK	AG13	IN	
BERR#	BERR#	AB22	IN/OUT	
BINIT#	BINIT#	AA15	IN/OUT	
BNR#	BNR#	U17	IN/OUT	
BPM0#	BPM0#	AD22	IN/OUT	
BPM1#	BPM1#	AC25	IN/OUT	
BPM2#	BPM2#	AE23	IN/OUT	
BPM3#	BPM3#	AC23	IN/OUT	
BPM4#	BPM4#	AD24	IN/OUT	
BPM5#	BPM5#	AB24	IN/OUT	
BPRI#	BPRI#	AE19	IN	
BR0#	BREQ0#	AF16	IN/OUT	
BR1#	BREQ1#	AD16	IN	
BR2#	BREQ2#	AB18	IN	
BR3#	BREQ3#	AF18	IN	
CPUPRES#	CPUPRES#	AG15	OUT	Power pod signal
D000#	D00#	C07	IN/OUT	
D001#	D01#	E03	IN/OUT	
D002#	D02#	C05	IN/OUT	
D003#	D03#	D04	IN/OUT	
D004#	D04#	D02	IN/OUT	
D005#	D05#	D06	IN/OUT	
D006#	D06#	F06	IN/OUT	
D007#	D07#	F02	IN/OUT	
D008#	D08#	G05	IN/OUT	
D009#	D09#	H06	IN/OUT	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 3 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
D010#	D10#	E07	IN/OUT	
D011#	D11#	H02	IN/OUT	
D012#	D12#	H04	IN/OUT	
D013#	D13#	J03	IN/OUT	
D014#	D14#	G03	IN/OUT	
D015#	D15#	G07	IN/OUT	
D016#	D16#	K04	IN/OUT	
D017#	D17#	L03	IN/OUT	
D018#	D18#	K06	IN/OUT	
D019#	D19#	L05	IN/OUT	
D020#	D20#	M02	IN/OUT	
D021#	D21#	L07	IN/OUT	
D022#	D22#	N07	IN/OUT	
D023#	D23#	N03	IN/OUT	
D024#	D24#	P04	IN/OUT	
D025#	D25#	R03	IN/OUT	
D026#	D26#	P06	IN/OUT	
D027#	D27#	P02	IN/OUT	
D028#	D28#	M06	IN/OUT	
D029#	D29#	R05	IN/OUT	
D030#	D30#	T02	IN/OUT	
D031#	D31#	R07	IN/OUT	
D032#	D32#	H10	IN/OUT	
D033#	D33#	C11	IN/OUT	
D034#	D34#	D10	IN/OUT	
D035#	D35#	C09	IN/OUT	
D036#	D36#	D12	IN/OUT	
D037#	D37#	D08	IN/OUT	
D038#	D38#	G09	IN/OUT	
D039#	D39#	E13	IN/OUT	
D040#	D40#	E09	IN/OUT	
D041#	D41#	G11	IN/OUT	
D042#	D42#	H08	IN/OUT	
D043#	D43#	G13	IN/OUT	
D044#	D44#	F12	IN/OUT	
D045#	D45#	F08	IN/OUT	
D046#	D46#	H12	IN/OUT	
D047#	D47#	J13	IN/OUT	
D048#	D48#	M08	IN/OUT	
D049#	D49#	K08	IN/OUT	
D050#	D50#	K10	IN/OUT	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 4 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
D051#	D51#	M12	IN/OUT	
D052#	D52#	L13	IN/OUT	
D053#	D53#	L09	IN/OUT	
D054#	D54#	P08	IN/OUT	
D055#	D55#	N13	IN/OUT	
D056#	D56#	L11	IN/OUT	
D057#	D57#	P12	IN/OUT	
D058#	D58#	N09	IN/OUT	
D059#	D59#	R13	IN/OUT	
D060#	D60#	R11	IN/OUT	
D061#	D61#	P10	IN/OUT	
D062#	D62#	T12	IN/OUT	
D063#	D63#	R09	IN/OUT	
D064#	D64#	D18	IN/OUT	
D065#	D65#	D14	IN/OUT	
D066#	D66#	D16	IN/OUT	
D067#	D67#	E15	IN/OUT	
D068#	D68#	F14	IN/OUT	
D069#	D69#	F18	IN/OUT	
D070#	D70#	C19	IN/OUT	
D071#	D71#	G15	IN/OUT	
D072#	D72#	G17	IN/OUT	
D073#	D73#	C17	IN/OUT	
D074#	D74#	E19	IN/OUT	
D075#	D75#	H14	IN/OUT	
D076#	D76#	H16	IN/OUT	
D077#	D77#	H18	IN/OUT	
D078#	D78#	J15	IN/OUT	
D079#	D79#	G19	IN/OUT	
D080#	D80#	K18	IN/OUT	
D081#	D81#	L15	IN/OUT	
D082#	D82#	L19	IN/OUT	
D083#	D83#	K16	IN/OUT	
D084#	D84#	M14	IN/OUT	
D085#	D85#	N19	IN/OUT	
D086#	D86#	M18	IN/OUT	
D087#	D87#	P14	IN/OUT	
D088#	D88#	L17	IN/OUT	
D089#	D89#	R17	IN/OUT	
D090#	D90#	R19	IN/OUT	
D091#	D91#	N15	IN/OUT	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 5 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
D092#	D92#	R15	IN/OUT	
D093#	D93#	P16	IN/OUT	
D094#	D94#	T14	IN/OUT	
D095#	D95#	P18	IN/OUT	
D096#	D96#	E21	IN/OUT	
D097#	D97#	C23	IN/OUT	
D098#	D98#	D22	IN/OUT	
D099#	D99#	C21	IN/OUT	
D100#	D100#	E25	IN/OUT	
D101#	D101#	G21	IN/OUT	
D102#	D102#	D20	IN/OUT	
D103#	D103#	F24	IN/OUT	
D104#	D104#	D24	IN/OUT	
D105#	D105#	H22	IN/OUT	
D106#	D106#	F20	IN/OUT	
D107#	D107#	G25	IN/OUT	
D108#	D108#	G23	IN/OUT	
D109#	D109#	H24	IN/OUT	
D110#	D110#	J25	IN/OUT	
D111#	D111#	H20	IN/OUT	
D112#	D112#	L21	IN/OUT	
D113#	D113#	L25	IN/OUT	
D114#	D114#	K22	IN/OUT	
D115#	D115#	M24	IN/OUT	
D116#	D116#	L23	IN/OUT	
D117#	D117#	K20	IN/OUT	
D118#	D118#	M20	IN/OUT	
D119#	D119#	N25	IN/OUT	
D120#	D120#	P24	IN/OUT	
D121#	D121#	R25	IN/OUT	
D122#	D122#	P20	IN/OUT	
D123#	D123#	T24	IN/OUT	
D124#	D124#	R21	IN/OUT	
D125#	D125#	P22	IN/OUT	
D126#	D126#	R23	IN/OUT	
D127#	D127#	N21	IN/OUT	
DBSY#	DBSY#	AC09	IN/OUT	
DBSY0#	DBSY_C1#	AA09	OUT	
DBSY1#	DBSY_C2#	AA19	OUT	
DEFER#	DEFER#	AB14	IN	
DEP00#	DEP0#	J07	IN/OUT	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 6 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
DEP01#	DEP1#	J05	IN/OUT	
DEP02#	DEP2#	T06	IN/OUT	
DEP03#	DEP3#	T04	IN/OUT	
DEP04#	DEP4#	J09	IN/OUT	
DEP05#	DEP5#	J11	IN/OUT	
DEP06#	DEP6#	T08	IN/OUT	
DEP07#	DEP7#	T10	IN/OUT	
DEP08#	DEP8#	J19	IN/OUT	
DEP09#	DEP9#	J17	IN/OUT	
DEP10#	DEP10#	T18	IN/OUT	
DEP11#	DEP11#	T16	IN/OUT	
DEP12#	DEP12#	J21	IN/OUT	
DEP13#	DEP13#	J23	IN/OUT	
DEP14#	DEP14#	T20	IN/OUT	
DEP15#	DEP15#	T22	IN/OUT	
DRDY#	DRDY#	AC11	IN/OUT	
DRDY0#	DRDY_C1#	AA07	OUT	
DRDY1#	DRDY_C2#	AA21	OUT	
FERR#	FERR#	AH25	OUT	
GND	GND	A01	IN	
GND	GND	A03	IN	
GND	GND	A05	IN	
GND	GND	A08	IN	
GND	GND	A13	IN	
GND	GND	A16	IN	
GND	GND	A19	IN	
GND	GND	A20	IN	
GND	GND	A23	IN	
GND	GND	A24	IN	
GND	GND	AA02	IN	
GND	GND	AA20	IN	
GND	GND	AA24	IN	
GND	GND	AB01	IN	
GND	GND	AB03	IN	
GND	GND	AB05	IN	
GND	GND	AB07	IN	
GND	GND	AB09	IN	
GND	GND	AB11	IN	
GND	GND	AB13	IN	
GND	GND	AB15	IN	
GND	GND	AB17	IN	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 7 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	AB19	IN	
GND	GND	AB21	IN	
GND	GND	AB23	IN	
GND	GND	AB25	IN	
GND	GND	AC02	IN	
GND	GND	AC24	IN	
GND	GND	AD01	IN	
GND	GND	AD03	IN	
GND	GND	AD05	IN	
GND	GND	AD07	IN	
GND	GND	AD09	IN	
GND	GND	AD11	IN	
GND	GND	AD13	IN	
GND	GND	AD15	IN	
GND	GND	AD17	IN	
GND	GND	AD19	IN	
GND	GND	AD21	IN	
GND	GND	AD23	IN	
GND	GND	AD25	IN	
GND	GND	AE02	IN	
GND	GND	AE24	IN	
GND	GND	AF01	IN	
GND	GND	AF05	IN	
GND	GND	AF07	IN	
GND	GND	AF09	IN	
GND	GND	AF11	IN	
GND	GND	AF13	IN	
GND	GND	AF15	IN	
GND	GND	AF17	IN	
GND	GND	AF19	IN	
GND	GND	AF21	IN	
GND	GND	AG02	IN	
GND	GND	AG04	IN	
GND	GND	AG06	IN	
GND	GND	AG08	IN	
GND	GND	AG10	IN	
GND	GND	AG12	IN	
GND	GND	AG14	IN	
GND	GND	AG16	IN	
GND	GND	AG18	IN	
GND	GND	AG20	IN	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 8 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	AG22	IN	
GND	GND	AG24	IN	
GND	GND	AH01	IN	
GND	GND	B03	IN	
GND	GND	B05	IN	
GND	GND	B07	IN	
GND	GND	B09	IN	
GND	GND	B10	IN	
GND	GND	B11	IN	
GND	GND	B13	IN	
GND	GND	B15	IN	
GND	GND	B17	IN	
GND	GND	B19	IN	
GND	GND	B21	IN	
GND	GND	B23	IN	
GND	GND	B25	IN	
GND	GND	C02	IN	
GND	GND	C06	IN	
GND	GND	C10	IN	
GND	GND	C14	IN	
GND	GND	C18	IN	
GND	GND	C22	IN	
GND	GND	D01	IN	
GND	GND	D03	IN	
GND	GND	D05	IN	
GND	GND	D07	IN	
GND	GND	D09	IN	
GND	GND	D11	IN	
GND	GND	D13	IN	
GND	GND	D15	IN	
GND	GND	D17	IN	
GND	GND	D19	IN	
GND	GND	D21	IN	
GND	GND	D23	IN	
GND	GND	D25	IN	
GND	GND	E04	IN	
GND	GND	E08	IN	
GND	GND	E12	IN	
GND	GND	E16	IN	
GND	GND	E20	IN	
GND	GND	E24	IN	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 9 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	F01	IN	
GND	GND	F03	IN	
GND	GND	F05	IN	
GND	GND	F07	IN	
GND	GND	F09	IN	
GND	GND	F11	IN	
GND	GND	F13	IN	
GND	GND	F15	IN	
GND	GND	F17	IN	
GND	GND	F19	IN	
GND	GND	F21	IN	
GND	GND	F23	IN	
GND	GND	F25	IN	
GND	GND	G02	IN	
GND	GND	H03	IN	
GND	GND	H05	IN	
GND	GND	H07	IN	
GND	GND	H09	IN	
GND	GND	H11	IN	
GND	GND	H13	IN	
GND	GND	H15	IN	
GND	GND	H17	IN	
GND	GND	H19	IN	
GND	GND	H21	IN	
GND	GND	H23	IN	
GND	GND	H25	IN	
GND	GND	J01	IN	
GND	GND	J04	IN	
GND	GND	J08	IN	
GND	GND	J12	IN	
GND	GND	J16	IN	
GND	GND	J20	IN	
GND	GND	J24	IN	
GND	GND	K03	IN	
GND	GND	K05	IN	
GND	GND	K07	IN	
GND	GND	K09	IN	
GND	GND	K11	IN	
GND	GND	K13	IN	
GND	GND	K15	IN	
GND	GND	K17	IN	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 10 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	K19	IN	
GND	GND	K21	IN	
GND	GND	K23	IN	
GND	GND	K25	IN	
GND	GND	L02	IN	
GND	GND	M01	IN	
GND	GND	M03	IN	
GND	GND	M05	IN	
GND	GND	M07	IN	
GND	GND	M09	IN	
GND	GND	M11	IN	
GND	GND	M13	IN	
GND	GND	M15	IN	
GND	GND	M17	IN	
GND	GND	M19	IN	
GND	GND	M21	IN	
GND	GND	M23	IN	
GND	GND	M25	IN	
GND	GND	N04	IN	
GND	GND	N20	IN	
GND	GND	N24	IN	
GND	GND	P01	IN	
GND	GND	P03	IN	
GND	GND	P05	IN	
GND	GND	P07	IN	
GND	GND	P09	IN	
GND	GND	P11	IN	
GND	GND	P13	IN	
GND	GND	P15	IN	
GND	GND	P17	IN	
GND	GND	P19	IN	
GND	GND	P21	IN	
GND	GND	P23	IN	
GND	GND	P25	IN	
GND	GND	R02	IN	
GND	GND	T01	IN	
GND	GND	T03	IN	
GND	GND	T05	IN	
GND	GND	T07	IN	
GND	GND	T09	IN	
GND	GND	T11	IN	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 11 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	T13	IN	
GND	GND	T15	IN	
GND	GND	T17	IN	
GND	GND	T19	IN	
GND	GND	T21	IN	
GND	GND	T23	IN	
GND	GND	T25	IN	
GND	GND	U04	IN	
GND	GND	U20	IN	
GND	GND	U24	IN	
GND	GND	V01	IN	
GND	GND	V03	IN	
GND	GND	V05	IN	
GND	GND	V07	IN	
GND	GND	V09	IN	
GND	GND	V11	IN	
GND	GND	V13	IN	
GND	GND	V15	IN	
GND	GND	V17	IN	
GND	GND	V19	IN	
GND	GND	V21	IN	
GND	GND	V23	IN	
GND	GND	V25	IN	
GND	GND	W02	IN	
GND	GND	Y01	IN	
GND	GND	Y03	IN	
GND	GND	Y05	IN	
GND	GND	Y07	IN	
GND	GND	Y09	IN	
GND	GND	Y11	IN	
GND	GND	Y13	IN	
GND	GND	Y15	IN	
GND	GND	Y17	IN	
GND	GND	Y19	IN	
GND	GND	Y21	IN	
GND	GND	Y23	IN	
GND	GND	Y25	IN	
GSEQ#	GSEQ#	AD14	IN	
HIT#	HIT#	AB10	IN/OUT	
HITM#	HITM#	AB12	IN/OUT	
ID0#	IDA0#/IP0#	AD02	IN	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 12 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
ID1#	IDA1#/IP1#	AB02	IN	
ID2#	IDA2#/DHIT#	AC03	IN	
ID3#	IDA3#/IDB3#	AA03	IN	
ID4#	IDA4#/IDB4#	AD04	IN	
ID5#	IDA5#/IDB5#	AB04	IN	
ID6#	IDA6#/IDB6#	AE05	IN	
ID7#	IDA7#/IDB7#	AC05	IN	
ID8#	IDA8#/IDB8#	AD06	IN	
ID9#	IDA9#/IDB9#	AB06	IN	
IDS#	IDS#	AC07	IN	
IGNNE#	IGNNE#	AG23	IN	
INIT#	INIT#	AF08	IN	
LINT0	INT	AF22	IN	
LINT1	NMI	AF24	IN	
LOCK#	LOCK#	AE15	IN/OUT	
N/C		A04		
N/C		AB16		
N/C		AC17		
N/C		AC21		
N/C		AD18		
N/C		AE17		
N/C		AG05		
N/C		AG11		
N/C		AG17		
N/C		AG19		
N/C		AG21		
N/C		AH05		
N/C		AH11		
N/C		AH17		
N/C		AH19		
N/C		AH21		
N/C		B04		
N/C		B06		
N/C		B08		
N/C		B14		
N/C		B16		
N/C		B20		
N/C		C03		
N/C		C13		
N/C		C15		
N/C		C15		

