intel® AP-377

APPLICATION
NOTE

16-Mbit Flash Product Family
Software Drivers

28F016SA, 28F016SYV,
28F016XS, 28F016XD

TAYLOR GAUTIER
MCD APPLICATIONS ENGINEERING

PATRICK KILLELEA
MCD APPLICATIONS ENGINEERING

SALIM FEDEL
MCD APPLICATIONS ENGINEERING

December 1995

Order Number: 292126-003

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

TSince publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

16-Mbit FLASH PRODUCT FAMILY
SOFTWARE DRIVERS

CONTENTS PAGE
INTRODUCTION ..., 1
28F016SA CDRIVERSoioii i 4
28F016SA ASM86 DRIVERSooioii i 26
APPENDIX A: FUNCTION CHANGESooiumiii A1
APPENDIX B: GLOSSARY OF TERMSooieiiei i B-1

APPENDIX C: ADDITIONAL INFORMATION C-1

intgl.

INTRODUCTION
ABOUT THE CODE

This application note provides example software code
for word writing, block erasing, and otherwise control-
ling Intel’s 28F016SA, 28F016SV, 28F016XS and
28F016XD (hereafter referred to as 28F016SA) 16
Mbit symmetrically blocked memory components. Two
programming languages are provided: high-level “C”
for broad platform support, and more optimized
ASMS86 assembly. In many cases, the driver routines
can be inserted “as is” into the main body of code being
developed by the system software engineer. Extensive
comments are included in each routine to facilitate
adapting the code to specific applications.

The internal automation of the 28F016SA makes soft-
ware timing loops unnecessary and results in platform-
independent code. The following example code is de-
signed to be executed in any type of memory and with
all processor clock rates. C code can be used with many
microprocessors and microcontrollers, while ASM86
assembly code provides a solution optimized for Intel
microprocessors and embedded processors.

The 28F016SA, like the 28F008SA, is divided into 64
Kbyte blocks. Since the GSR and BSR are defined rela-
tive to the nearest preceding block beginning address, I
often refer to this “block base” address in the com-
ments.

Assumptions:

® Pointers (in C) or EDI offsets (in ASM86) are four
(4) bytes long, providing a flat addressing space over
the entire 28F016SA device. This implies the use of
386 or higher machines. If the code is to be run on a
machine with a smaller address space, the code must
be modified to include some sort of “windowing”
scheme which maps segments of flash into system
memory. The Intel 82365 is commonly used for this
purpose.

® “Ints” are 16 bit and “longs” 32 bit in C.

® [t is assumed that these pointers return a value equal
to what they are pointing to. In other words, even
though the pointer may be four (4) bytes long, this
does not imply that incrementing the pointer by one
will move the pointer four (4) bytes in memory. It is
entirely dependent upon what the pointer is pointing
to that determines how the increment will be effect-
ed. In the case of four (4) byte pointers and 16-bit
ints, incrementing the pointer by one will effectively
move the pointer two (2) bytes.

® There exists a function “‘set__pin” which can set an
individual 28F016SA pin, given the pin number.

AP-377

® There exists a function “get__pin” which can return
the value of an individual 28F016SA pin, given the
pin number.

® The C code can access a function which derives the
corresponding block base address from any given
address.

® BYTE# pin on the device determines whether ad-
dressing refers to words or bytes. I assume word
writes/reads to a single device. With minor modifi-
cations this code can be adapted for a pair of
28F016SAs in Byte mode.

® 28F016SA commands can be written to any address
in the block or device to be affected by that com-
mand.

Both the C and ASM86 code in this document contain
the following routines, in this order:

CSR__word__byte__writes(compatible with 28 FOO8SA)
CSR__block__erase(compatible with 28 FOO8SA)
CSR__erase__suspend__to__read(compatible with
28F008SA)

lock__block

lock__status__upload__to__ BSR
update__data__in__a_ locked__block
add__data__in__a_ locked__block
ESR__word__write

two__byte__write

ESR__page__buffer__write

ESR__block__erase
ESR__erase__all__unlocked__blocks
ESR__suspend__to__read__array
ESR__automatic__erase__suspend__to__write
ESR__ full_status_ check__for__data_ write
ESR__full_ status_ check_ for__erase
single__load__to__pagebuffer
sequential__load__to__pagebuffer
upload__device__information
RYBY__reconfiguration

page__buffer__swap

The names of these routines have been changed to more
closely match the algorithms presented in the
28F016SA User’s Manual (Order Number 297372).
Please see Appendix A for a table documenting these
changes.

ABOUT THE 28F016SA

Companion product datasheets for the 28F016SA
should be reviewed in conjunction with this application
note for a complete understanding of the device.

The example code makes extensive use of bit-masking
when interpreting the status registers. As a quick re-
view, note that any bit in a register can be tested by
bitwise ANDing the register with the appropriate pow-
er of two. Since all of the bits other than the one being

AP-377

tested are masked out, testing the resulting byte for
truth is the same as testing the desired bit for truth. For
example, if a register contains 01001010, the test for bit
3 would be ANDing the register with 00001000, or hex
8, and testing the result for truth:

Binary Hex

01001010 4A Register
& 00001000 & 08 Mask for bit 3
= 00001000 = 08 Result

In this case the result byte is true, indicating that bit 3
in the register was a 1.

The meanings of the individual bits of these registers is
presented here for reference. Note that there are two
status register spaces, both of which are distinct from
the flash memory array address space. In the CSR
space, the CSR is mapped to every address. In the ESR
space, the GSR is mapped two words above the base of
each 64K byte block, i.e. to addresses 2, 8002H,
10002H, etc. (in word mode), while each BSR is simi-
larly mapped one word above the base of each 64K byte
block to locations 1, 8001H, 10001H, etc. (in word
mode), each BSR reflecting the status of its own block.

CSR.7 | Write State Machine 1= ready
Status = busy
CSR.6 | Erase-suspend Status | 1= erase suspended
0= erase in progress/
completed
CSR.5 | Erase Status 1= error in block
erase
0= successful block
erase
CSR.4 | Data-write Status 1= error in data write
0= successful data
write
CSR.3 | Vpp Status 1= Vpp low detect/
operation aborted
0= Vpp OK when
operation occurred
CSR.2 | Reserved for future use
CSR.1 | Reserved for future use
CSR.0 | Reserved for future use

intgl.