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 13 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
N/C		K02		
N/C		K12		
N/C		K14		
N/C		K24		
N/C		U05		
N/C		U11		
OUTEN	OUTEN	AF04	IN	Power pod signal
PMI#	PMI#	AE25	IN	
PPODGD#	PPODGD#	AF20	OUT	Power pod signal
PWRGOOD	PWRGOOD	AH15	IN	
REQ0#	REQA0#/LEN0#	AE09	IN/OUT	
REQ1#	WSNP#, D/C#/LEN1#	AF10	IN/OUT	
REQ2#	REQA2#/ REQB2#	AD10	IN/OUT	
REQ3#	ASZ0#/DSZ0#	AE11	IN/OUT	
REQ4#	ASZ1#/DSZ1#	AF12	IN/OUT	
REQ5#	REQ5#	AD12	IN/OUT	
RESET#	RESET#	AD20	IN	
RP#	RP#	AC13	IN/OUT	
RS0#	RS0#	AE07	IN	
RS1#	RS1#	AD08	IN	
RS2#	RS2#	AB08	IN	
RSP#	RSP#	AF06	IN	
SBSY#	SBSY#	AE13	IN/OUT	
SBSY0#	SBSY_C1#	AA13	OUT	
SBSY1#	SBSY_C2#	AC19	OUT	
SMA0	SMA0	B18	IN	SMBus signal
SMA1	SMA1	A17	IN	SMBus signal
SMA2	SMA2	A15	IN	SMBus signal
SMSC	SMSC	B24	IN	SMBus signal
SMSD	SMSD	B22	IN/OUT	SMBus signal
SMWP	SMWP	A21	IN	SMBus signal
STBN0#	STBN0#	F04	IN/OUT	
STBN1#	STBN1#	N05	IN/OUT	
STBN2#	STBN2#	F10	IN/OUT	
STBN3#	STBN3#	N11	IN/OUT	
STBN4#	STBN4#	F16	IN/OUT	
STBN5#	STBN5#	N17	IN/OUT	
STBN6#	STBN6#	F22	IN/OUT	
STBN7#	STBN7#	N23	IN/OuT	
STBP0#	STBP0#	E05	IN/OUT	
STBP1#	STBP1#	M04	IN/OUT	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 14 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
STBP2#	STBP2#	E11	IN/OUT	
STBP3#	STBP3#	M10	IN/OUT	
STBP4#	STBP4#	E17	IN/OUT	
STBP5#	STBP5#	M16	IN/OUT	
STBP6#	STBP6#	E23	IN/OUT	
STBP7#	STBP7#	M22	IN/OUT	
TCK	TCK	AG09	IN	JTAG
TDI	TDI	AG07	IN	JTAG
TDO	TDO	AH07	OUT	JTAG
TERMA	FSBT1	AF02	IN	
TERMB	FSBT2	AE03	IN	
THRMTRIP#	THRMTRIP#	AG25	OUT	
THRMALERT#	THRMALERT#	A07	OUT	
TMS	TMS	AH09	IN	JTAG
TND#	TND#	AC15	IN/OUT	
TRDY#	TRDY#	AF14	IN	
TRST#	TRST#	AE21	IN	JTAG
TUNER[1]	TUNER[1]	AH03		
TUNER[2]	TUNER[2]	AG03		
VCCMON	VCCMON	A11	OUT	Power pod signal
VCTERM	VCTERM	A02	IN	
VCTERM	VCTERM	A06	IN	
VCTERM	VCTERM	A10	IN	
VCTERM	VCTERM	A14	IN	
VCTERM	VCTERM	A18	IN	
VCTERM	VCTERM	A22	IN	
VCTERM	VCTERM	A25	IN	
VCTERM	VCTERM	C01	IN	
VCTERM	VCTERM	C04	IN	
VCTERM	VCTERM	C08	IN	
VCTERM	VCTERM	C12	IN	
VCTERM	VCTERM	C16	IN	
VCTERM	VCTERM	C20	IN	
VCTERM	VCTERM	C24	IN	
VCTERM	VCTERM	E02	IN	
VCTERM	VCTERM	E06	IN	
VCTERM	VCTERM	E10	IN	
VCTERM	VCTERM	E14	IN	
VCTERM	VCTERM	E18	IN	
VCTERM	VCTERM	E22	IN	
VCTERM	VCTERM	G01	IN	

Table 3-1. Pin/Signal Information Sorted by Pin Name (Sheet 15 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
VCTERM	VCTERM	G04	IN	
VCTERM	VCTERM	G08	IN	
VCTERM	VCTERM	G12	IN	
VCTERM	VCTERM	G16	IN	
VCTERM	VCTERM	G20	IN	
VCTERM	VCTERM	G24	IN	
VCTERM	VCTERM	J02	IN	
VCTERM	VCTERM	J06	IN	
VCTERM	VCTERM	J10	IN	
VCTERM	VCTERM	J14	IN	
VCTERM	VCTERM	J18	IN	
VCTERM	VCTERM	J22	IN	
VCTERM	VCTERM	L01	IN	
VCTERM	VCTERM	L04	IN	
VCTERM	VCTERM	L08	IN	
VCTERM	VCTERM	L12	IN	
VCTERM	VCTERM	L16	IN	
VCTERM	VCTERM	L20	IN	
VCTERM	VCTERM	L24	IN	
VCTERM	VCTERM	N02	IN	
VCTERM	VCTERM	N06	IN	
VCTERM	VCTERM	N10	IN	
VCTERM	VCTERM	N14	IN	
VCTERM	VCTERM	N18	IN	
VCTERM	VCTERM	N22	IN	
VCTERM	VCTERM	R01	IN	
VCTERM	VCTERM	R04	IN	
VCTERM	VCTERM	R08	IN	
VCTERM	VCTERM	R12	IN	
VCTERM	VCTERM	R16	IN	
VCTERM	VCTERM	R20	IN	
VCTERM	VCTERM	R24	IN	
VCTERM	VCTERM	U02	IN	
VCTERM	VCTERM	U06	IN	
VCTERM	VCTERM	U10	IN	
VCTERM	VCTERM	U14	IN	
VCTERM	VCTERM	U18	IN	
VCTERM	VCTERM	U22	IN	
VCTERM	VCTERM	U25	IN	
VSSMON	VSSMON	A09	OUT	Power pod signal

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 1 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	A01	IN	
VCTERM	VCTERM	A02	IN	
GND	GND	A03	IN	
N/C		A04		
GND	GND	A05	IN	
VCTERM	VCTERM	A06	IN	
THRMALERT#	THRMALERT#	A07	OUT	
GND	GND	A08	IN	
VSSMON	VSSMON	A09	OUT	Power pod signal
VCTERM	VCTERM	A10	IN	
VCCMON	VCCMON	A11	OUT	Power pod signal
GND	GND	A13	IN	
VCTERM	VCTERM	A14	IN	
SMA2	SMA2	A15	IN	SMBus signal
GND	GND	A16	IN	
SMA1	SMA1	A17	IN	SMBus signal
VCTERM	VCTERM	A18	IN	
GND	GND	A19	IN	
GND	GND	A20	IN	
SMWP	SMWP	A21	IN	SMBus signal
VCTERM	VCTERM	A22	IN	
GND	GND	A23	IN	
GND	GND	A24	IN	
VCTERM	VCTERM	A25	IN	
3.3V		B02	IN	SMBus supply voltage
GND	GND	B03	IN	
N/C		B04		
GND	GND	B05	IN	
N/C		B06		
GND	GND	B07	IN	
RSVD	RSVD	B08		
GND	GND	B09	IN	
GND	GND	B10	IN	
GND	GND	B11	IN	
GND	GND	B13	IN	
N/C		B14		
GND	GND	B15	IN	
N/C		B16		
GND	GND	B17	IN	
SMA0	SMA0	B18	IN	SMBus signal