GSR.7 | Write State Machine 1= ready
Status = busy
GSR.6 | Operation-suspend 1= operation
Status suspended
0= operationin
progress/
completed
GSR.5 | Device Operation 1= operation
Status unsuccessful
0= operation
successful or
running
GSR.4 | Device Sleep Status 1= device in sleep
= device notin
sleep
GSR.3 | Queue Status 1= queue full
= queue available
GSR.2 | Page Buffer 1= one/two page
Availability buffers available
0= no page buffers
available
GSR.1 | Page Buffer Status 1= selected page
buffer ready
0= selected page
buffer busy
GSR.0 | Page Buffer Select 1= page buffer 1
Status selected
0= page buffer 0
selected
BSR.7 | Block Status 1= ready
0= busy
BSR.6 | Block-lock Status 1= block unlocked
for write/erase
0= block locked to
write/erase
BSR.5 | Block Operation 1= errorin block
Status operation
0= successful block
operation
BSR.4 | Block Operation Abort | 1= block operation
Status aborted
0= block operation
not aborted
BSR.3 | Queue Status 1= device queue full
0= device queue
available
BSR.2 | Vpp Status 1= Vpp low detected
0= Vpp OK when
operation
occurred
BSR.1 | Reserved for future
use
BSR.0 | Reserved for future

use

intgl.

28F016SA Commands

The 28F016SA command set is a superset of the
28F008SA command set, giving existing 28FO08SA
code the ability to run on the 28F016SA with minimal
modifications.

28F008SA-Compatible Commands

00 invalid/reserved

20 single block erase
40 word/byte write

50 clear status registers

70 read CSR

90 read ID codes
BO erase suspend
DO confirm/resume
FF read flash array

28F016SA Performance-Enhancement

Commands

oC page buffer write to flash

71 read GSR and BSRs (i.e. the ESR)

72 page buffer swap

74 single load to page buffer

75 read page buffer

77 lock block

80 abort

96,xx RY/BY # reconfiguration and SFI
configuration (28F016XS)

97 upload BSRs with lock bit

99 upload device information

A7 erase all unlocked blocks

EO sequential load to page buffer

FO sleep

FB two-byte write

AP-377

28F016XD and 28F016XS Feature Sets

The following features are not supported on the
28F016XD and 28F016XS Fast Flash memories (as
compared to the 28F016SA/SV/32SA FlashFileT™™
memories):

® All page buffer operations (read, load, program, Up-
load Device Information)

® Command queuing
e Erase All Unlocked Blocks and Two-Byte Write
e Software Sleep and Abort

® RY/BY # reconfiguration via the Device Configu-
ration command

AP-377 |n

"C" DRIVERS

/***/
/* Copyright Intel Corporation, 1993 */
/* File : stddefs.h */
/* Standard definitions for C Drivers for the 28F016SA/SV/XS/XD Flash */
/* memory components */
/* Author : Taylor Gautier, Intel Corporation *x/
/* Revision 1.0, 23 September 1994 */

R KKK Rk ok kKA ko kA XA K I AT I I I KK AKX XX I XA K KKK X I I KNI AR XX AR T I kT XXk /

/***/
/* pin values */
/***/
#define LOW 0
f##define HIGH 1

/******t**/

/* error codes */
/***/

#define NO_ERROR

#define VPP_LOW

#define OP_ABORTED
#define BLOCK_LOCKED
f##define COMMAND_SEQ ERROR
#define WP_LOW

e WwWwNEO

/***/

/* bit masks */

/*************************x***************************************t*********/

#define BIT_O 0x0001

#define BIT_1 0x0002
#define BIT_2 0x0004
#define BIT_3 0x0008
#define BIT 4 0x0010
#define BIT_S 0x0020
#define BIT_6 0x0040
#define BIT_7 0x0080
f#define LOW_BYTE 0x00FF
#define HIGH_BYTE OxXFFO00

/***/
/* RY/BY# enable modes */
/***/
#define RYBY_ENABLE_TO_LEVEL 1
#define RYBY_PULSE_ON_WRITE 2
#define RYBY PULSE_ON_ERASE 3
#define RYBY DISABLE 4

VAR AR AR LR L RS E LRttt sE

/* pin numbers */
/***/

#define WPB 56

/* Write Protect pin (active low) is pin number 56 on standard */

/* pinout of 28F016SA. */

#define VPP 15

/* Vpp pin is pin number 15 on standard pinout of 28F016SA. */
292126-1

i ntel AP-377
®

/**********t*****************************x**********************************/

/* Copyright Intel Corporation, 1993 */
/* File : drivers.c */
/* Example C Routines for 28F016SA/SV/XS/XD Flash memory components */
/* Original Author : Patrick Killelea, Intel Corporation */
/* Revised By : Taylor Gautier, Intel Corporation */
/* Revision 2.0, 23 September 1994 x /
/* */
/* NOTE: BYTE# pin on the device determines whether addressing */
/* refers to words or bytes. I assume word mode. */
/* NOTE: A 28F016SA command can be written to any address in the */
/* block or device to be affected by that command. */

/***************t*******x***/

#include <stdio.h>
#include “stddefs.h”

void set_pin(int pin, int level)

{

/* set_pin is an implementation-dependent function which sets a */
/* given pin on the standard 28F016SA pinout HIGH = 1 or LOW = 0. */
}

int get_pin(int pin)

{

/* get_pin is an implementation-dependent function which returns a */
/* given pin on the standard 28F016SA pinout HIGH = lor LOW = 0 */
}

int *base(int *address)

{

/* base is an implementation-dependent function which takes an */
/* address in the flash array and returns a pointer to the base */
/* of that 64K byte block. */
}

char *byte_base(char *address)

{

/* byte version of base function described above */
}

292126-2

AP-377 in‘tel .

int CSR_word_byte_writes(int *address, int data)

{

/* This procedure writes a byte to the 28F016SA. */
/* It also works with the 28F008SA. */
int CSR;

/* CSR variable is used to return contents of CSR register. */

*address = 0X1010;

/* Word Write command */
*address = data;
/* Actual data write to flash address. */
while(! (BIT_7 & *address));
/* Poll CSR until CSR.7 = 1 (WSM ready) */
CSR = *address;
/* Save CSR before clearing it. */
*address = 0X5050;
/* Clear Status Registers command */
*address = OxFFFF;
/* Write FFH after last operation to reset device to read array mode. */
return(CSR) ;
/* Return CSR to be checked for status of operation. */
}

292126-3

intQI o AP-377

int CSR_block_erase(int *address)
{

/* This procedure erases a 64K byte block on the 28F016SA. */
int CSR;
/* CSR variable is used to return contents of CSR register. */

*address = 0X2020;

/* Single Block Erase command */

*address = 0XDODO;

/* Confirm command x/

*address = 0xDODO;

/* Resume command, per latest errata update */

while(! (BIT_7 & *address))

/* Poll CSR until CSR.7 = 1 (WSM ready) */

{

/* System may issue an erase suspend command (BO[B0]) here to read data */

/* from a a different block. */

};

/* At this point, CSR.7 is 1, indicating WSM is not busy. */

/* Note that we are still reading from CSR by default. */

CSR = *address;

/* Save CSR before clearing it. */

*address = 0X5050;

/* Clear Status Registers command *x/

*address = OXFFFF;

/* Write FFH after last operation to reset device to read array mode. */

return(CSR);

/* Return CSR to be checked for status of operation. */

}

/* If a write has been queued, an automatic erase suspend occurs to write */

/* to a different block. */
292126-4

AP-377

intgl.