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 2 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	B19	IN	
N/C		B20		
GND	GND	B21	IN	
SMSD	SMSD	B22	IN/OUT	SMBus signal
GND	GND	B23	IN	
SMSC	SMSC	B24	IN	SMBus signal
GND	GND	B25	IN	
VCTERM	VCTERM	C01	IN	
GND	GND	C02	IN	
N/C		C03		
VCTERM	VCTERM	C04	IN	
D002#	D02#	C05	IN/OUT	
GND	GND	C06	IN	
D000#	D00#	C07	IN/OUT	
VCTERM	VCTERM	C08	IN	
D035#	D35#	C09	IN/OUT	
GND	GND	C10	IN	
D033#	D33#	C11	IN/OUT	
VCTERM	VCTERM	C12	IN	
N/C		C13		
GND	GND	C14	IN	
N/C		C15		
VCTERM	VCTERM	C16	IN	
D073#	D73#	C17	IN/OUT	
GND	GND	C18	IN	
D070#	D70#	C19	IN/OUT	
VCTERM	VCTERM	C20	IN	
D099#	D99#	C21	IN/OUT	
GND	GND	C22	IN	
D097#	D97#	C23	IN/OUT	
VCTERM	VCTERM	C24	IN	
N/C		C25		
GND	GND	D01	IN	
D004#	D04#	D02	IN/OUT	
GND	GND	D03	IN	
D003#	D03#	D04	IN/OUT	
GND	GND	D05	IN	
D005#	D05#	D06	IN/OUT	
GND	GND	D07	IN	
D037#	D37#	D08	IN/OUT	
GND	GND	D09	IN	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 3 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
D034#	D34#	D10	IN/OUT	
GND	GND	D11	IN	
D036#	D36#	D12	IN/OUT	
GND	GND	D13	IN	
D065#	D65#	D14	IN/OUT	
GND	GND	D15	IN	
D066#	D66#	D16	IN/OUT	
GND	GND	D17	IN	
D064#	D64#	D18	IN/OUT	
GND	GND	D19	IN	
D102#	D102#	D20	IN/OUT	
GND	GND	D21	IN	
D098#	D98#	D22	IN/OUT	
GND	GND	D23	IN	
D104#	D104#	D24	IN/OUT	
GND	GND	D25	IN	
VCTERM	VCTERM	E02	IN	
D001#	D01#	E03	IN/OUT	
GND	GND	E04	IN	
STBP0#	STBP0#	E05	IN/OUT	
VCTERM	VCTERM	E06	IN	
D010#	D10#	E07	IN/OUT	
GND	GND	E08	IN	
D040#	D40#	E09	IN/OUT	
VCTERM	VCTERM	E10	IN	
STBP2#	STBP2#	E11	IN/OUT	
GND	GND	E12	IN	
D039#	D39#	E13	IN/OUT	
VCTERM	VCTERM	E14	IN	
D067#	D67#	E15	IN/OUT	
GND	GND	E16	IN	
STBP4#	STBP4#	E17	IN/OUT	
VCTERM	VCTERM	E18	IN	
D074#	D74#	E19	IN/OUT	
GND	GND	E20	IN	
D096#	D96#	E21	IN/OUT	
VCTERM	VCTERM	E22	IN	
STBP6#	STBP6#	E23	IN/OUT	
GND	GND	E24	IN	
D100#	D100#	E25	IN/OUT	
GND	GND	F01	IN	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 4 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
D007#	D07#	F02	IN/OUT	
GND	GND	F03	IN	
STBN0#	STBN0#	F04	IN/OUT	
GND	GND	F05	IN	
D006#	D06#	F06	IN/OUT	
GND	GND	F07	IN	
D045#	D45#	F08	IN/OUT	
GND	GND	F09	IN	
STBN2#	STBN2#	F10	IN/OUT	
GND	GND	F11	IN	
D044#	D44#	F12	IN/OUT	
GND	GND	F13	IN	
D068#	D68#	F14	IN/OUT	
GND	GND	F15	IN	
STBN4#	STBN4#	F16	IN/OUT	
GND	GND	F17	IN	
D069#	D69#	F18	IN/OUT	
GND	GND	F19	IN	
D106#	D106#	F20	IN/OUT	
GND	GND	F21	IN	
STBN6#	STBN6#	F22	IN/OUT	
GND	GND	F23	IN	
D103#	D103#	F24	IN/OUT	
GND	GND	F25	IN	
VCTERM	VCTERM	G01	IN	
GND	GND	G02	IN	
D014#	D14#	G03	IN/OUT	
VCTERM	VCTERM	G04	IN	
D008#	D08#	G05	IN/OUT	
D015#	D15#	G07	IN/OUT	
VCTERM	VCTERM	G08	IN	
D038#	D38#	G09	IN/OUT	
D041#	D41#	G11	IN/OUT	
VCTERM	VCTERM	G12	IN	
D043#	D43#	G13	IN/OUT	
D071#	D71#	G15	IN/OUT	
VCTERM	VCTERM	G16	IN	
D072#	D72#	G17	IN/OUT	
D079#	D79#	G19	IN/OUT	
VCTERM	VCTERM	G20	IN	
D101#	D101#	G21	IN/OUT	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 5 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
D108#	D108#	G23	IN/OUT	
VCTERM	VCTERM	G24	IN	
D107#	D107#	G25	IN/OUT	
D011#	D11#	H02	IN/OUT	
GND	GND	H03	IN	
D012#	D12#	H04	IN/OUT	
GND	GND	H05	IN	
D009#	D09#	H06	IN/OUT	
GND	GND	H07	IN	
D042#	D42#	H08	IN/OUT	
GND	GND	H09	IN	
D032#	D32#	H10	IN/OUT	
GND	GND	H11	IN	
D046#	D46#	H12	IN/OUT	
GND	GND	H13	IN	
D075#	D75#	H14	IN/OUT	
GND	GND	H15	IN	
D076#	D76#	H16	IN/OUT	
GND	GND	H17	IN	
D077#	D77#	H18	IN/OUT	
GND	GND	H19	IN	
D111#	D111#	H20	IN/OUT	
GND	GND	H21	IN	
D105#	D105#	H22	IN/OUT	
GND	GND	H23	IN	
D109#	D109#	H24	IN/OUT	
GND	GND	H25	IN	
GND	GND	J01	IN	
VCTERM	VCTERM	J02	IN	
D013#	D13#	J03	IN/OUT	
GND	GND	J04	IN	
DEP01#	DEP1#	J05	IN/OUT	
VCTERM	VCTERM	J06	IN	
DEP00#	DEP0#	J07	IN/OUT	
GND	GND	J08	IN	
DEP04#	DEP4#	J09	IN/OUT	
VCTERM	VCTERM	J10	IN	
DEP05#	DEP5#	J11	IN/OUT	
GND	GND	J12	IN	
D047#	D47#	J13	IN/OUT	
VCTERM	VCTERM	J14	IN	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 6 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
D078#	D78#	J15	IN/OUT	
GND	GND	J16	IN	
DEP09#	DEP9#	J17	IN/OUT	
VCTERM	VCTERM	J18	IN	
DEP08#	DEP8#	J19	IN/OUT	
GND	GND	J20	IN	
DEP12#	DEP12#	J21	IN/OUT	
VCTERM	VCTERM	J22	IN	
DEP13#	DEP13#	J23	IN/OUT	
GND	GND	J24	IN	
D110#	D110#	J25	IN/OUT	
N/C		K02		
GND	GND	K03	IN	
D016#	D16#	K04	IN/OUT	
GND	GND	K05	IN	
D018#	D18#	K06	IN/OUT	
GND	GND	K07	IN	
D049#	D49#	K08	IN/OUT	
GND	GND	K09	IN	
D050#	D50#	K10	IN/OUT	
GND	GND	K11	IN	
N/C		K12		
GND	GND	K13	IN	
N/C		K14		
GND	GND	K15	IN	
D083#	D83#	K16	IN/OUT	
GND	GND	K17	IN	
D080#	D80#	K18	IN/OUT	
GND	GND	K19	IN	
D117#	D117#	K20	IN/OUT	
GND	GND	K21	IN	
D114#	D114#	K22	IN/OUT	
GND	GND	K23	IN	
N/C	_	K24		
GND	GND	K25	IN	
VCTERM	VCTERM	L01	IN	
GND	GND	L02	IN	
D017#	D17#	L03	IN/OUT	
VCTERM	VCTERM	L04	IN	
D019#	D19#	L05	IN/OUT	
D021#	D21#	L07	IN/OUT	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 7 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
VCTERM	VCTERM	L08	IN	
D053#	D53#	L09	IN/OUT	
D056#	D56#	L11	IN/OUT	
VCTERM	VCTERM	L12	IN	
D052#	D52#	L13	IN/OUT	
D081#	D81#	L15	IN/OUT	
VCTERM	VCTERM	L16	IN	
D088#	D88#	L17	IN/OUT	
D082#	D82#	L19	IN/OUT	
VCTERM	VCTERM	L20	IN	
D112#	D112#	L21	IN/OUT	
D116#	D116#	L23	IN/OUT	
VCTERM	VCTERM	L24	IN	
D113#	D113#	L25	IN/OUT	
GND	GND	M01	IN	
D020#	D20#	M02	IN/OUT	
GND	GND	M03	IN	
STBP1#	STBP1#	M04	IN/OUT	
GND	GND	M05	IN	
D028#	D28#	M06	IN/OUT	
GND	GND	M07	IN	
D048#	D48#	M08	IN/OUT	
GND	GND	M09	IN	
STBP3#	STBP3#	M10	IN/OUT	
GND	GND	M11	IN	
D051#	D51#	M12	IN/OUT	
GND	GND	M13	IN	
D084#	D84#	M14	IN/OUT	
GND	GND	M15	IN	
STBP5#	STBP5#	M16	IN/OUT	
GND	GND	M17	IN	
D086#	D86#	M18	IN/OUT	
GND	GND	M19	IN	
D118#	D118#	M20	IN/OUT	
GND	GND	M21	IN	
STBP7#	STBP7#	M22	IN/OUT	
GND	GND	M23	IN	
D115#	D115#	M24	IN/OUT	
GND	GND	M25	IN	
VCTERM	VCTERM	N02	IN	
D023#	D23#	N03	IN/OUT	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 8 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	N04	IN	
STBN1#	STBN1#	N05	IN/OUT	
VCTERM	VCTERM	N06	IN	
D022#	D22#	N07	IN/OUT	
D058#	D58#	N09	IN/OUT	
VCTERM	VCTERM	N10	IN	
STBN3#	STBN3#	N11	IN/OUT	
D055#	D55#	N13	IN/OUT	
VCTERM	VCTERM	N14	IN	
D091#	D91#	N15	IN/OUT	
STBN5#	STBN5#	N17	IN/OUT	
VCTERM	VCTERM	N18	IN	
D085#	D85#	N19	IN/OUT	
GND	GND	N20	IN	
D127#	D127#	N21	IN/OUT	
VCTERM	VCTERM	N22	IN	
STBN7#	STBN7#	N23	IN/OuT	
GND	GND	N24	IN	
D119#	D119#	N25	IN/OUT	
GND	GND	P01	IN	
D027#	D27#	P02	IN/OUT	
GND	GND	P03	IN	
D024#	D24#	P04	IN/OUT	
GND	GND	P05	IN	
D026#	D26#	P06	IN/OUT	
GND	GND	P07	IN	
D054#	D54#	P08	IN/OUT	
GND	GND	P09	IN	
D061#	D61#	P10	IN/OUT	
GND	GND	P11	IN	
D057#	D57#	P12	IN/OUT	
GND	GND	P13	IN	
D087#	D87#	P14	IN/OUT	
GND	GND	P15	IN	
D093#	D93#	P16	IN/OUT	
GND	GND	P17	IN	
D095#	D95#	P18	IN/OUT	
GND	GND	P19	IN	
D122#	D122#	P20	IN/OUT	
GND	GND	P21	IN	
D125#	D125#	P22	IN/OUT	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 9 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	P23	IN	
D120#	D120#	P24	IN/OUT	
GND	GND	P25	IN	
VCTERM	VCTERM	R01	IN	
GND	GND	R02	IN	
D025#	D25#	R03	IN/OUT	
VCTERM	VCTERM	R04	IN	
D029#	D29#	R05	IN/OUT	
D031#	D31#	R07	IN/OUT	
VCTERM	VCTERM	R08	IN	
D063#	D63#	R09	IN/OUT	
D060#	D60#	R11	IN/OUT	
VCTERM	VCTERM	R12	IN	
D059#	D59#	R13	IN/OUT	
D092#	D92#	R15	IN/OUT	
VCTERM	VCTERM	R16	IN	
D089#	D89#	R17	IN/OUT	
D090#	D90#	R19	IN/OUT	
VCTERM	VCTERM	R20	IN	
D124#	D124#	R21	IN/OUT	
D126#	D126#	R23	IN/OUT	
VCTERM	VCTERM	R24	IN	
D121#	D121#	R25	IN/OUT	
GND	GND	T01	IN	
D030#	D30#	T02	IN/OUT	
GND	GND	T03	IN	
DEP03#	DEP3#	T04	IN/OUT	
GND	GND	T05	IN	
DEP02#	DEP2#	T06	IN/OUT	
GND	GND	T07	IN	
DEP06#	DEP6#	T08	IN/OUT	
GND	GND	T09	IN	
DEP07#	DEP7#	T10	IN/OUT	
GND	GND	T11	IN	
D062#	D62#	T12	IN/OUT	
GND	GND	T13	IN	
D094#	D94#	T14	IN/OUT	
GND	GND	T15	IN	
DEP11#	DEP11#	T16	IN/OUT	
GND	GND	T17	IN	
DEP10#	DEP10#	T18	IN/OUT	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 10 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	T19	IN	
DEP14#	DEP14#	T20	IN/OUT	
GND	GND	T21	IN	
DEP15#	DEP15#	T22	IN/OUT	
GND	GND	T23	IN	
D123#	D123#	T24	IN/OUT	
GND	GND	T25	IN	
VCTERM	VCTERM	U02	IN	
A005#	AA05#/EXF2#	U03	IN/OUT	
GND	GND	U04	IN	
N/C		U05		
VCTERM	VCTERM	U06	IN	
A009#	AA09#/BE1#	U07	IN/OUT	
A018#	AA18#/DID2#	U09	IN/OUT	
VCTERM	VCTERM	U10	IN	
N/C		U11		
A016#	AA16#/DID0#	U13	IN/OUT	
VCTERM	VCTERM	U14	IN	
A028#	AA28#/xTPRValue1#	U15	IN/OUT	
BNR#	BNR#	U17	IN/OUT	
VCTERM	VCTERM	U18	IN	
A027#	AA27#/xTPRValue0#	U19	IN/OUT	
GND	GND	U20	IN	
A048#	AA48#/AB48#	U21	IN/OUT	
VCTERM	VCTERM	U22	IN	
A042#	AA42#/AB42#	U23	IN/OUT	
GND	GND	U24	IN	
VCTERM	VCTERM	U25	IN	
GND	GND	V01	IN	
A004#	AA04#/EXF1#	V02	IN/OUT	
GND	GND	V03	IN	
A010#	AA10#/BE2#	V04	IN/OUT	
GND	GND	V05	IN	
A003#	AA03#/EXF0#	V06	IN/OUT	
GND	GND	V07	IN	
A015#	AA15#/BE7#	V08	IN/OUT	
GND	GND	V09	IN	
A020#	AA20#/DID4#	V10	IN/OUT	
GND	GND	V11	IN	
A019#	AA19#/DID3#	V12	IN/OUT	
GND	GND	V13	IN	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 11 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
A031#	AA31#/xTPRDisable#	V14	IN/OUT	
GND	GND	V15	IN	
A038#	AA38#/AB38#	V16	IN/OUT	
GND	GND	V17	IN	
A029#	AA29#/xTPRValue2#	V18	IN/OUT	
GND	GND	V19	IN	
A045#	AA45#/AB45#	V20	IN/OUT	
GND	GND	V21	IN	
A047#	AA47#/AB47#	V22	IN/OUT	
GND	GND	V23	IN	
A040#	AA40#/AB40#	V24	IN/OUT	
GND	GND	V25	IN	
GND	GND	W02	IN	
A006#	AA06#/EXF3#	W03	IN/OUT	
A012#	AA12#/BE4#	W05	IN/OUT	
A014#	AA14#/BE6#	W07	IN/OUT	
A021#	AA21#/DID5#	W09	IN/OUT	
A026#	AA26#/AB26#	W11	IN/OUT	
A022#	AA22#/DID6#	W13	IN/OUT	
A037#	AA37#/AB37#	W15	IN/OUT	
A032#	AA32#/ATTR0#	W17	IN/OUT	
A030#	AA30#/xTPRValue3#	W19	IN/OUT	
A044#	AA44#/AB44#	W21	IN/OUT	
A046#	AA46#/AB46#	W23	IN/OUT	
A041#	AA41#/AB41#	W25	IN/OUT	
GND	GND	Y01	IN	
A007#	AA07#/EXF4#	Y02	IN/OUT	
GND	GND	Y03	IN	
A013#	AA13#/BE5#	Y04	IN/OUT	
GND	GND	Y05	IN	
A008#	AA08#/BE0#	Y06	IN/OUT	
GND	GND	Y07	IN	
A017#	AA17#/DID1#	Y08	IN/OUT	
GND	GND	Y09	IN	
A024#	AA24#/DID8#	Y10	IN/OUT	
GND	GND	Y11	IN	
A025#	AA25#/DID9#	Y12	IN/OUT	
GND	GND	Y13	IN	
A034#	AA34#/ATTR2#	Y14	IN/OUT	
GND	GND	Y15	IN	
A036#	AA36#/AB36#	Y16	IN/OUT	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 12 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
GND	GND	Y17	IN	
A035#	AA35#/ATTR3#	Y18	IN/OUT	
GND	GND	Y19	IN	
A039#	AA39#/AB39#	Y20	IN/OUT	
GND	GND	Y21	IN	
A049#	AA49#/AB49#	Y22	IN/OUT	
GND	GND	Y23	IN	
A043#	AA43#/AB43#	Y24	IN/OUT	
GND	GND	Y25	IN	
GND	GND	AA02	IN	
ID3#	IDA3#/IDB3#	AA03	IN	
A011#	AA11#/BE3#	AA05	IN/OUT	
DRDY0#	DRDY_C1#	AA07	OUT	
DBSY0#	DBSY_C1#	AA09	OUT	
A023#	AA23#/DID7#	AA11	IN/OUT	
SBSY0#	SBSY_C1#	AA13	OUT	
BINIT#	BINIT#	AA15	IN/OUT	
A033#	AA33#/ATTR1#	AA17	IN/OUT	
DBSY1#	DBSY_C2#	AA19	OUT	
GND	GND	AA20	IN	
DRDY1#	DRDY_C2#	AA21	OUT	
AP1#	AP1#	AA23	IN/OUT	
GND	GND	AA24	IN	
AP0#	AP0#	AA25	IN/OUT	
GND	GND	AB01	IN	
ID1#	IDA1#/IP1#	AB02	IN	
GND	GND	AB03	IN	
ID5#	IDA5#/IDB5#	AB04	IN	
GND	GND	AB05	IN	
ID9#	IDA9#/IDB9#	AB06	IN	
GND	GND	AB07	IN	
RS2#	RS2#	AB08	IN	
GND	GND	AB09	IN	
HIT#	HIT#	AB10	IN/OUT	
GND	GND	AB11	IN	
HITM#	HITM#	AB12	IN/OUT	
GND	GND	AB13	IN	
DEFER#	DEFER#	AB14	IN	
GND	GND	AB15	IN	
N/C		AB16		
GND	GND	AB17	IN	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 13 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
BR2#	BREQ2#	AB18	IN	
GND	GND	AB19	IN	
ADS#	ADS#	AB20	IN/OUT	
GND	GND	AB21	IN	
BERR#	BERR#	AB22	IN/OUT	
GND	GND	AB23	IN	
BPM5#	BPM5#	AB24	IN/OUT	
GND	GND	AB25	IN	
GND	GND	AC02	IN	
ID2#	IDA2#/DHIT#	AC03	IN	
ID7#	IDA7#/IDB7#	AC05	IN	
IDS#	IDS#	AC07	IN	
DBSY#	DBSY#	AC09	IN/OUT	
DRDY#	DRDY#	AC11	IN/OUT	
RP#	RP#	AC13	IN/OUT	
TND#	TND#	AC15	IN/OUT	
N/C		AC17		
SBSY1#	SBSY_C2#	AC19	OUT	
N/C#		AC21		
BPM3#	BPM3#	AC23	IN/OUT	
GND	GND	AC24	IN	
BPM1#	BPM1#	AC25	IN/OUT	
GND	GND	AD01	IN	
ID0#	IDA0#/IP0#	AD02	IN	
GND	GND	AD03	IN	
ID4#	IDA4#/IDB4#	AD04	IN	
GND	GND	AD05	IN	
ID8#	IDA8#/IDB8#	AD06	IN	
GND	GND	AD07	IN	
RS1#	RS1#	AD08	IN	
GND	GND	AD09	IN	
REQ2#	REQA2#/ REQB2#	AD10	IN/OUT	
GND	GND	AD11	IN	
REQ5#	REQ5#	AD12	IN/OUT	
GND	GND	AD13	IN	
GSEQ#	GSEQ#	AD14	IN	
GND	GND	AD15	IN	
BR1#	BREQ1#	AD16	IN	
GND	GND	AD17	IN	
N/C		AD18		
GND	GND	AD19	IN	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 14 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
RESET#	RESET#	AD20	IN	
GND	GND	AD21	IN	
BPM0#	BPM0#	AD22	IN/OUT	
GND	GND	AD23	IN	
BPM4#	BPM4#	AD24	IN/OUT	
GND	GND	AD25	IN	
GND	GND	AE02	IN	
TERMB	FSBT2	AE03		
ID6#	IDA6#/IDB6#	AE05	IN	
RS0#	RS0#	AE07	IN	
REQ0#	REQA0#/LEN0#	AE09	IN/OUT	
REQ3#	ASZ0#/DSZ0#	AE11	IN/OUT	
SBSY#	SBSY#	AE13	IN/OUT	
LOCK#	LOCK#	AE15	IN/OUT	
N/C		AE17		
BPRI#	BPRI#	AE19	IN	
TRST#	TRST#	AE21	IN	
BPM2#	BPM2#	AE23	IN/OUT	
GND	GND	AE24	IN	
PMI#	PMI#	AE25	IN	
GND	GND	AF01	IN	
TERM	FSBT	AF02	IN	
OUTEN	OUTEN	AF04	IN	Power pod signal
GND	GND	AF05	IN	
RSP#	RSP#	AF06	IN	
GND	GND	AF07	IN	
INIT#	INIT#	AF08	IN	
GND	GND	AF09	IN	
REQ1#	WSNP#, D/C#/LEN1#	AF10	IN/OUT	
GND	GND	AF11	IN	
REQ4#	ASZ1#/DSZ1#	AF12	IN/OUT	
GND	GND	AF13	IN	
TRDY#	TRDY#	AF14	IN	
GND	GND	AF15	IN	
BR0#	BREQ0#	AF16	IN/OUT	
GND	GND	AF17	IN	
BR3#	BREQ3#	AF18	IN	
GND	GND	AF19	IN	
PPODGD#	PPODGD#	AF20	OUT	Power pod signal
GND	GND	AF21	IN	
LINT0	INT	AF22	IN	