{

}

CSR

}

int CSR_erase_suspend_to_read(int *read_address,
*result)

*erase_address = OXFFFF;
/* Read Flash Array command
*result = *read_address;

int *erase_address,

/* This procedure suspends an erase operation to do a read.
int CSR;
/* CSR variable is used to return contents of CSR register.

/* Assume erase is underway in block beginning at erase_address.
*erase_address = 0XBOBO;

/* Erase Suspend command

while(! (BIT_7 & *erase_address));

/* Poll CSR until CSR.7 = 1 (WSM ready)
if (BIT_6 & *erase_address) {

/* If CSR.6 = 1 (erase incomplete)

/* Do the actual read. Any number of reads can be done here.

*erase_address = 0XDODO;
/* Erase Resume command

} else {

*erase_address = OXFFFF;
/* Read Flash Array command
*result = *read_address;

/* Do the actual read. Any number of reads can be done here.

*erase_address = 0x7070;
/* Read CSR command

*erase_address;

/* Save CSR before clearing it.
*erase_address = 0X5050;

/* Clear Status Registers command
return(CSR);

/* Return CSR to be checked for status of operation.

int

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

x/

*/

*/

292126-5

i n-tel AP-377
®

int lock_block(int *lock_address)

/* This procedure locks a block on the 28F016SA. */
{

int ESR;

/* ESR variable is used to return contents of GSR and BSR. */

int *block_base = base(lock_address);
/* Find pointer to base of block being locked. */

*lock_address = 0X7171;

/* Read Extended Status Registers command */
while (BIT_3 & *(block_base + 2));
/* Poll GSR until GSR.3 = 0 (queue available). */
set_pin(WPB, HIGH);
/* Disable write protection by setting WPB high. */
set_pin(VPP, HIGH);
/* Enable Vpp, wait for ramp if necessary in this system. */
*lock_address = 0X7777;
/* Lock Block command */
*lock_address = 0XDODO;
/* Confirmation command */
*lock_address = 0X7171;
/* Read Extended Status Registers command */
while (!(BIT_7 & *(block_base + 2)));
/* GSR is 2 words above 0; poll GSR until GSR.7 = 1 (WSM ready). */
ESR = (*(block base + 2) << 8) + (*(block base + 1) & LOW_BYTE);
/* Put GSR in top byte and BSR in bottom byte of return value. */
*lock_address = 0X5050;
/* Clear Status Registers command */
*lock_address = OxFFFF;
/* Write FFH after last operation to reset device to read array mode. */
return(ESR);
}

292126-6

AP-377

int lock_status_upload_to_BSR(int *address)

/* This procedure uploads status information into the BSR from non-
/* volatile status bits.

{

int ESR;

/* ESR variable is used to return contents of GSR and BSR.

int *block_base = base(address);

/* Find pointer to base of 32K word block.

*address = 0X7171;

/* Read Extended Status Registers command
while (BIT_3 & *(block_base + 2));

/* Poll GSR until GSR.3 = 0 (qgueue available).
*address = 0X9797;

/* Lock-status Upload command

*address = 0XDODO;

/* Confirmation command

*address = 0X7171;

/* Read Extended Status Registers command
while (!(BIT_7 & *(block_base + 2)));

/* Poll GSR until GSR.7 = 1 (WSM not busy)

ESR = (*(block_base + 2) << 8) + (*(block_base + 1) & LOW BYTE);
/* Put GSR in top byte and BSR in bottom byte of return value.
*address = 0X5050;

/* Clear Status Registers command

*address = OxFFFF;

/* Write FFH after last operation to reset device to read array mode.

return(ESR) ;
}

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

292126-7

10

in‘tel . AP-377

int update_data_in_a_locked_block()

{

/* This routine is implemented as pseudo-code to provide an example of */
/* impementing the flowchart Updating Data in a Locked Block from the */
/* 28F016SA User'’s Manual */
set_pin(WPB, HIGH);

/* set WP# high */
block_erase_with_CSR(block_address);

/* erase block *x/
set_pin(WPB, LOW);

/* set WP# low */

WriteNewData();
/* Use one of Word/Byte Write, Two-Byte Write or Page Buffer Write to Flash*/

lock_block(block_address);

/* lock block if desired */
}

int add_data_in_a_locked_block()

{

/* This routine is implemented as pseudo-code to provide an example of */
/* impementing the flowchart Updating Data in a Locked Block from the */
/* 28F016SA User’s Manual */
set_pin(WPB, HIGH);

/* set WP# high */
WriteNewData();

/* Use one of Word/Byte Write, Two-Byte Write or Page Buffer Write to */
/* Flash */
set_pin(WPB, LOW);

/* set WP# low */
}

292126-8

11

AP-377

int ESR_word_write(int *write_address, int *data, int word_count)
/* This procedure writes a word to the 28F016SA.

{

int counter, ESR;

/* counter is used to loop through data array

/* ESR variable is used to return contents of GSR and BSR.

int *block_base = base(write_address);

for (counter = 0; counter < word_count; counter++) {
*write_address = 0X7171;
/* Read Extended Status Registers command
while (BIT_3 & *(block_base + 1));

/* Poll BSR until BSR.3 of target address = 0 (queue available).
/* BSR is 1 word above base of target block in status reg space.

*write_address = 0X1010;
/* Write word command
*write_address = data[counter];
/* Write actual data.

}

*write_address = 0X7171;

/* Read Extended Status Registers command

while (!(BIT_7 & *(block_base + 1)));

/* Poll BSR until BSR.7 of target address = 1 (block ready).