Table 3-2. Pin/Signal Information Sorted by Pin Location (Sheet 15 of 15)

Pin Name	System Bus Signal Name	Pin Location	Input/Output	Notes
LINT1	NMI	AF24	IN	
GND	GND	AG02	IN	
TUNER[2]		AG03		
GND	GND	AG04	IN	
N/C		AG05		
GND	GND	AG06	IN	
TDI	TDI	AG07	IN	JTAG
GND	GND	AG08	IN	
TCK	TCK	AG09	IN	JTAG
GND	GND	AG10	IN	
N/C		AG11		
GND	GND	AG12	IN	
BCLKp	CLK	AG13	IN	
GND	GND	AG14	IN	
CPUPRES#	CPUPRES#	AG15	OUT	Power pod signal
GND	GND	AG16	IN	
N/C		AG17		
GND	GND	AG18	IN	
N/C		AG19		
GND	GND	AG20	IN	
N/C		AG21		
GND	GND	AG22	IN	
IGNNE#	IGNNE#	AG23	IN	
GND	GND	AG24	IN	
THRMTRIP#	THRMTRIP#	AG25	OUT	Thermal trip
GND	GND	AH01	IN	
TUNER[1]		AH03		
N/C		AH05		
TDO	TDO	AH07	OUT	JTAG
TMS	TMS	AH09	IN	JTAG
N/C		AH11		
BCLKn	BCLKN	AH13	IN	
PWRGOOD	PWRGOOD	AH15	IN	
N/C		AH17		
N/C		AH19		
N/C		AH21		
A20M#	A20M#	AH23	IN	
FERR#	FERR#	AH25	OUT	

4 Mechanical Specifications

This chapter provides the mechanical specifications of the Itanium 2 processor.

4.1 Mechanical Dimensions

The Itanium 2 processor package is comprised of an interposer, a processor package substrate, and an integrated heat spreader (IHS), as illustrated in Figure 4-1. The interposer interfaces with the socket and the power pod and contains 611 pins which are positioned in a 25 x 28 grid. The IHS, which is mounted on the top surface of the processor package substrate, efficiently transfers the heat generated by the die to its surface.

Figure 4-1. Itanium® 2 Processor Package

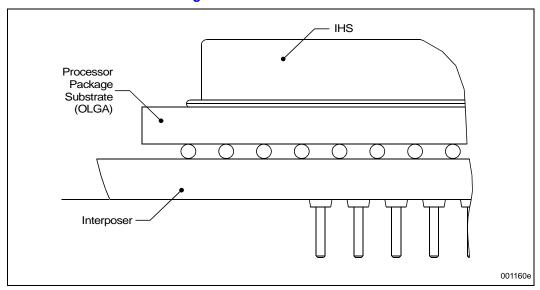
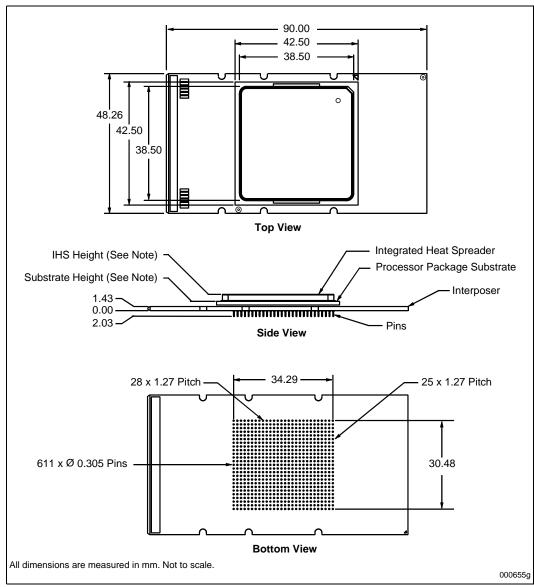



Figure 4-2 contains mechanical drawings and dimensions for the Itanium 2 processor package. Figure 4-3 contains mechanical drawing for the power tab. All dimensions are measured in mm and are not to scale.

Figure 4-2. Itanium[®] 2 Processor Package

NOTE:

IHS Height	Substrate Height	Units
5.825	3.447	mm

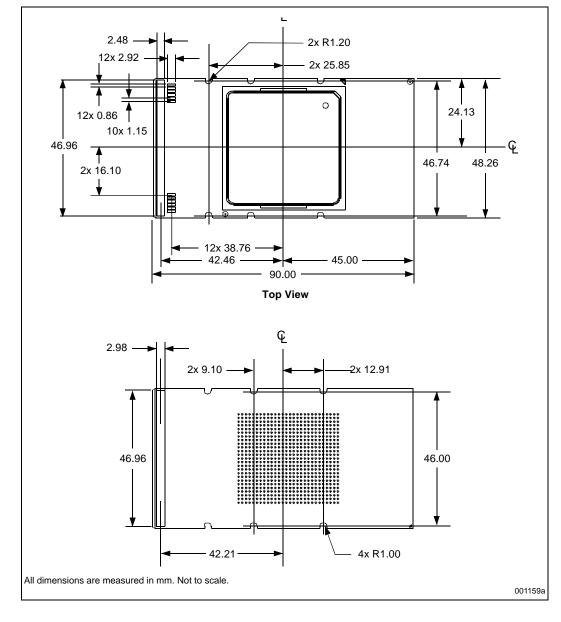
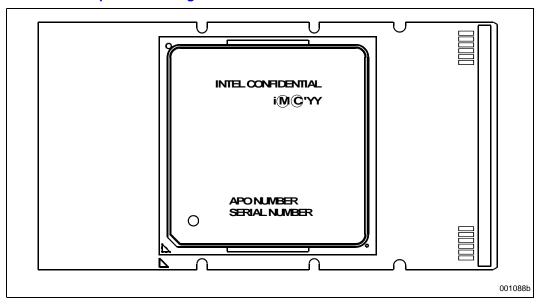


Figure 4-3. Itanium[®] 2 Processor Package Power Tab

4.2 Package Marking


The following section details the processor top-side and bottom-side markings for the Itanium 2 processor and is provided as an identification aid. The processor top-side mark for the product is a laser marking on the IHS.

4.2.1 Processor Top-Side Marking

Figure 4-4 shows an example of the laser marking on the IHS. The processor top-side mark provides the following information:

- INTEL CONFIDENTIAL
- Legal Mark
- Assembly Process Order (APO) Number
- · Serial Number

Figure 4-4. Processor Top-Side Marking on IHS

4.2.2 Processor Bottom-Side Marking

The processor bottom-side mark for the product is a laser marking on the pin side of the interposer. Figure 4-5 shows the placement of the laser marking on the pin side of interposer. The processor bottom-side mark provides the following information:

- Product ID
- Finish Process Order (FPO) Number
- Serial Number
- S-Spec
- Country of origin
- 2D Matrix Mark

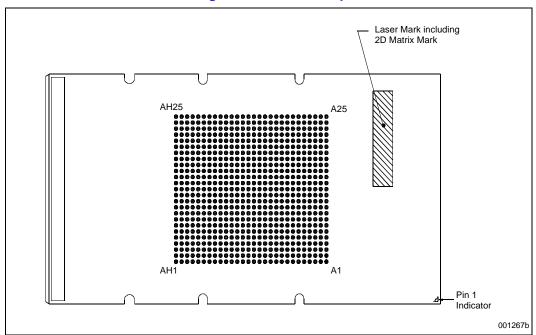
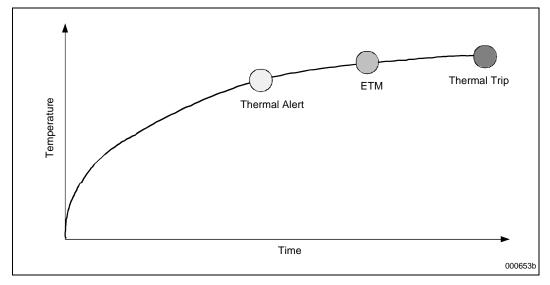


Figure 4-5. Processor Bottom-Side Marking Placement on Interposer

5 Thermal Specifications


This chapter provides a description of the thermal features relating to the Itanium 2 processor.

5.1 Thermal Features

The Itanium 2 processor has an internal thermal circuit which senses when a certain temperature is reached on the processor core. This circuit is used for controlling various thermal states. In addition, an on-chip thermal diode is available for use by the thermal sensing device on the Itanium 2 processor. Figure 5-1 shows the relationship between temperature, time, and the thermal alert, enhanced thermal management (ETM), and thermal trip points.

Note: Figure 5-1 is not intended to show a linear relationship in time or temperature as a processor's thermal state advances from one state to the next state when the cooling solution fails to control the processor temperature, as this is affected by many factors such as cooling solution performance degradation and processor workload variations.

Figure 5-1. Itanium® 2 Processor Thermal Features

5.1.1 Thermal Alert

THRMALERT# is a programmable thermal alert signal which is part of the Itanium 2 processor system management feature. THRMALERT# is asserted when the measured temperature from the processor thermal diode equals or exceeds the temperature threshold data programmed in the high temp (THIGH) or low temp (TLOW) registers on the sensor. Intel recommends using the upper temperature reference byte listed in the Processor Information ROM when programming the THIGH register (see Chapter 6 for more details). This signal can be used by the platform to implement thermal regulation features such as generating an external interrupt to tell the operating system that the processor core die temperature is increasing.

5.1.2 Enhanced Thermal Management

ETM is a new feature that has been added to the Itanium 2 processor. ETM uses a thermal sensing device on the die to monitor a thermal entry point, indicating dangerous operation exceeding the thermal specification. Once the thermal sensing device observes the temperature rise above the thermal entry point, the processor will enter a low power mode of execution and notify the system by sending a Correctable Machine Check Interrupt (CMCI). The Itanium 2 processor will remain in this low power mode until the temperature decreases below the thermal entry point and remains for approximately one second, at which point the it will send an another CMCI and resume normal operation. If the temperature cannot be reduced and continues to rise to critical levels, the processor will assert the THRMTRIP# signal. The ETM feature may be disabled through the PAL.

5.1.3 Thermal Trip

The Itanium 2 processor protects itself from catastrophic overheating by use of an internal thermal sensor. The sensor trip point is set well above the normal operating temperature to ensure that there are no false trips. The Itanium 2 processor will stop all execution when the junction temperature exceeds a safe operating level.

Warning: Data will be lost if the Itanium 2 processor goes into thermal trip (signaled to the system by the THRMTRIP# pin).

Once thermal trip is activated, the Itanium 2 processor remains stopped until RESET# is asserted. The processor case temperature must drop below the specified maximum before issuing a reset to the processor. Please see Section 5.2 for details on case temperature.

5.2 Case Temperature

See Table 5-1 for the case temperature specifications for the Itanium 2 processor. The case temperature is defined as the temperature measured at the center of the top surface of the IHS.

Warning: Data may be lost if the case temperature exceeds the specified maximum.

Table 5-1. Case Temperature Specification

Symbol	Parameter	Minimum	Maximum	Unit	Notes
T _{case}	Case Temperature	5	83	°C	

Figure 5-2 contains dimensions for the thermocouple location on the Itanium 2 processor package. This is the recommended location for placement of a thermocouple for case temperature measurement.

24.13

24.13

Thermocouple Location

All dimensions are measured in mm. Not to scale.

Figure 5-2. Itanium[®] 2 Processor Package Thermocouple Location

6 System Management Feature Specifications

The Itanium 2 processor includes a system management bus (SMBus) interface. This chapter describes the features of the SMBus and SMBus components.