ESR = (*(block _base + 2) << 8) + (*(block_base + 1) & LOW_BYTE);
/* Put GSR in top byte and BSR in bottom byte of return value.
*write_address = 0X5050;

/* Clear Status Registers command

*write_address = OxFFFF;

/* Write FFH after last operation to reset device to read array mode.
return(ESR) ;

}

*/

*/
*/

*/

*/
*/

*/

*/

*/
*/
*/
*/

*/

292126-9

12

L}
i ntel AP-377
®
int two_byte_write(char *address, char *data, int byte_count)
/* This routine is used when BYTE# is low, i.e. the 28F016SA */
/* is in byte mode, to emulate a word write. */
/* Because of this, commands are given as 0x00XY instead of O0xXYXY as in */
/* the rest of the code presented here. *x/
/* *data is a byte array containg the low byte, high byte consecutively of */
/* each word. */
{
int counter, ESR;
/* ESR variable is used to return contents of GSR and BSR. */
char *block_base = byte_base(address);
/* Find pointer to base of block. */
for (counter = 0; counter < byte_count; counter++) {
*address = 0X0071;
/* Read Extended Status Registers command */
while (BIT_3 & *(block_base + 2));
/* Poll BSR until BSR.3 of target address = 0 (queue available). */
*address = 0X00FB;
/* Two-byte Write command */

*address = data[counter++];

*address = datal[counter];
/* 28F016SA automatically loads alternate byte of data register
}

/* Write is initiated. Now we poll for successful completion.
*address = 0X0071;

/* Read Extended Status Registers command

while (!(BIT_7 & *(block base + 2)));

/* Poll BSR until BSR.7 of target address = 1 (block ready).

/* BSR is 1 word above base of target block in status reg space.

ESR = (*(block_base + 4) << 8) + (*(block _base + 2) & LOW_BYTE);

/* Put GSR in top byte and BSR in bottom byte of return value.
*address = 0X0050;

/* Clear Status Registers command

*address = 0x00FF;

/* Write FFH after last operation to reset device to read array mode.
return(ESR) ;

}

/* Load one byte of data register; A0 = 0 loads low byte, Al high */

*/

*/

*/

*/

*/

*/

*/

*/

292126-10

13

AP-377

intgl.

int ESR_pagebuffer write(int *address, int word_count)

/* This procedure writes from page buffer to flash. *x/
{

/* This routine assumes page buffer is already loaded. */
/* Address is where in flash array to begin writing. */
/* Low byte of word count word_count must be 127 or fewer, high must be 0. */
/* High byte of word count exists for future Page Buffer expandability. */
int ESR;

/* ESR variable is used to return contents of GSR and BSR. */
int *block_base = base(address);

/* Find pointer to base of block to be written. */
*address = 0X7171;

/* Read Extended Status Registers command */
while (BIT_3 & *(block_base + 1));

/* Poll BSR until BSR.3 of target address = 0 (queue available). */
*address = 0X0C0C;

/* Page Buffer Write to Flash command *x/
*address = word_count;

/* high byte is a don’t care, write the low byte */

*address = 0;

/* write high byte of word_count which must be 0 (reserved for future use) */

*address = 0X7171;

/* Read Extended Status Registers command

while (!(BIT_7 & *(block base + 1)));

/* Poll BSR until BSR.7 of target address =1 (block ready) .

ESR = (*(block base + 2) << 8) + (*(block_base + 1) & LOW_BYTE);
/* Put GSR in top byte and BSR in bottom byte of return value.
*address = 0X5050;

/* Clear Status Registers command

*address = OxFFFF;

/* Write FFH after last operation to reset device to read array mode.

return(ESR) ;
}

*/

*/

*/

*/

*/

292126-11

14

intel . AP-377

int ESR_block_erase(int *erase_address)

/* This procedure erases a block on the 28F016SA. */
{

int ESR;

/* ESR variable is used to return contents of GSR and BSR. */
int *block_base = base(erase_address);

/* Find address of base of block being erased. *x/

*erase_address = 0X7171;

/* Read Extended Status Registers command */
while (BIT_3 & *(block_base + 1));
/* Poll BSR until BSR.3 of erase_address = 0 (queue available). */
/* BSR is 1 word above base of target block in ESR space. */
*erase_address = 0X2020;
/* Single Block Erase command */
*erase_address = 0XDODO;
/* Confirm command */
*erase_address = 0xDODO;
/* Resume command, per latest errata update */
*erase_address = 0X7171;
/* Read Extended Status Registers command */
while (!(BIT_7 & *(block_base + 1)));
/* Poll BSR until BSR.7 of target erase_address = 1 (block ready). */
ESR = (*(block_base + 2) << 8) + (*(block_base + 1) & LOW_BYTE);
/* Put GSR in top byte and BSR in bottom byte of return value. */
*erase_address = 0X5050;
/* Clear Status Registers command */
*erase_address = OXFFFF;
/* Write FFH after last operation to reset device to read array mode. */
return(ESR);
}

292126-12

15

AP-377

intgl.

int ESR_erase_all_unlocked_blocks(int *device_address, long *failure_list)

/* This procedure erases all the unlocked blocks on a 28F016SA.
{

int GSR;

/* Return value will contain GSR in both top and bottom byte.
/* 32 bit long pointed to by failure_list is used to return map
/* of block failures, each bit representing one block's status.
/* device_address points to base of chip.

int block;

/* block is used to hold block count for loop through blocks.
long power = 1;

*failure_list = 0;

/* Initialize all 32 bits of failure list long to 0.
*device_address = 0X7171;

/* Read Extended Status Registers

while (BIT_3 & *(device_address + 1));

/* Poll BSR until BSR.3 of target address = 0 (queue available).

*device_address = O0XA7A7;

/* Full-chip erase command
*device_address = 0XDODO;

/* Confirm command

*device_address = 0X7171;

/* Read Extended Status Registers command
while (!(BIT_7 & *(device_address + 2)));
/* Poll GSR until GSR.7 = 1 (WSM ready)

for (block = 0; block < 0X0020; block++)

*/
*/
*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

{
/* Go through blocks, looking at each BSR.5 for operation failure */
/* and setting appropriate bit in long pointed to by failure list. */
if (BIT_5 & *(device_address + block * 0X8000 + 1))
/* Multiply block by 32K words to get to the base of each block. */
*failure_list += power;
/* If the block failed, set that bit in the failure list. */
power = power << 1;
/* Increment to next power of two to access next bit. */
}
GSR = *(device_address + 2);
*device_address = 0X5050;
/* Clear Status Registers command */
*device_address = OxFFFF;
/* Write FFH after last operation to reset device to read array mode. */
return(GSR) ;
}
292126-13

16

i n-tel AP-377
®

int ESR_suspend_to_read_array(int *address,int *result)

/* This procedure suspends an erase on the 28F016SA. */
{

/* Address is assumed to point to location to be read. */
/* result is used to hold read value until procedure is complete. */
int ESR;