6.1 System Management Bus

6.1.1 System Management Bus Interface

The Itanium 2 processor includes an Itanium processor family SMBus interface which allows access to several processor features. The system management components on the processor include two memory components (EEPROMs) and a thermal sensing device (digital thermometer). The processor information EEPROM (PIROM) is programmed by Intel with manufacturing and feature information specific to the Itanium 2 processor. This information is permanently write-protected. Section 6.2 provides detail on the PIROM. The other EEPROM is a scratch EEPROM that is available for other data at the system vendor's discretion. The thermal sensor can be used in conjunction with the information in the PIROM and/or the Scratch EEPROM for system thermal monitoring and management. The thermal sensing device on the processor provides an accurate means of acquiring an indicator of the junction temperature of the processor core die. The thermal sensing device is connected to the anode and cathode of the Itanium 2 processor on-die thermal diode. SMBus implementation on the Itanium 2 processor uses the clock and data signals as defined by SMBus specifications.

6.1.2 System Management Interface Signals

Table 6-1 lists the system management interface signals and their descriptions. These signals are used by the system to access the system management components via the SMBus.

Table 6-1. System Management Interface Signal Descriptions

Signal Name	Pin Count	Description
3.3 V	1	Voltage supply for EEPROMs and thermal sensor.
SMA[2:0]	3	Address select passed through from socket.
SMSC	1	System management bus clock.
SMSD	1	System management serial address/data bus.
SMWP	1	Scratch EEPROM write protect.
THRMALERT#	1	Temperature alert from the thermal sensor.

Figure 6-1 shows the logical schematics of SMBus circuitry on the Itanium 2 processor and shows how the various system management components are connected to the SMBus. The reference to the System Board at the lower left corner of Figure 6-1 shows how SMBus address configuration for multiple Itanium 2 processors can be realized with resistor stuffing options.

3.3V

System Board

10K

000668b

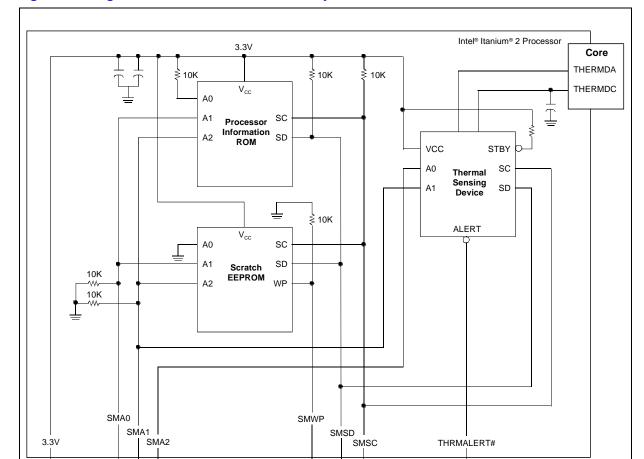


Figure 6-1. Logical Schematic of SMBus Circuitry

3.3V

System Board

Actual implementation may vary.
 For use in general understanding of the architecture.

NOTE:

Stuffing Options

6.1.3 SMBus Device Addressing

Of the addresses broadcast across the SMBus, the memory components claim those of the form "1010XXYZb". The "XX" and "Y" bits are used to enable the devices on the processor at adjacent addresses. The Y bit is hard-wired on the processor to GND ('0') for the Scratch EEPROM and pulled to 3.3 V ('1') for the processor information ROM. The "XX" bits are defined by the processor socket via the SMA0 and SMA1 pins on the Itanium 2 processor connector. These address pins have a weak pull-down ($10k\ \Omega$) to ensure that the memory components are in a known state in systems which do not support the SMBus, or only support a partial implementation. The "Z" bit is the read/write bit for the serial bus transaction.

The thermal sensing device internally decodes 1 of 3 upper address patterns from the bus of the form "0011XXXZb", "1001XXXZb" or "0101XXXZb". The device's addressing, as implemented, uses SMA2 and SMA1 and includes a Hi-Z state for the SMA2 address pin. Therefore, the thermal sensing device supports six unique resulting addresses. To set the Hi-Z state for SMA2, the pin must be left floating. The system should drive SMA1 and SMA0, and will be pulled low (if not driven) by the 10k Ω pull-down resistor on the processor substrate. Attempting to drive either of these signals to a Hi-Z state would cause ambiguity in the memory device address decode, possibly resulting in the devices not responding, thus timing out or hanging the SMBus. As before, the "Z" bit is the read/write bit for the serial bus transaction.

Figure 6-1 shows a logical diagram of the pin connections. Table 6-2 and Table 6-3 describe the address pin connections and how they affect the addressing of the devices.

Note: Addresses of the form "0000XXXXb" are Reserved and should not be generated by an SMBus master. Also, system management software must be aware of the processor select in the address for the thermal sensing device.

Table 6-2. Thermal Sensing Device SMBus Addressing on the Itanium[®] 2 Processor

Address (Hex)	Upper Address ¹	Process	or Select	8-Bit Address Word on Serial Bus		
Address (Hex)	Opper Address	SMA2	SMA1	b[7:0]		
3Xh	0011	0	0	0011000Xb		
	0011	0	1	0011010Xb		
5Xh	0101	Z ²	0	0101001Xb		
	0101	Z ^b	1	0101011Xb		
9Xh	1001	1	0	1001100Xb		
	1001	1	1	1001110Xb		

NOTES:

- 1. Upper address bits are decoded in conjunction with the select pins.
- 2. A tri-state or "Z" state on this pin is achieved by leaving this pin unconnected.

Table 6-3. EEPROM SMBus Addressing on the Itanium[®] 2 Processor

Address (Hex)	Upper Address ¹	Process	or Select	Memory Device Select	Read/ Write	Device Addressed
(Hex)	Bits 7-4	(SMA1) Bit 3	(SMA0) Bit 2	Bit 1	Bit 0	
A0h/A1h	1010	0	0	0	Х	Scratch EEPROM 1
A2h/A3h	1010	0	0	1	Х	Processor Information ROM 1
A4h/A5h	1010	0	1	0	Х	Scratch EEPROM 2
A6h/A7h	1010	0	1	1	Х	Processor Information ROM 2
A8h/A9h	1010	1	0	0	Х	Scratch EEPROM 3
AAh/ABh	1010	1	0	1	Х	Processor Information ROM 3
ACh/ADh	1010	1	1	0	Х	Scratch EEPROM 4
AEh/AFh	1010	1	1	1	Х	Processor Information ROM 4

NOTES

6.2 Processor Information ROM

An electrically programmed read-only memory (ROM) provides information about the Itanium 2 processor. The checksum bits for each category provide error correction and serve as a mechanism to check whether data is corrupted or not. This information is permanently write-protected. Table 6-4 shows the data fields and formats provided in the memory.

Note: The data, in byte format, is written and read serially with the most significant bit first.

Table 6-4. Processor Information ROM Format (Sheet 1 of 4)

Offset/ Section	# of Bits	Function	Notes	Examples
Header	•			
00h	8	Data Format Revision	Two 4-bit hex digits	Start with 00h
01h	16	EEPROM Size	Size in bytes (MSB first)	Use a decimal to hex transfer; 128 bytes = 0080h:
				• 02h[7:4] = 0000
				• 02h[3:0] = 0000
				• 01h[7:4] = 1000
				• 01h[3:0] = 0000
03h	8	Processor Data Address	Byte pointer, 00h if not present	0Eh
04h	8	Processor Core Address	Byte pointer, 00h if not present	17h
05h	8	Processor Cache Address	Byte pointer, 00h if not present	28h
06h	8	Processor Data Address	Byte pointer, 00h if not present	37h
07h	8	Part Number Data Address	Byte pointer, 00h if not present	3Eh
08h	8	Thermal Reference Data Address	Byte pointer, 00h if not present	63h

^{1.} Though this addressing scheme is targeted for up to four-way MP systems, more processors can be supported by using a multiplexed (or separate) SMBus implementation.

Table 6-4. Processor Information ROM Format (Sheet 2 of 4)

Offset/ Section	# of Bits	Function	Notes	Examples
09h	8	Feature Data Address	Byte pointer, 00h if not present	67h
0Ah	8	Other Data Address	Byte pointer, 00h if not present	7Ah
0Bh	16	Reserved	Reserved for future use	0000h
0Dh	8	Checksum	1 byte checksum	Add up by byte and take 2's complement.
Processor				
0Eh	48	S-spec Number	Six 8-bit ASCII characters	S-spec number of S123 would be: • 13h = 00h
				• 12h = 00h
				• 11h = "3"
				• 10h = "2"
				• 0Fh = "1"
				• 0Eh = "S"
14h	2	Sample/Production	00b = Sample only (MSB First)	00000001b = Production
15h	8	Reserved	Reserved for future use	00h
16h	8	Checksum	1 byte checksum	Add up by byte and take 2's complement.
Core				
17h	8	Architecture Revision	From CPUID ¹	Taken from CPUID[3].archrev
18h	8	Processor Core Family	From CPUID	Taken from CPUID[3].family
19h	8	Processor Core Model	From CPUID	Taken from CPUID[3].model
1Ah	8	Processor Core Stepping	From CPUID	Taken from CPUID[3].revision
1Bh	24	Reserved	Reserved for future use.	000000h
1Eh	16	Maximum Core Frequency	Four 4-bit hex digits (in MHz).	1.0 GHz = 1000h ²
20h	12	Maximum System Bus Frequency	Three 4-bit hex digits (in MHz).	200 MHz = 200h ¹
22h	16	Core Voltage ID	Voltage in four 4-bit hex digits (in mV).	1500 mV = 1500h ¹
24h	8	Core Voltage Tolerance, High	Edge finger tolerance in mV, + two 4-bit hex digits.	1.5% = 22 mV = 22h ¹
25h	8	Core Voltage Tolerance, Low	Edge finger tolerance in mV, – two 4-bit hex digits.	1.5% = 22 mV = 22h ¹
26h	8	Reserved	Reserved for future use.	00h
27h	8	Checksum	1 byte checksum.	Add up by byte and take 2's complement.
Cache				
28h	32	Reserved	Reserved for future use.	00000000h
2Ch	16	Cache Size	Four 4-bit hex digits (in Kbytes).	3072 Kbytes = 3072h ¹
2Eh	64	Reserved	Reserved for future use.	x0h
36h	8	Checksum	1 byte checksum.	

Table 6-4. Processor Information ROM Format (Sheet 3 of 4)

Offset/ Section	# of Bits	Function	Notes	Examples
Package	I		1	-
37h	32	Package Revision	Four 8-bit ASCII characters.	Itanium® 2 Package = INT2. Itanium 2 processor (1.30 - 1.60 GHz and Low Voltage) Package = INT3b: • 37h = I • 38h = N • 39h = T • 3Ah = 2 or 3
3Bh	2	Substrate Revision Software ID	2-bit revision number.	00
3Ch	8	Reserved	Reserved for future use.	00h
3Dh	8	Checksum	1 byte checksum.	Add up by byte and take 2's complement.
Part Numb	pers		•	
3Eh	56	Processor Part Number	Seven 8-bit ASCII characters.	Itanium 2 processor = 80543KC, Itanium 2 processor w/533 MHz = 80543KE, Low Voltage Itanium 2 processor = 80544KC: • 3Eh = "8" • 3Fh = "0" • 40h = "5" • 41h = "4" • 42h = "3" or "4" • 43h = "K" • 44h = "C" • 44h = "C" or "E"
45h	64	Processor Electronic Signature	64-bit identification number.	May have padded zeros.
4Dh	168	Reserved	Reserved for future use.	x0h
62h	8	Checksum	1 byte checksum.	Add up by byte and take 2's complement.
Thermal R	eferenc	ce		
63h	8	Upper Temp Reference Byte	Hex value of thermal upper temp limit.	1.40 GHz default = 105, 1.60 GHz default = 113, 1.0/1.30 GHz default = 107.
64h	8	Thermal Calibration Offset Byte Present	Number of degrees in error (±).	Default = 0
65h	8	Reserved	Reserved for future use.	00h
66h	8	Checksum	1 byte checksum.	Add up by byte and take 2's complement.

0000h

Offset/ Section	# of Bits	Function	Notes	Examples
Features	•	,		,
67h	32	IA-32 Processor Core Feature Flags	From 32 bit CPUID.	4387FBFFh
6Bh	64	Reserved	Reserved (Processor core feature flags implemented in the Itanium processor family).	0000 0000 6380 811Bh
73h	32	Processor Feature Flags	All other are reserved: [4] =Upper temp reference byte [3] =Thermal calibration offset byte present [2] =SCRATCH EEPROM present [1] =Core VID present	1 indicates EEPROM data for specified field is valid.
77h	4	Number of Devices in TAP Chain	One 4-bit hex digit.	
78h	4	Reserved	Reserved for future use.	0h
79h	8	Checksum	1 byte checksum.	Add up by byte and take 2's complement.

Table 6-4. Processor Information ROM Format (Sheet 4 of 4)

7Ah NOTES:

16

Reserved

6.3 Scratch EEPROM

Also available on the SMBus interface on the processor is an EEPROM which may be used for other data at the system vendor's discretion (Intel will not be using the scratch EEPROM). The data in this EEPROM, once programmed, can be write-protected by asserting the active-high SMWP signal. This signal has a weak pull-down ($10k\ \Omega$) to allow the EEPROM to be programmed in systems with no implementation of this signal.

Reserved for future use.

6.4 Processor Information ROM and Scratch EEPROM Supported SMBus Transactions

The processor information ROM and scratch EEPROM responds to three of the SMBus packet types: current address read, random address read, and sequential read.

Table 6-5 shows the format of the current address read SMBus packet. The internal address counter keeps track of the address accessed during the last read or write operation, incremented by one. Address "roll over" during reads is from the last byte of the last eight byte page to the first byte of the first page. "Roll over" during writes is from the last byte of the current eight byte page to the first byte of the same page.

^{1.} Refer to the Intel® Itanium® Architecture Software Developer's Manual for details on CPUID registers.

^{2.} The translation is using BCD.

Table 6-6 shows the format of the random read SMBus packet. The write with no data loads the address desired to be read. Sequential reads may begin with a current address read or a random address read. After the SMBus host controller receives the data word, it responds with an acknowledge. This will continue until the SMBus host controller responds with a negative acknowledge and a stop.

Table 6-7 shows the format of the byte write SMBus packet. The page write operates the same way as the byte write except that the SMBus host controller does not send a stop after the first data byte and acknowledge. The Scratch EEPROM internally increments its address. The SMBus host controller continues to transmit data bytes until it terminates the sequence with a stop. All data bytes will result in an acknowledge from the Scratch EEPROM. If more than eight bytes are written, the internal address will "roll over" and the previous data will be overwritten.

In Table 6-5 through Table 6-7, 'S' represents the SMBus start bit, 'P' represents a stop bit, 'R' represents a read, 'W' represents a write bit, 'A' represents an acknowledge, and '///' represents a negative acknowledge. The shaded bits are transmitted by the processor information ROM or Scratch EEPROM and the bits that are not shaded are transmitted by the SMBus host controller. In the tables the data addresses indicate eight bits. The SMBus host controller should transmit eight bits, but as there are only 128 addresses, the most significant bit is a don't care.