/* ESR variable is used to return contents of GSR and BSR. */

int *block_base = base(address);

*address = 0X7171;

/* Read Extended Status Registers command */
while (!(BIT_7 & *(block_base + 1)));
/* Poll BSR until BSR.7 of target address = 1 (block ready). */
/* BSR is 1 word above base of target block in ESR space. */
*address = 0XBOBO;
/* Operation Suspend command */
*address = 0X7171;
/* Read Extended Status Registers command */
while (! (BIT_7 & *(block_base + 2)));
/* Poll GSR until GSR.7 = 1 (WSM ready). */
if (BIT_6 & *(block_base + 2)) {
/* GSR.6 = 1 indicates an operation was suspended on this device, */
*address = OXFFFF;
/* Read Flash Array command */
*result = *address;
/* Read the data. */
*address = 0XDODO;
/* Resume the operation. */
} else {
*address = OXFFFF;
/* Read Flash Array command *x/
*result = *address;
/* Read the data. */
}
*address = 0x7171;
/* Read Extended Status Registers command */
ESR = (*(block_base + 2) << 8) + (*(block_base + 1) & LOW_BYTE);
/* Put GSR in top byte and BSR in bottom byte of return value. */
*address = 0X5050;
/* Clear Status Registers command */
return(ESR);
}
292126-14

17

AP-377

In

tel.

int ESR_automatic_erase_suspend_to_write(int *write_address, int
*erase_address, int data)

/* This procedure writes to one block while another is erasing.
{

int ESR;

/* ESR variable is used to return contents of GSR and BSR.

int * block_base = base(erase_address);

/* Find pointer to base of block being erased.

*erase_address = 0X7171;

/* Read Extended Status Register command

while (BIT_3 & *(block_base + 1));

/* Poll BSR until BSR.3 of target address = 0 (queue available).
/* BSR is 1 word above base of target block in ESR space.
*erase_address = 0X2020;

/* Erase Block command

*erase_address = 0XDODO;

/* Confirm command

*erase_address = 0X7171;

/* Read Extended Status Register command

while (BIT_3 & *(block base + 1));

/* Poll BSR until BSR.3 of target address = 0 (queue available).
/* BSR is 1 word above base of target block in ESR space.
*write_address = 0X4040;

/* Word Write command

*write_address = data;

/* Write actual data.

/* Erase suspends, write takes place, then erase resumes.
*erase_address = 0X7171;

/* Read Extended Status Registers command

while (!(BIT_7 & *(block_base + 1)));

/* Poll BSR until BSR.7 of erase address = 1 (block ready) .

/* BSR is 1 word above base of target block in status reg space.

ESR = (*(block_base + 2) << 8) + (*(block base + 1) & LOW_BYTE);
/* Put GSR in top byte and BSR in bottom byte of return value.
*block_base = 0X5050;

/* Clear Status Registers command

*block_base = OxFFFF;

/* Write FFH after last operation to reset device to read array mode.

return(ESR);
}

*/

*/

*/

*/

*/
*/

*/
*/
*/

*/
*/

*/

*/

*/
*/
*/
*/
*/

*/

292126-15

18

in‘tel . AP-377

int ESR_full_status_check_ for_data_write(int *device_address)
{
int errorcode;

*device_address = 0x7171;

/* Read Extended Status Resisters command */
while (! (BIT_7 & *(device_address + 2))) ;

/* Poll GSR until GSR.7 = 1 (WSM ready) */
/* to make sure data is valid */

if (*(device_address + 1) & BIT_2) errorcode = VPP_LOW;

/* BSR.2 = 1 indicates a Vpp Low Detect */
else if (*(device_address + 1) & BIT_4) errorcode = OP_ABORTED;

/* BSR.4 = 1 indicates an Operation Abort */
else if (get_pin(WPB) == LOW) errorcode = NO_ERROR;

else if (*(device_address + 1) & BIT_6) errorcode = BLOCK_LOCKED;

/* BSR.6 = 1 indicates the Block was locked */

else errorcode = NO_ERROR;

while (!(BIT_7 & *(device_address + 2))) ;
/* Poll GSR until GSR.7 = 1 (WSM ready) */
/* make sure chip is ready to accept command */

*device_address = 0x5050;
/* Clear Status Registers */

return errorcode;
}

292126-16

19

AP-377

int ESR_full_status_check_for_erase(int *device_address)
{
int errorcode = NO_ERROR;

*device_address = 0x7171;
/* Read Extended Status Resisters command
while (! (BIT_7 & *(device_address + 2)));
/* Poll GSR until GSR.7 = 1 (WSM ready)
/* make sure command completed
if (*(device_address + 1) & BIT_2) errorcode = VPP_LOW;
/* BSR.2 = 1 indicates a Vpp Low Detect
else if (*(device_address + 1) & BIT_4) errorcode = OP_ABORTED;
/* BSR.4 = 1 indicates an Operation Abort
else if (get_pin(WPB) == LOW && ! (*(device_address + 1) & BIT 6))
errorcode = BLOCK_LOCKED;
/* BSR.6 = 0 indicates the Block was locked
if (errorcode == NO_ERROR) {
*device_address = 0x7070;
/* Read Compatible Status Register

if ((*device_address & BIT 4) && (*device_address & BIT_5))
/* CSR.4 and CSR.5 == 1 indicate a command sequence error
errorcode = COMMAND_SEQ_ ERROR;
}

while (!(BIT_7 & *(device_address + 2))) ;
/* Poll GSR until GSR.7 = 1 (WSM ready)
/* make sure device is ready

*device_address = 0x5050;
/* Clear Status Registers command

return errorcode;
}

*/

*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

292126-17

20

i ntel AP-377
®

void single_load_to_pagebuffer(int *device_address, char *address, int data)
/* This procedure loads a single byte or word to a page buffer. */
/* device_address points to base of chip. */
{
*device_address = 0X7171;
/* Read Extended Status Registers command */
while (!(BIT_2 & *(device_address + 2)));
/* Poll GSR until GSR.2 = 1 (page buffer available) *x/
*device_address = 0X7474;
/* Single Load to Page Buffer command */
*address = data;
/* Actual write to page buffer */
/* This routine does not affect status registers. */
*address = OxFFFF;
/* Write FFH after last operation to reset device to read array mode. */
}

292126-18

21

AP-377 in‘tel .

void sequential_load_to_pagebuffer(int *device_address, char *start_address,
int word_count, int* data)

/* This procedure loads multiple words to a page buffer. */
/* device_address points to base of chip. *x/
{

/* Low byte of word_count must be 127 or fewer, high must be 0. */
/* word_count is zero-based counting, i.e word_count == 0 loads 1 word, */
/* word_count == 1 loads 2 words etc. */
/* High byte of word_count exists for future Page Buffer expandability. */
char counter;

/* counter is used to keep track of words written. */

*device_address = 0X7171;

/* Read Extended Status Registers command */
while (BIT_2 & *(device_address + 2));

/* Poll GSR until GSR.2 = 0 (page buffer available). */
*device_address = 0XEOEO;

/* Sequential Page Buffer Load command */

*gstart_address = word_count;
*start_address = 0;
/* Automatically loads high byte of count register */
for (counter = 0; counter <= word_count; counter++)
*(start_address + counter) = datal[counter];

/* Loop through data, writing to page buffer. */
/* This routine does not affect status registers. */
*device_address = OXFFFF;
/* Write FFH after last operation to reset device to read array mode. */
}

292126-19

22

i n-tel AP-377
®

int upload_device_information(int *address)
/* This procedure uploads the device revision number to the variable DRC. */

/* This implementation differs in that it does not loop as in the */
/* algorithm. This is so the calling routine can have a chance to do */
/* error checking instead of looping forever waiting for the device */
/* complete the operation. */
{

int DRC = 0;

/* DRC variable is used to return device revision status. */
int *block_base = base(address);

/* Find pointer to base of 32K word block. */

*address = 0X7171;

/* Read Extended Status Registers command *x/
while ((BIT_3 & *(block_base + 2)) && (!(BIT 7 & *(block base + 2))));:
/* Poll GSR until GSR.3 = 0 (queue available) and GSR.7 = 1 */
/* (WSM available). */
*address = 0X9999;
/* Device information Upload command */
*address = 0XDODO;
/* Confirmation command */
*address = 0X7171;
/* Read Extended Status Registers command */
while (!(BIT_7 & *(block_base + 2)));
/* Poll GSR until GSR.7 = 1 (WSM not busy) */
if (BIT_S5 & *(block_base+2)) return ((*(block_base+2) & HIGH_BYTE) << 8);
/* if GSR.5 = 1 operation was unsuccessful. Return GSR and 0 in DRC */
*address = 0X7272;
/* Swap page buffer to bring buffer with status information to top. */
*address = 0X7575;
/* Read Page Buffer command *x/
DRC = (*(block_base + 2) & OXFF00 << 8) + (*(block_base + 3) & LOW_BYTE);
/* Put GSR in top byte of return value. */
/* User should check GSR for operation success */
/* Put device revision code in bottom byte of return value. */
/* Note that device revision code was read from word 3 in page buffer. */
*address = 0x5050;
/* Clear Status registers command */
*address = OxFFFF;
/* Write FFH after last operation to reset device to read array mode. */
return(DRC) ;
}

292126-20

23

AP-377

intgl.

int RYBY_ reconfigure(int *address, int mode)

{
/* this procedure changes the RY/BY# configuration mode to the given mode */
int GSR;
/* the GSR variable is used to return the value of the GSR *x/
*address = 0x7171;
/* Read Extended Registers command */
while (BIT_3 & *(address+2));
/* Poll GSR until GSR.3 = 0 (queue available) */
*address = 0x9696;
/* Enable RY/BY# configuration, next command configures RY/BY# */
switch (mode) {
case RYBY_ ENABLE_TO_LEVEL:
*address = 0x0101;
/* Enable RY/BY# to level mode */
break;
case RYBY PULSE_ON_WRITE:
*address = 0x0202;
/* Enable RY/BY# to pulse on write */
break;
case RYBY_ PULSE_ON_ERASE:
*address = 0x0303;
/* Enable RY/BY# to pulse on erase */
break;
case RYBY_ DISABLE:
default:
*address = 0x0404;
/* Enable RY/BY# to disable */
break;
}
*address = 0X7171;
/* Read Extended Status Registers command */
while (! (BIT_7 & *(address + 2))) ;
/* Poll GSR until GSR.7 = 1 (WSM ready) */
GSR = *(address+2) & LOW_BYTE;
/* put GSR into low byte of return value */
*address = 0x5050;
/* Clear Status registers command */
*address = OxXFFFF;
/* Write FFH after last operation to reset device to read array mode. */
return (GSR);
}
292126-21

24

intel . AP-377

int page_buffer_swap(int *address)

{

/* This routine attempts to swap the page buffers, returning the value of */
/* the GSR before the operation in the upper byte and the value of the GSR */

/* after the operation in the lower byte for comparison */
/* For operation to be successful, the following must be true : */
/* (before) GSR.0 = (after) !GSR.0 */
/* (after) GSR.5 = 0 */
int GSR;

/* GSR variable is used to return contents of GSR before and after */
/* operation */

*address = 0x7171;

/* Read Extended Registers command */
GSR = *(address+2) << 8;
/* Put GSR into upper byte before page buffer swap */
*address = 0x7272;
/* write Page Buffer Swap command */
GSR |= (*(address+2) & LOW_BYTE);
/* Put GSR after operation into low byte for comparison *x/
*address = 0x5050;
/* Clear Status registers command */
*address = OxFFFF;
/* Write FFH after last operation to reset device to read array mode. */
return (GSR);
}

292126-22

25

AP-377 in‘tel .

ASMB6 ASSEMBLY LANGUAGE DRIVERS
Copyright Intel Corporation, 1993
EXAMPLE ASM86 Drivers for the 28F016SA Flash memory component
Original Author : Patrick Killelea, Intel Corporation
Revised By : Taylor Gautier

NOTE:
The code assumes 32-bit flat model protected mode for simplicity.
i.e. ES contains 0 and EDI accesses the entire memory space.