Table 6-5. Current Address Read SMBus Packet

S	Device Address	R	Α	Data	///	P
1	7 bits	1	1	8 bits	1	1

Table 6-6. Random Address Read SMBus Packet

S	Device Address	w	A	Data Address	A	S	Device Address	R	A	Data	///	P
1	7 bits	1	1	8 bits	1	1	7 bits	1	1	8 bits	1	1

Table 6-7. Byte Write SMBus Packet

S	Device Address	w	A	Data Address	A	Data	A	Р
1	7 bits	0	1	8 bits	1	8 bits	1	1

6.5 Thermal Sensing Device

The Itanium 2 processor's thermal sensing device provides a means of acquiring thermal data from the processor. The accuracy of the thermal reading is expected to be better than ± 3 °C. The thermal sensing device is composed of control logic, SMBus interface logic, a precision analog to digital converter, and a precision current source. The thermal sensing device drives a small current through a thermal diode located on the processor core and measures the voltage generated across the thermal diode by the current. With this information, the thermal sensing device computes a byte of temperature data. Software running on the processor or on a micro-controller can use the temperature data from the thermal sensing device to thermally manage the system.

The thermal sensing device provides a register with a data byte (seven bits plus sign) which contains a value corresponding to the sampled output of the thermal diode in the Itanium 2 processor core. The value of the byte read from the thermal sensor gives an accurate reading of processor core temperature at the time of the reading. This data can be used in conjunction with the upper temperature reference byte (provided in the processor information ROM) for thermal

management purposes. The temperature data from the thermal sensor can be read out digitally using an SMBus read command (see Section 6.6). The thermal sensor detects when SMBus power is applied to the processor, and resets itself at power up.

The thermal sensing device also contains alarm registers to store thermal reference threshold data. These values can be individually programmed on the thermal sensor. If the measured temperature equals or exceeds the alarm threshold value, the appropriate bit is set in the thermal sensing device status register, which is also brought out to the Itanium 2 processor system bus via the THRMALERT# signal (see Section 6.1.1 for more details). At power up, the appropriate alarm register values need to be programmed into the thermal sensing device via the SMBus. It is recommended that the upper thermal reference threshold byte (provided in the processor information ROM) be used for setting the upper threshold value in the alarm register.

When polling the thermal sensing device on the processor to read the processor temperatures, it is recommended that the polling frequency be every 0.5 to 1 second.

6.6 Thermal Sensing Device Supported SMBus Transactions

The thermal sensing device responds to five of the SMBus packet types: write byte, read byte, send byte, receive byte, and alert response address (ARA). The send byte packet is used for sending one-shot commands only. The receive byte packet accesses the register commanded by the last read byte packet. If a receive byte packet was preceded by a write byte or send byte packet more recently than a read byte packet, then the behavior is undefined. Table 6-8 through Table 6-12 diagram the five packet types. In these tables, 'S' represents the SMBus start bit, 'P' represents a stop bit, 'Ack' represents an acknowledge, and '///' represents a negative acknowledge. The shaded bits are transmitted by the thermal sensor and the unshaded bits are transmitted by the SMBus host controller. Table 6-13 shows the encoding of the command byte.

Table 6-8. Write Byte SMBus Packet

S	Address	Write	Ack	Command	Ack	Data	Ack	P
1	7 bits	1	1	8 bits	1	8 bits	1	1

Table 6-9. Read Byte SMBus Packet

S	Address	Write	Ack	Command	Ack	S	Address	Read	Ack	Data	///	P
1	7 bits	1	1	8 bits	1	1	7 bits	1	1	8 bits	1	1

Table 6-10. Send Byte SMBus Packet

S	Address	Write	Ack	Command	Ack	P
1	7 bits	1	1	8 bits	1	

Table 6-11. Receive Byte SMBus Packet

S	Address	Read	Ack	Data	///	Р
1	7 bits	1	1	8 bits	1	1

Table 6-12. ARA SMBus Packet

S	ARA	Read	Ack	Address	///	P
1	0001 100	1	1	1001 1011	1	1

Table 6-13. Command Byte Bit Assignment

Register	Command	Reset State	Function
RESERVED	00h	N/A	Reserved for future use.
RRT	01h	N/A	Read processor core thermal data.
RS	02h	N/A	Read status byte (flags, busy signal).
RC	03h	0000 0000	Read configuration byte.
RCR	04h	0000 0010	Read conversion rate byte.
RESERVED	05h	0111 1111	Reserved for future use.
RESERVED	06h	1100 1001	Reserved for future use.
RRHL	07h	0111 1111	Read processor core thermal diode T _{HIGH} limit.
RRLL	08h	1100 1001	Read processor core thermal diode T _{LOW} limit.
WC	09h	N/A	Write configuration byte.
WCR	0Ah	N/A	Write conversion rate byte.
RESERVED	0Bh	N/A	Reserved for future use.
RESERVED	0Ch	N/A	Reserved for future use.
WRHL	0Dh	N/A	Write processor core thermal diode T _{HIGH} limit.
WRLL	0Eh	N/A	Write processor core thermal diode T _{LOW} limit.
OSHT	0Fh	N/A	One shot command (use send byte packet).
RESERVED	10h – FFh	N/A	Reserved for future use.

All of the commands are for reading or writing registers in the thermal sensor except the one-shot command (OSHT). The one-shot command forces the immediate start of a new voltage-to-temperature conversion cycle. If a conversion is in progress when the one-shot command is received, then the command is ignored. If the thermal sensing device is in standby mode when the one-shot command is received, a conversion is performed and the sensor returns to standby mode. If the thermal sensor is in auto-convert mode and is between conversions, then the conversion rate timer resets, and the next automatic conversion takes place after a full delay elapses. Please refer to Section 6.7.4 for further detail on standby and auto-convert modes.

The default command after reset is the reserved value (00h). After reset, receive byte packets will return invalid data until another command is sent to the thermal sensing device.

6.7 Thermal Sensing Device Registers

The system management software can configure and control the thermal sensor by writing to and interacting with different registers in the thermal sensor. These registers include a thermal reference register, two thermal limit registers, a status register, a configuration register, a conversion rate register, and other reserved registers. The following subsections describe the registers in detail.

6.7.1 Thermal Reference Registers

The processor core and thermal sensing device internal thermal reference registers contain the thermal reference value of the thermal sensing device and the processor core thermal diodes. This value ranges from +127 to -128 decimal and is expressed as a two's complement, eight-bit number. These registers are saturating, i.e., values above 127 are represented at 127 decimal, and values below -128 are represented as -128 decimal.

6.7.2 Thermal Limit Registers

The thermal sensing device has two thermal limit registers; they define high and low limits for the processor core thermal diode. The encoding for these registers is the same as for the thermal reference registers. If the diode thermal value equals or exceeds one of its limits, then its alarm bit in the status register is triggered. This indication is also brought out to the Itanium 2 processor system bus via the THRMALERT# signal.

6.7.3 Status Register

The status register shown in Table 6-14 indicates which (if any) of the thermal value thresholds have been exceeded. It also indicates if a conversion is in progress or if an open circuit has been detected in the processor core thermal diode connection. Once set, alarm bits stay set until they are cleared by a status register read. A successful read to the status register will clear any alarm bits that may have been set, unless the alarm condition persists. Note that the THRMALERT# interrupt signal is latched and is not automatically cleared when the status flag bit is cleared. The latch is cleared by sending the Alert Response Address (0001100) on the SMBus.

Table 6-14.	Thermal	Sensina	Device	Status	Register

Bit	Name	Function
7 (MSB)	BUSY	A one indicates that the device's analog to digital converter is busy converting.
6	RESERVED	Reserved for future use.
5	RESERVED	Reserved for future use.
4	RHIGH	A one indicates that the processor core thermal diode high temperature alarm has been activated.
3	RLOW	A one indicates that the processor core thermal diode low temperature alarm has been activated.
2	OPEN	A one indicates an open fault in the connection to the processor core diode.
1	RESERVED	Reserved for future use.
0 (LSB)	RESERVED	Reserved for future use.

6.7.4 Configuration Register

The configuration register controls the operating mode (standby vs. auto-convert) of the thermal sensing device. Table 6-15 shows the format of the configuration register. If the RUN/STOP bit is set (high) then the thermal sensing device immediately stops converting and enters standby mode. The thermal sensing device will still perform analog-to-digital conversions in standby mode when it receives a one-shot command. If the RUN/STOP bit is clear (low) then the thermal sensor enters auto-conversion mode. The thermal sensing device starts operating in free running mode, auto-converting at 0.25 Hz after power-up.

Table 6-15. Thermal Sensing Device Configuration Register

Bit	Name	Reset State	Function
7 (MSB)	RESERVED	0	Reserved for future use.
6	RUN/STOP	0	Standby mode control bit. If high, the device immediately stops converting, and enters standby mode. If low, the device converts in either one-shot or timer mode.
5–0	RESERVED	0	Reserved for future use.

6.7.5 Conversion Rate Register

The contents of the conversion rate register determine the nominal rate at which analog-to-digital conversions happen when the thermal sensing device is in auto-convert mode. Table 6-16 shows the mapping between conversion rate register values and the conversion rate. As indicated in Table 6-13, the conversion rate register is set to its default state of 02h (0.25 Hz nominally) when the thermal sensing device is powered-up. There is a $\pm 25\%$ error tolerance between the conversion rate indicated in the conversion rate register and the actual conversion rate.

Table 6-16. Thermal Sensing Device Conversion Rate Register

Register Contents	Conversion Rate (Hz)
00h	0.0625
01h	0.125
02h	0.25
03h	0.5
04h	1
05h	2
06h	4
07h	8
08h to FFh	Reserved for future use

A Signals Reference

This appendix provides an alphabetical listing of all Itanium 2 processor system bus signals. The tables at the end of this appendix summarize the signals by direction: output, input, and I/O.

For a complete pinout listing including processor specific pins, please refer to Chapter 3, "Pinout Specifications."

A.1 Alphabetical Signals Reference

A.1.1 A[49:3]# (I/O)

The Address (A[49:3]#) signals, with byte enables, define a 2⁵⁰ Byte physical memory address space. When ADS# is active, these pins transmit the address of a transaction. These pins are also used to transmit other transaction related information such as transaction identifiers and external functions in the cycle following ADS# assertion. These signals must connect the appropriate pins of all agents on the Itanium 2 processor system bus. The A[49:27]# signals are parity-protected by the AP1# parity signal, and the A[26:3]# signals are parity-protected by the AP0# parity signal.

On the active-to-inactive transition of RESET#, the processors sample the A[49:3]# pins to determine their power-on configuration.

A.1.2 A20M# (I)

A20M# is ignored in the Itanium 2 processor system environment.

A.1.3 ADS# (I/O)

The Address Strobe (ADS#) signal is asserted to indicate the validity of the transaction address on the A[49:3]#, REQ[5:0]#, AP[1:0]# and RP#pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.

A.1.4 AP[1:0]# (I/O)

The Address Parity (AP[1:0]#) signals can be driven by the request initiator along with ADS# and A[49:3]#. AP[1]# covers A[49:27]#, and AP[0]# covers A[26:3]#. A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. This allows parity to be high when all the covered signals are high.

A.1.5 ASZ[1:0]# (I/O)

The ASZ[1:0]# signals are the memory address-space size signals. They are driven by the request initiator during the first Request Phase clock on the REQa[4:3]# pins. The ASZ[1:0]# signals are valid only when REQa[2:1]# signals equal 01B, 10B, or 11B, indicating a memory access transaction. The ASZ[1:0]# decode is defined in Table A-1.

Table A-1. Address Space Size

ASZ[Memory Address Space		Memory Access Range
0	0	Reserved	Reserved
0	1	36-bit	0 to (64 GByte - 1)
1	0	50-bit	64 GByte to (1 Pbyte –1)
1	1	Reserved	Reserved

Any memory access transaction addressing a memory region that is less than 64 GB (i.e., Aa[49:36]# are all zeroes) must set ASZ[1:0]# to 01. Any memory access transaction addressing a memory region that is equal to or greater than 64 GB (i.e., Aa[49:36]# are not all zeroes) must set ASZ[1:0]# to 10. All observing bus agents that support the 64 GByte (36-bit) address space must respond to the transaction when ASZ[1:0]# equals 01. All observing bus agents that support larger than the 64 GByte (36-bit) address space must respond to the transaction when ASZ[1:0]# equals 01 or 10.

A.1.6 ATTR[3:0]# (I/O)

The ATTR[3:0]# signals are the attribute signals. They are driven by the request initiator during the second clock of the Request Phase on the Ab[35:32]# pins. The ATTR[3:0]# signals are valid for all transactions. The ATTR[3]# signal is reserved. The ATTR[2:0]# are driven based on the memory type. Please refer to Table A-2.

Table A-2. Effective Memory Type Signal Encoding

ATTR[2:0]#	Description
000	Uncacheable
100	Write Coalescing
101	Write-Through
110	Write-Protect
111	Writeback

A.1.7 BCLKp/BCLKn (I)

The BCLKp and BCLKn differential clock signals determine the bus frequency. All agents drive their outputs and latch their inputs on the differential crossing of BCLKp and BCLKn on the signals that are using the common clock latched protocol.

BCLKp and BCLKn indirectly determine the internal clock frequency of the Itanium 2 processor. Each Itanium 2 processor derives its internal clock by multiplying the BCLKp and BCLKn frequency by a ratio that is defined and allowed by the power-on configuration.

A.1.8 BE[7:0]# (I/O)

The BE[7:0]# signals are the byte-enable signals for partial transactions. They are driven by the request initiator during the second Request Phase clock on the Ab[15:8]# pins.

For memory or I/O transactions, the byte-enable signals indicate that valid data is requested or being transferred on the corresponding byte on the 128-bit data bus. BE[0]# indicates that the least significant byte is valid, and BE[7]# indicates that the most significant byte is valid. Since BE[7:0]# specifies the validity of only 8 bytes on the 16 byte wide bus, A[3]# is used to determine which half of the data bus is validated by BE[7:0]#.

For special transactions ((REQa[5:0]# = 001000B) and (REQb[1:0]# = 01B)), the BE[7:0]# signals carry special cycle encodings as defined in Table A-3. All other encodings are reserved.

Table A-3. Special Transaction Encoding on Byte Enables

Special Transaction	Byte Enables[7:0]#
NOP	0000 0000
Shutdown	0000 0001
Flush (INVD)	0000 0010
Halt	0000 0011
Sync (WBINVD)	0000 0100
Reserved	0000 0101
StopGrant Acknowledge	0000 0110
Reserved	0000 0111
xTPR Update	0000 1000

For Deferred Reply transactions, BE[7:0]# signals are reserved. The Defer Phase transfer length is always the same length as that specified in the Request Phase except the Bus Invalidate Line (BIL) transaction.

A BIL transaction may return one cache line (128 bytes).

A.1.9 BERR# (I/O)

The Bus Error (BERR#) signal can be asserted to indicate a recoverable error with global MCA. BERR# assertion conditions are configurable at the system level. Configuration options enable BERR# to be driven as follows:

- Asserted by the requesting agent of a bus transaction after it observes an internal error.
- Asserted by any bus agent when it observes an error in a bus transaction.

When the bus agent samples an asserted BERR# signal and BERR# sampling is enabled, the processor enters a Machine Check Handler.

BERR# is a wired-OR signal to allow multiple bus agents to drive it at the same time.

A.1.10 BINIT# (I/O)

If enabled by configuration, the Bus Initialization (BINIT#) signal is asserted to signal any bus condition that prevents reliable future operation.

If BINIT# observation is enabled during power-on configuration, and BINIT# is sampled asserted, all bus state machines are reset. All agents reset their rotating IDs for bus arbitration to the same state as that after reset, and internal count information is lost. The L2 and L3 caches are not affected.

If BINIT# observation is disabled during power-on configuration, BINIT# is ignored by all bus agents with the exception of the priority agent. The priority agent must handle the error in a manner that is appropriate to the system architecture.

BINIT# is a wired-OR signal.

A.1.11 BNR# (I/O)

The Block Next Request (BNR#) signal is used to assert a bus stall by any bus agent that is unable to accept new bus transactions to avoid an internal transaction queue overflow. During a bus stall, the current bus owner cannot issue any new transactions.

Since multiple agents might need to request a bus stall at the same time, BNR# is a wired-OR signal. In order to avoid wired-OR glitches associated with simultaneous edge transitions driven by multiple drivers, BNR# is asserted and sampled on specific clock edges.

A.1.12 BPM[5:0]# (I/O)

The BPM[5:0]# signals are system support signals used for inserting breakpoints and for performance monitoring. They can be configured as outputs from the processor that indicate programmable counters used for monitoring performance, or inputs from the processor to indicate the status of breakpoints.

A.1.13 BPRI# (I)

The Bus Priority-agent Request (BPRI#) signal is used by the priority agent to arbitrate for ownership of the system bus. Observing BPRI# asserted causes all other agents to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#.

A.1.14 BR[0]# (I/O) and BR[3:1]# (I)

BR[3:0]# are the physical bus request pins that drive the BREQ[3:0]# signals in the system. The BREQ[3:0]# signals are interconnected in a rotating manner to individual processor pins. Table A-4 gives the rotating interconnection between the processor and bus signals for the 2P system bus topology.

Table A-4.	BR0# (I/O), BR1#,	, BR2#, BR3# Signals for 2F	Rotating Interconnect

Bus Signal	Agent 0 Pins	Agent 3 Pins
BREQ[0]#	BR[0]#	BR[1]#
BREQ[1]#	BR[1]#	BR[0]#
BREQ[2]#	Not Used	Not Used
BREQ[3]#	Not Used	Not Used

During power-on configuration, the priority agent must assert the BR[0]# bus signal. All symmetric agents sample their BR[3:0]# pins on asserted-to-deasserted transition of RESET#. The pin on which the agent samples an asserted level determines its agent ID. All agents then configure their pins to match the appropriate bus signal protocol as shown in Table A-5.

Table A-5. BR[3:0]# Signals and Agent IDs

Pin Sampled Asserted on RESET#	Arbitration ID	Agent ID Reported
BR[0]#	0	0
BR[1]#	3	6
BR[2]#	Not Used	Not Used
BR[3]#	Not Used	Not Used

A.1.15 BREQ[3:0]# (I/O)

The BREQ[3:0]# signals are the symmetric agent arbitration bus signals (called bus request). A symmetric agent *n* arbitrates for the bus by asserting its BREQ*n*# signal. Agent *n* drives BREQ*n*# as an output and receives the remaining BREQ[3:0]# signals as inputs.

The symmetric agents support distributed arbitration based on a round-robin mechanism. The rotating ID is an internal state used by all symmetric agents to track the agent with the lowest priority at the next arbitration event. At power-on, the rotating ID is initialized to three, allowing agent 0 to be the highest priority symmetric agent. After a new arbitration event, the rotating ID of all symmetric agents is updated to the agent ID of the symmetric owner. This update gives the new symmetric owner lowest priority in the next arbitration event.

A new arbitration event occurs either when a symmetric agent asserts its BREQn# on an Idle bus (all BREQ[3:0]# previously deasserted), or the current symmetric owner deasserts BREQn# to release the bus ownership to a new bus owner n. On a new arbitration event, all symmetric agents simultaneously determine the new symmetric owner using BREQ[3:0]# and the rotating ID. The symmetric owner can park on the bus (hold the bus) provided that no other symmetric agent is requesting its use. The symmetric owner parks by keeping its BREQn# signal asserted. On sampling BREQn# asserted by another symmetric agent, the symmetric owner deasserts BREQn# as soon as possible to release the bus. A symmetric owner stops issuing new requests that are not part of an existing locked operation on observing BPRI# asserted.

A symmetric agent can deassert BREQ*n*# before it becomes a symmetric owner. A symmetric agent can reassert BREQ*n*# after keeping it deasserted for one clock.

A.1.16 CCL# (I/O)

CCL# is the Cache Cleanse signal. It is driven on the second clock of the Request Phase on the EXF[2]#/Ab[5]# pin. CCL# is asserted for Memory Write transaction to indicate that a modified line in a processor may be written to memory without being invalidated in its caches.

A.1.17 CPUPRES# (O)

CPUPRES# can be used to detect the presence of a Itanium 2 processor in a socket. A ground indicates that a Itanium 2 processor is installed, while an open indicates that a Itanium 2 processor is not installed.

A.1.18 D[127:0]# (I/O)

The Data (D[127:0]#) signals provide a 128-bit data path between various system bus agents. Partial transfers require one data transfer clock with valid data on the byte(s) indicated by asserted byte enables BE[7:0]# and A[3]#. Data signals that are not valid for a particular transfer must still have correct ECC (if data bus error checking is enabled). The data driver asserts DRDY# to indicate a valid data transfer.

A.1.19 D/C# (I/O)

The Data/Code (D/C#) signal is used to indicate data (1) or code (0) on REQa[1]#, only during Memory Read transactions.

A.1.20 DBSY# (I/O)

The Data Bus Busy (DBSY#) signal is asserted by the agent that is responsible for driving data on the system bus to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted.

DBSY# is replicated three times to enable partitioning of the data paths in the system agents. This copy of the Data Bus Busy signal (DBSY#) is an input as well as an output.

A.1.21 DBSY_C1# (O)

DBSY# is a copy of the Data Bus Busy signal. This copy of the Data Bus Busy signal (DBSY_C1#) is an output only.

A.1.22 DBSY_C2# (O)

DBSY# is a copy of the Data Bus Busy signal. This copy of the Data Bus Busy signal (DBSY_C2#) is an output only.

A.1.23 DEFER# (I)

The DEFER# signal is asserted by an agent to indicate that the transaction cannot be guaranteed inorder completion. Assertion of DEFER# is normally the responsibility of the priority agent.

A.1.24 DEN# (I/O)

The Defer Enable (DEN#) signal is driven on the bus on the second clock of the Request Phase on the Ab[4]# pin. DEN# is asserted to indicate that the transaction can be deferred by the responding agent.

A.1.25 DEP[15:0]# (I/O)

The Data Bus ECC Protection (DEP[15:0]#) signals provide optional ECC protection for Data Bus (D[127:0]#). They are driven by the agent responsible for driving D[127:0]#. During power-on configuration, bus agents can be enabled for either ECC checking or no checking.

The ECC error correcting code can detect and correct single-bit errors and detect double-bit or nibble errors.

A.1.26 DHIT# (I)

The Deferred Hit (DHIT#) signal is driven during the Deferred Phase by the deferring agent. For read transactions on the bus DHIT# returns the final cache status that would have been indicated on HIT# for a transaction which was not deferred. DID[9:0]# (I/O)

DID[9:0]# are Deferred Identifier signals. The requesting agent transfers these signals by using A[25:16]#. They are transferred on Ab[25:16]# during the second clock of the Request Phase on all transactions, but Ab[20:16]# is only defined for deferrable transactions (DEN# asserted). DID[9:0]# is also transferred on Aa[25:16]# during the first clock of the Request Phase for Deferred Reply transactions.

The Deferred Identifier defines the token supplied by the requesting agent. DID[9]# and DID[8:5]# carry the agent identifiers of the requesting agents (always valid) and DID[4:0]# carry a transaction identifier associated with the request (valid only with DEN# asserted). This configuration limits the bus specification to 32 logical bus agents with each one of the bus agents capable of making up to 32 requests. Table A-6 shows the DID encodings.

Table A-6. DID[9:0]# Encoding

DID[9]#	DID[8:5]#	DID[4:0]#
Agent Type	Agent ID[3:0]	Transaction ID[4:0]

DID[9]# indicates the agent type. Symmetric agents use 0. Priority agents use 1. DID[8:5]# indicates the agent ID. Symmetric agents use their arbitration ID. DID[4:0]# indicates the transaction ID for an agent. The transaction ID must be unique for all deferrable transactions issued by an agent which have not reported their snoop results.

The Deferred Reply agent transmits the DID[9:0]# (Ab[25:16]#) signals received during the original transaction on the Aa[25:16]# signals during the Deferred Reply transaction. This process enables the original requesting agent to make an identifier match with the original request that is awaiting completion.

A.1.27 DPS# (I/O)

The Deferred Phase Enable (DPS#) signal is driven to the bus on the second clock of the Request Phase on the Ab[3]# pin. DPS# is asserted if a requesting agent supports transaction completion using the Deferred Phase. A requesting agent that supports the Deferred Phase will always assert DPS#. A requesting agent that does not support the Deferred Phase will always deassert DPS#.

A.1.28 DRDY# (I/O)

The Data Ready (DRDY#) signal is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-cycle data transfer, DRDY# can be deasserted to insert idle clocks.

DRDY# is replicated three times to enable partitioning of data paths in the system agents. This copy of the Data Ready signal (DRDY#) is an input as well as an output.

A.1.29 DRDY_C1# (O)

DRDY# is a copy of the Data Ready signal. This copy of the Data Phase data-ready signal (DRDY_C1#) is an output only.

A.1.30 DRDY_C2# (O)

DRDY# is a copy of the Data Ready signal. This copy of the Data Phase data-ready signal (DRDY_C2#) is an output only.

A.1.31 DSZ[1:0]# (I/O)

The Data Size (DSZ[1:0]#) signals are transferred on REQb[4:3]# signals in the second clock of the Request Phase by the requesting agent. The DSZ[1:0]# signals define the data transfer capability of the requesting agent. For the Itanium 2 processor, DSZ# = 01, always.

A.1.32 EXF[4:0]# (I/O)

The Extended Function (EXF[4:0]#) signals are transferred on the A[7:3]# pins by the requesting agent during the second clock of the Request Phase. The signals specify any special functional requirement associated with the transaction based on the requestor mode or capability. The signals are defined in Table A-7.

Table A-7. Extended Function Signals

Extended Function Signal	Signal Name Alias	Function
EXF[4]#	Reserved	Reserved
EXF[3]#	SPLCK#/FCL#	Split Lock / Flush Cache Line
EXF[2]#	OWN#/CCL#	Memory Update Not Needed / Cache Cleanse
EXF[1]#	DEN#	Defer Enable
EXF[0]#	DPS#	Deferred Phase Supported

A.1.33 FCL# (I/O)

The Flush Cache Line (FCL#) signal is driven to the bus on the second clock of the Request Phase on the A[6]# pin. FCL# is asserted to indicate that the memory transaction is initiated by the global Flush Cache (FC) instruction.

A.1.34 FERR# (O)

The FERR# signal may be asserted to indicate a processor detected error when IERR mode is enabled. If IERR mode is disabled, the FERR# signal will not be asserted in the Itanium 2 processor system environment.

A.1.35 GSEQ# (I)

Assertion of the Guaranteed Sequentiality (GSEQ#) signal indicates that the platform guarantees completion of the transaction without a retry while maintaining sequentiality.

A.1.36 HIT# (I/O) and HITM# (I/O)

The Snoop Hit (HIT#) and Hit Modified (HITM#) signals convey transaction snoop operation results. Any bus agent can assert both HIT# and HITM# together to indicate that it requires a snoop stall. The stall can be continued by reasserting HIT# and HITM# together.

A.1.37 ID[9:0]# (I)

The Transaction ID (ID[9:0]#) signals are driven by the deferring agent. The signals in the two clocks are referenced IDa[9:0]# and IDb[9:0]#. During both clocks, ID[9:0]# signals are protected by the IP0# parity signal for the first clock, and by the IP[1]# parity signal on the second clock.

IDa[9:0]# returns the ID of the deferred transaction which was sent on Ab[25:16]# (DID[9:0]#).

A.1.38 IDS# (I)

The ID Strobe (IDS#) signal is asserted to indicate the validity of ID[9:0]# in that clock and the validity of DHIT# and IP[1:0]# in the next clock.

A.1.39 IGNNE# (I)

IGNNE# is ignored in the Itanium 2 processor system environment.

A.1.40 INIT# (I)

The Initialization (INIT#) signal triggers an unmasked interrupt to the processor. INIT# is usually used to break into hanging or idle processor states. Semantics required for platform compatibility are supplied in the PAL firmware interrupt service routine.

A.1.41 INT (I)

INT is the 8259-compatible Interrupt Request signal which indicates that an external interrupt has been generated. The interrupt is maskable. The processor vectors to the interrupt handler after the current instruction execution has been completed. An interrupt acknowledge transaction is generated by the processor to obtain the interrupt vector from the interrupt controller.

The LINT[0] pin can be software configured to be used either as the INT signal or another local interrupt.

A.1.42 IP[1:0]# (I)

The ID Parity (IP[1:0]#) signals are driven on the second clock of the Deferred Phase by the deferring agent. IP0# protects the IDa[9:0]# and IDS# signals for the first clock, and IP[1]# protects the IDb[9:2, 0]# and IDS# signals on the second clock.

A.1.43 LEN[2:0]# (I/O)

The Data Length (LEN[2:0]#) signals are transmitted using REQb[2:0]# signals by the requesting agent in the second clock of Request Phase. LEN[2:0]# defines the length of the data transfer requested by the requesting agent as shown in Table A-8. The LEN[2:0]#, HITM#, and RS[2:0]# signals together define the length of the actual data transfer.

Table A-8. Length of Data Transfers

LEN[2:0]#	Length
000	0 – 8 bytes
001	16 bytes
010	32 bytes
011	64 bytes
100	128 bytes
101	Reserved
110	Reserved
111	Reserved

A.1.44 LINT[1:0] (I)

LINT[1:0] are local interrupt signals. These pins are disabled after RESET#. LINT[0] is typically software configured as INT, an 8259-compatible maskable interrupt request signal. LINT[1] is typically software configured as NMI, a non-maskable interrupt.Both signals are asynchronous inputs.