; Revision 2.0, September 26, 1994

TEXT gegment byte public 'CODE'
assume cs8:TEXT

; Following is the structure by which all parameters are passed.
params STRUCT

erase_addr DD ? ; base of block or device to
; erase
write_addr DD ? ; address to write to
write_base DD ? ; base address of block written
; to
read_addr DD ? ; address to read from
read_base DD ? ; base address of block read from
lock_addr DD ? ; base address of block to lock
data_addr DD ? ; address of data to write
data DwW ? ; data word to write
pagebuffer_ start_addr DB ? ; start address in page buffer
word_count DW ? ; number of words for a multiple

; read/write
params ENDS

NO_ERROR DW
VPP_LOW DW
OP_ABORTED DW
BLOCK_LOCKED DW
COMMAND_SEQ_ERROR DW
WP_LOW DW

YBY_ ENABLE_TO_LEVEL DW 1
RYBY_PULSE_ON_WRITE DwW 2
RYBY_PULSE_ON_ERASE DW 3
RYBY_DISABLE DW 4

;
; MACRO set_pin
; This macro pushes parameters needed for the set_pin routine, calls

292126-23

26

intel . AP-377

set_pin, and then pops those parameters. set_pin is an implementation-
; dependent function which sets a given pin on the standard 28F016SA
; pinout HIGH = 1 or LOW = 0.

pin: 28F016SA pin number

;
i
; Data needed at the beginning of this macro:
;
; level: level to set pin

i

MACRO set_pinpin, level

push pin ; Push pin number

push level ; Push logic level of pin
call near ptr set_pin ; Call set_pin

pop CX ; Pop off parameters

pop CX

; MACRO BSROFF
; This macro takes a pointer and increments it by two bytes. Use this
; macro for obtaining the offset to the BSR from a block base address

MACRO BSROFF pointer

add pointer, 2 ; BSR is 2 bytes above base
; address

; MACRO GSROFF
; This macro takes a pointer and increments it by four bytes. Use this
; macro for obtaining the offset to the GSR from a block base address

CRO GSROFF pointer
add pointer, 4 ; GSR is 4 bytes above base
; address

; MACRO GSRBSROFF
; This macro takes a pointer and increments it by two bytes. Use this
; macro for obtaining the offset to the GSR from the BSR

CRO GSRBSROFF pointer
add pointer, 2 ; GSR is 2 bytes from BSR

; MACRO BSRGSROFF
; This macro takes a pointer and subtracts it by two bytes. Use this
; macro for obtaining the offset to the BSR from the GSR

CRO BSRGSROFF pointer
sub pointer, 2

; BSR is 2 bytes below GSR
ENDM

292126-24

27

]
AP-377 |n‘te|
®
; PROCEDURE CSR_word_byte_writes
; This procedure writes a byte to the 28F016SA. It also works with a the
28F008SA.

Output:

Param fields needed:

params.data: data word to be written
params.write_addr: offset of 28F016SA address to write
BX: CSR, duplicated in both high and low bytes

CSR_word_byte_writes proc near

mov
mov
mov

EDI,params.write_addr
ES: [EDI],1010H ; Write To Flash command
ES: [EDI],params.data

; Write data to 28F016SA.

WSM_busyl:
mov
test
jz

AX,ES: [EDI] ; Read CSR
AX, 80H ; Look at CSR.7.
short WSM_busyl ; Loop while CSR.7 = 0.

; Poll CSR until CSR.7 = 1, indicatingthat WSM is ready.

mov
mov
mov
ret

BX,AX ; Return CSR in BX.
ES: [EDI],5050H ; Clear Status Registers command
ES: [EDI], FFFFH ; Reset device to read array mode

; Return to calling routine.

CSR_word_byte_writes endp

292126-25

28

AP-377

CSR_block_erase proc near
mov EDI,params.erase_addr
mov ES:[EDI1],2020H
mov ES:[EDI]1, DODOH
mov ES: [EDI], DODOH

WSM_busy2:
mov AX,ES: [EDI]
test AX, 80H

; different block

jz short WSM_busy2
mov ES: [EDI],5050H
mov ES: [EDI), FFFFH
ret

CSR_block_erase endp

; PROCEDURE CSR_block_erase
; This procedure erases a 64K byte block on the 28F016SA.
; It also works with a pair of 28F008SAs.
; Param fields needed:

erase_address: offset of base of 28F016SA block to erase
Output AX: CSR, duplicated in both high and low bytes

Block Erase command
Erase Confirm command
Resume Command per latest
errata update

v oNe s s

; Note that it is not strictly necessary to write an erase command to
; the base of a block; any address within the block will do.

; Read CSR.
; If CSR.7 = 0, test sets ZF.

; System may issue an erase suspend command here to read data from a

; Loop while ZF is set.

;7 Poll CSR until CSR.7 = 1, indicating that WSM is ready.

; Clear Status Registers command
; Reset device to read array mode
; Return to calling routine

; CSR is already in AX

292126-26

29

AP-377 intel .

; PROCEDURE CSR_erase_suspend_to_read
; This procedure suspends an erase operation to do a read.

; It also works with a pair of 28F008SAs.

; It assumes that erase is underway.

; Param fields needed:

; params.erase_addr: offset of 28F016SA block to erase
; params.read_addr: offset of 28F016SA address to read
; Output: BX: CSR, duplicated in both high and low bytes

; CX: data read from the address in params.read_addr

CSR_erase_suspend_to_read proc near

mov EDI,params.erase_addr ; Set up offset of erase address.
mov ES: [EDI],BOBOH ; Erase Suspend command
WSM_busy3:
mov AX,ES: [EDI] ; Read CSR from any address.
test AX, 80H
jz short WSM_busy3
; Poll CSR until CSR.7 = 1, indicating that WSM is ready.
test AX,40H ; test CSR.6
pushf ; save result for action later
mov EDI,params.read_addr ; Set up offset of read address.
mov ES: [EDI], FFFFH ; Read Flash command
mov CX,ES: [EDI] ; Do actual read; put result in
; CX.
; Arbitrary number of reads can be done here.
popf ; get back the result of CSR.6
jz short no_resume_command ; only resume if operation
; suspended
mov ES: [EDI],DODOH ; Erase Resume command

no_resume_command:

mov ES: [EDI],7070H ; Read CSR command

mov BX,ES: [EDI] ; Read CSR from any address.
; Return CSR in BX.

ret ; Return to calling routine.

CSR_erase_suspend_to_read endp
292126-27

30

AP-377

PROCEDURE

;
;
; Param fields
H
; Output:

;

lock_block

mov
mov
GSROFF

q_unavailable:
mov
test
jnz

mov
mov
mov

WSM_busy4:
mov
test
iz

lock_block

This procedure locks a block on the 28F016SA.

; Poll GSR while GSR.3 = 1, indicating queue unavailable.
set_pin 56,1

set_pin 15,1
; Wait for ramp if necessary.

; Poll GSR while GSR.7 = 0, indicating WSM_busy.

mov BH, AH ; Store GSR

; Look at BSR.6 to see if block successfully locked.