A.1.45 LOCK# (I/O)

LOCK# is never asserted or sampled in the Itanium 2 processor system environment.

A.1.46 NMI (I)

The NMI signal is the Non-maskable Interrupt signal. Asserting NMI causes an interrupt with an internally supplied vector value of 2. An external interrupt-acknowledge transaction is not generated. If NMI is asserted during the execution of an NMI service routine, it remains pending and is recognized after the EOI is executed by the NMI service routine. At most, one assertion of NMI is held pending.

NMI is rising-edge sensitive. Recognition of NMI is guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold times. If asserted asynchronously, asserted and deasserted pulse widths of NMI must be a minimum of two clocks. This signal must be software configured to be used either as NMI or as another local interrupt (LINT1 pin).

A.1.47 OWN# (I/O)

The Guaranteed Cache Line Ownership (OWN#) signal is driven to the bus on the second clock of the Request Phase on the Ab[5]# pin. OWN# is asserted if cache line ownership is guaranteed. This allows a memory controller to ignore memory updates due to implicit writebacks.

A.1.48 PMI# (I)

The Platform Management Interrupt (PMI#) signal triggers the highest priority interrupt to the processor. PMI# is usually used by the system to trigger system events that will be handled by platform specific firmware.

A.1.49 PWRGOOD (I)

The Power Good (PWRGOOD) signal must be deasserted (L) during power-on, and must be asserted (H) after RESET# is first asserted by the system. The state of the processor while PWRGOOD is deasserted (L) is not specified.

A.1.50 REQ[5:0]# (I/O)

The REQ[5:0]# are the Request Command signals. They are asserted by the current bus owner in both clocks of the Request Phase. In the first clock, the REQa[5:0]# signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, REQb[5:0]# signals carry additional information to define the complete transaction type. REQb[4:3]# signals transmit DSZ[1:0]# or the data transfer information of the requestor for transactions that involve data transfer. REQb[2:0]# signals transmit LEN[2:0]# (the data transfer length information). In both clocks, REQ[5:0]# and ADS# are protected by parity RP#.

All receiving agents observe the REQ[5:0]# signals to determine the transaction type and participate in the transaction as necessary, as shown in Table A-9.

Table A-9. Transaction Types Defined by REQa#/REQb# Signals

Transaction		REQa[5:0]#					REQb[5:0]#					
Transaction	5	4	3	2	1	0	5	4	3	2	1	0
Deferred Reply	0	0	0	0	0	0	0	Х	Х	Х	Х	Х
Reserved	0	0	0	0	0	1	0	Х	Х	Х	Х	Х
Interrupt Acknowledge	0	0	1	0	0	0	0	DSZ	1:0]#	0	0	0
Special Transactions	0	0	1	0	0	0	0	DSZ	1:0]#	0	0	1
Reserved	0	0	1	0	0	0	0	DSZ	1:0]#	0	1	Х
Reserved	0	0	1	0	0	1	0	DSZ	1:0]#	0	Х	Х
Interrupt	0	0	1	0	0	1	0	DSZ	1:0]#	1	0	0
Purge TC	0	0	1	0	0	1	0	DSZ	1:0]#	1	0	1
Reserved	0	0	1	0	0	1	0	DSZ	1:0]#	1	1	Х
I/O Read	0	1	0	0	0	0	0	DSZ	1:0]#	Х	Х	Х
I/O Write	0	1	0	0	0	1	0	DSZ	1:0]#	Х	Х	Х
Reserved	0	1	1	0	0	Х	0	DSZ	1:0]#	Х	Х	Х
Memory Read and Invalidate	0	ASZ[1:0]#	0	1	0	0	DSZ	1:0]#	L	.EN[2:0]	#
Reserved	0	ASZ[1:0]#	0	1	1	0	DSZ	1:0]#	L	EN[2:0]	#
Memory Read	0	ASZ[1:0]#	1	D/C#	0	0	DSZ	1:0]#	L	EN[2:0]	#
Memory Read Current	1	ASZ[1:0]#	1	0	0	0	DSZ	1:0]#	L	.EN[2:0]	#
Reserved	1	ASZ[1:0]#	1	1	0	0	DSZ	1:0]#	L	EN[2:0]	#
Memory Write	0	ASZ[1:0]#	1	WSNP#	1	0	DSZ	1:0]#	L	EN[2:0]	#
Cache Line Replacement	1	ASZ[1:0]#	1	WSNP#	1	0	DSZ	1:0]#	0	0	0

A.1.51 RESET# (I)

Asserting the RESET# signal resets all processors to known states and invalidates all caches without writing back Modified (M state) lines. RESET# must remain asserted for one millisecond for a "warm" reset; for a power-on reset, RESET# must stay asserted for at least one millisecond after PWRGOOD and BCLKp have reached their proper specifications. On observing asserted RESET#, all system bus agents must deassert their outputs within two clocks.

A number of bus signals are sampled at the asserted-to-deasserted transition of RESET# for the power-on configuration.

Unless its outputs are tristated during power-on configuration, after asserted-to-deasserted transition of RESET#, the processor begins program execution at the reset-vector

A.1.52 RP# (I/O)

The Request Parity (RP#) signal is driven by the requesting agent, and provides parity protection for ADS# and REQ[5:0]#.

A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. This definition allows parity to be high when all covered signals are high.

A.1.53 RS[2:0]# (I)

The Response Status (RS[2:0]#) signals are driven by the responding agent (the agent responsible for completion of the transaction).

A.1.54 RSP# (I)

The Response Parity (RSP#) signal is driven by the responding agent (the agent responsible for completion of the current transaction) during assertion of RS[2:0]#, the signals for which RSP# provides parity protection.

A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. During the Idle state of RS[2:0]# (RS[2:0]#=000), RSP# is also high since it is not driven by any agent guaranteeing correct parity.

A.1.55 SBSY# (I/O)

The Strobe Bus Busy (SBSY#) signal is driven by the agent transferring data when it owns the strobe bus. SBSY# holds the strobe bus before the first DRDY# and between DRDY# assertions for a multiple clock data transfer. SBSY# is deasserted before DBSY# to allow the next data transfer agent to predrive the strobes before the data bus is released.

SBSY# is replicated three times to enable partitioning of data paths in the system agents. This copy of the SBSY# signal is an input as well as an output.

A.1.56 SBSY_C1# (O)

SBSY# is a copy of the Strobe Bus Busy signal. This copy of the Strobe Bus Busy signal (SBSY_C1#) is an output only.

A.1.57 SBSY_C2# (O)

SBSY# is a copy of the Strobe Bus Busy signal. This copy of the Strobe Bus Busy signal (SBSY_C2#) is an output only.

A.1.58 SPLCK# (I/O)

The Split Lock (SPLCK#) signal is driven in the second clock of the Request Phase on the Ab[6]# pin of the first transaction of a locked operation. It is driven to indicate that the locked operation will consist of four locked transactions.

A.1.59 STBn[7:0]# and STBp[7:0]# (I/O)

STBp[7:0]# and STBn[7:0]# (and DRDY#) are used to transfer data at the 2x transfer rate in lieu of BCLKp. They are driven by the data transfer agent with a tight skew relationship with respect to its corresponding bus signals, and are used by the receiving agent to capture valid data in its latches. This functions like an independent double frequency clock constructed from a falling edge of either STBp[7:0]# or STBn[7:0]#. The data is synchronized by DRDY#. Each strobe pair is associated with 16 data bus signals and two ECC signals as shown in Table A-10.

Table A-10. STBp[7:0]# and STBn[7:0]# Associations

Strobe Bits	Data Bits	ECC Bits
STBp[7]#, STBn[7]#	D[127:112]#	DEP[15:14]#
STBp[6]#, STBn[6]#	D[111:96]#	DEP[13:12]#
STBp[5]#, STBn[5]#	D[95:80]#	DEP[11:10]#
STBp[4]#, STBn[4]#	D[79:64]#	DEP[9:8]#
STBp[3]#, STBn[3]#	D[63:48]#	DEP[7:6]#
STBp[2]#, STBn[2]#	D[47:32]#	DEP[5:4]#
STBp[1]#, STBn[1]#	D[31:16]#	DEP[3:2]#
STBp[0]#, STBn[0]#	D[15:0]#	DEP[1:0]#

A.1.60 TCK (I)

The Test Clock (TCK) signal provides the clock input for the IEEE 1149.1 compliant TAP.

A.1.61 TDI (I)

The Test Data In (TDI) signal transfers serial test data into the Itanium 2 processor. TDI provides the serial input needed for IEEE 1149.1 compliant TAP.

A.1.62 TDO (O)

The Test Data Out (TDO) signal transfers serial test data out from the Itanium 2 processor. TDO provides the serial output needed for IEEE 1149.1 compliant TAP.

A.1.63 THRMTRIP# (O)

The Thermal Trip (THRMTRIP#) signal protects the Itanium 2 processor from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. Data will be lost if the processor goes into thermal trip (signaled to the system by the assertion of the THRMTRIP# signal). Once THRMTRIP# is asserted, the platform must assert RESET# to protect the physical integrity of the processor.

A.1.64 THRMALERT# (O)

THRMALERT# is asserted when the measured temperature from the processor thermal diode equals or exceeds the temperature threshold data programmed in the high-temp (THIGH) or low-temp (TLOW) registers on the sensor. This signal can be used by the platform to implement thermal regulation features.

A.1.65 TMS (I)

The Test Mode Select (TMS) signal is an IEEE 1149.1 compliant TAP specification support signal used by debug tools.

A.1.66 TND# (I/O)

The TLB Purge Not Done (TND#) signal is asserted to delay completion of a TLB Purge instruction, even after the TLB Purge transaction completes on the system bus.

A.1.67 TRDY# (I)

The Target Ready (TRDY#) signal is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer.

A.1.68 TRST# (I)

The TAP Reset (TRST#) signal is an IEEE 1149.1 compliant TAP support signal used by debug tools.

A.1.69 WSNP# (I/O)

The Write Snoop (WSNP#) signal indicates that snooping agents will snoop the memory write transaction

A.2 Signal Summaries

Table A-11 through Table A-14 list attributes of the Itanium 2 processor output, input, and I/O signals.

Table A-11. Output Signals (Sheet 1 of 2)

Name	Active Level	Clock	Signal Group
CPUPRES#	Low	_	Platform
DBSY_C1#	Low	BCLKp	Data
DBSY_C2#	Low	BCLKp	Data
DRDY_C1#	Low	BCLKp	Data
DRDY_C2#	Low	BCLKp	Data
FERR#	Low	Asynchronous	PC Compatibility

Table A-11. Output Signals (Sheet 2 of 2)

Name	Active Level	Clock	Signal Group
SBSY_C1#	Low	BCLKp	Data
SBSY_C2#	Low	BCLKp	Data
TDO	High	TCK	TAP
THRMTRIP#	Low	Asynchronous	Error
THRMALERT#	Low	Asynchronous	Error

Table A-12. Input Signals

			T a	
Name	Active Level	Clock	Signal Group	Qualified
BPRI#	Low	BCLKp	Arbitration	Always
BR1#	Low	BCLKp	Arbitration	Always
BR2#	Low	BCLKp	Arbitration	Always
BR3#	Low	BCLKp	Arbitration	Always
BCLKp	High	_	Control	Always
BCLKn	High	_	Control	Always
D/C#	Low	BCLKp	System Bus	Request Phase (Mem Rd)
DEFER#	Low	BCLKp	Snoop	Snoop Phase
DHIT#	Low	BCLKp	System Bus	IDS#+1
GSEQ#	Low	BCLKp	Snoop	Snoop Phase
ID[9:0]#	Low	BCLKp	Defer	IDS#, IDS#+1
IDS#	Low	BCLKp	Defer	Always
INIT#	Low	Asynch	Exec Control	Always ¹
INT (LINT0)	High	Asynch	Exec Control	
IP[1:0]#	Low	BCLKp	System Bus	IDS#+1
NMI (LINT1)	High	Asynch	Exec Control	
RESET#	Low	BCLKp	Control	Always
RS[2:0]#	Low	BCLKp	Response	Always
RSP#	Low	BCLKp	Response	Always
PMI#	Low	Asynch	Exec Control	
PWRGOOD	High	Asynch	Control	_
TCK	High	_	Diagnostic	Always
TDI	High	TCK	Diagnostic	Always
TMS	High	TCK	Diagnostic	Always
TRST#	Low	Asynch	Diagnostic	Always
TRDY#	Low	BCLKp	Response	Response Phase

NOTES:

^{1.} Synchronous assertion with asserted RS[2:0]# guarantees synchronization.

Table A-13. Input/Output Signals (Single Driver)

		Clock	Signal Group	Qualified
A[49:3]#	Low	BCLKp	Request	ADS#, ADS#+1
ADS#	Low	BCLKp	Request	Always
AP[1:0]#	Low	BCLKp	Request	ADS#, ADS#+1
ASZ[1:0]#	Low	BCLKp	System Bus	ADS#
ATTR[3:0]#	Low	BCLKp	System Bus	ADS#+1
BE[7:0]#	Low	BCLKp	System Bus	ADS#+1
BR0#	Low	BCLKp	System Bus	Always
BPM[5:0]#	Low	BCLKp	Diagnostic	Always
CCL#	Low	BCLKp	System Bus	ADS#+1
D[127:0]#	Low	BCLKp	Data	DRDY#
DBSY#	Low	BCLKp	Data	Always
D/C#	Low	BCLKp	System Bus	ADS#
DEN#	Low	BCLKp	System Bus	ADS#+1
DEP[15:0]#	Low	BCLKp	System Bus	DRDY#
DID[9:0]#	Low	BCLKp	System Bus	ADS#+1
DRDY#	Low	BCLKp	Data	Always
DPS#	Low	BCLKp	System Bus	ADS#+1
DSZ[1:0]#	Low	BCLKp	System Bus	ADS#+1
EXF[4:0]#	Low	BCLKp	System Bus	ADS#+1
FCL#	Low	BCLKp	System Bus	ADS#+1
LEN[2:0]#	Low	BCLKp	System Bus	ADS#+1
LOCK#	Low	BCLKp	Arbitration	Always
OWN#	Low	BCLKp	System Bus	ADS#+1
REQ[5:0]#	Low	BCLKp	Request	ADS#, ADS#+1
RP#	Low	BCLKp	Request	ADS#, ADS#+1
SBSY#	Low	BCLKp	Data	Always
SPLCK#	Low	BCLKp	System Bus	ADS#+1
STBn[7:0]#	Low	_	Data	Always
STBp[7:0]#	Low	_	Data	Always
WSNP#	Low	BCLKp	System Bus	ADS#

Table A-14. Input/Output Signals (Multiple Driver)

Name	Active Level	Clock	Signal Group	Qualified
BNR#	Low	BCLKp	System Bus	Always
BERR#	Low	BCLKp	Error	Always
BINIT#	Low	BCLKp	Error	Always
HIT#	Low	BCLKp	Snoop	Snoop Phase
HITM#	Low	BCLKp	Snoop	Snoop Phase
TND#	Low	BCLKp	Snoop	Always