BSRGSROFF EDI ; Point EDI to BSR from GSR

mov AX,ES: [EDI] ; Read BSR

mov BL,AL ; Store BSR

mov ES: [EDI],5050H ; Clear Status Registers command
mov ES: [EDI], FFFFH ; Reset device to read array mode
ret ; Return to calling routine.

lock_block

needed:

params.lock_addr: offset of base of 28F016SA block to lock
BX: GSR in high byte and BSR in low byte

AX, DX: trash

proc near
EDI,params.lock_addr ; Set up offset of address.
ES: [EDI],7171H ; Read ESR command
EDI ; Point EDI to GSR

AX,ES: [EDI]
AX, 08H
short q_unavailable

Disable write protection.
Enable Vpp

Lock Block command
Confirmation command
Read ESR command

ES: [EDI],7777H
ES: [EDI],DODOH
ES:[EDI],7171H

AX,ES: [EDI] Read GSR
AX, 80H

short WSM_busy4

endp
292126-28

31

AP-377 intel o

; PROCEDURE lock_status_upload_to_BSR
; This procedure uploads status information into the ESR from non-volatile
; status bits.

; Param fields needed:

; params.lock_addr: offset of 28F016SA device

; Output: BX: GSR in high byte and BSR in low byte

; AX, CX, DX: trash

lock_status_upload_to_BSR proc near
mov EDI,params.lock_addr
mov ES: [EDI],7171H ; Read ESR command.
GSROFF EDI ; Point EDI to GSR
q_unavailablel:
mov AX,ES: [EDI] ; Read GSR
test AX, 08H
jnz short g unavailablel
; Poll GSR while GSR.3 = 1, indicating queue unavailable.
mov ES: [EDI],9797H ; Lock-status Upload command
mov ES: [EDI], DODOH ; Confirmation command
mov ES: [EDI],7171H ; Read ESR command

WSM_busy5:

mov AX,ES: [EDI] ; Read GSR
test AX, 80H
jz short WSM_busy5

; Poll GSR while GSR.7 = 0, indicating WSM_busy

mov AX, ES:[EDI] ; Read GSR

mov BH, AL ; Store in high byte of BX
BSRGSROFF EDI ; Point EDI to BSR from GSR

mov AX,ES: [EDI] ; Read BSR

mov BL, AL ; Store BSR

mov ES:[EDI],5050H ; Clear Status Registers command
mov ES: [EDI], FFFFH ; Reset device to read array mode
ret ; Return to calling routine.

lock_status_upload_to_BSR endp

292126-29

32

'tel AP-377
®

output: BX: GSR in high byte and BSR in low byte
AX, BX, CX, : trash
j============s==cS==-====-==S-===S=ST=====-===--====———————zo-=s——=————=—===
ESR_word_write proc near
push SI
mov EDI,params.write_addr ; Set up offset of write address.
mov ES:[EDI], 7171H ; Read Extended Status Registers
; command
mov EBX,params.write_base ; Get base of block to write
BSROFF EDI
mov CX, params.word_count
mov SI, params.data ; params.data should be a pointer

q_unavailable2:

mov AX,ES: [EBX] ; Read BSR

test AX, 08H

jne short @ _unavailable2

;Loop while BSR.3 of target address = 1, meaning queue full.

mov ES: [EDI], 1010H ; Write Byte command

movsw ; write data and increment EDI,
; SI

loop Q_unavailable2 ; loop until CX = 0

mov EDI,params.write_base ; Set up offset of block base
; in case we wrote to the end of
; the device, in which case EDI
; will now be 2 bytes past the
; device

mov ES: [EDI],7171H ; Read ESR command

BSROFF EDI ; Point EDI to BSR

block_busy:

mov AX,ES: [EDI] ; Read BSR

test AX, 0080H

jz short block_busy

;Poll BSR while BSR.7 of target address is 0, meaning block busy

mov BL,AL ; Store BSR in BL

GSRBSROFF EDI ; Point EDI to GSR from BSR

mov BH,ES: [EDI] ; Read GSR and store in BH

mov ES:[EDI],5050H ; Clear Status Registers command

mov ES: [EDI}, OFFFFH ; Reset device to read array mode

pop SI

ret ; Return to calling routine.

ESR_word_write endp

PROCEDURE ESR_word_write

This procedure writes a word to the 28F016SA.

Param fields needed:
params.write_base: offset of base of 28F016SA block to write
params.data: data word to write
params.write_addr: offset of 28F016SA address to write

; to an array of data to write to
; the flash array

292126-30

33

AP-377

PROCEDURE two_byte_write

This routine is used when BYTE# is low, i.e. the 28F016SA

is in byte mode, to emulate a word write.

Param fields needed: (assume existence of byte fields data_high and
data low)

params.data_high: high data byte to write

params.data_low: low data byte to write

params.write_addr: offset of 28F016SA address to write
Output: BX: GSR in high byte and BSR in low byte

AX, CX, DX: trash

two_byte_write proc near

H params.write_base: offset of base of 28F016SA block to write
!
s

mov EDI,params.write_base ; Set up offset of address.
mov ES:[EDI],0071H ; Read ESR command

BSROFF EDI ; Point EDI to BSR

mov CX, params.word_count ; use word_count as byte_count

q_unavailable3:

mov AX,ES: [EDI] ; Read BSR
test AX,08H
jnz short @ unavailable3

; Loop while BSR.3 of target address is 1, meaning queue full.

mov ES:[EDI}], 00FBH ; Two-byte write command

; Write low byte of data word

mov EDI,params.write_addr ; Set up offset of address.
nov ES: [EDI],params.data_high

nov ES: [EDI],params.data_low

; 28F016SA automatically loads alternate byte of data register and
; initiates write. Now we check for successful completion.

mov ES:[EDI],7171H ; Read ESR command
nov EDI,params.write_base
BSROFF EDI ; Point EDI to BSR

block_busy2:

mov AX,ES: [EDI] ; Read BSR
test AX, 80H
jz short block_busy2

; Poll BSR while BSR.7 of target address is 0, meaning block busy.

mov BH,ES: [EDI] ; Read BSR

GSRBSROFF EDI ; Point EDI to GSR from BSR

mov BL,ES: [EDI) ; Read and store GSR

mov ES: [EDI],5050H ; Clear Status Registers command
ret ; Return to calling routine.

two_byte_write endp

292126-31

34

|n'te| . AP-377

; PROCEDURE ESR_pagebuffer_write

; This procedure writes from page buffer to flash.

; Param fields needed:

H params.write_base: offset of base of 28F016SA block to write

; params.pagebuffer word_count: number of words to write to flash
i params.write_addr: offset of 28F016SA address to write

; Output: BX: GSR in high byte and BSR in low byte of BX

: AX, CX, DX: trash

ESR_pagebuffer_ write proc near
push SI ; Save old SI.
mov SI,params.word_count ; Use SI to count words.

Address is where in 28F016SA flash array to begin write. The lowest
byte of this must be identical to the start address in the page buffer.
Low byte of byte_count must be 256 or fewer, high must be 0.

High byte exists for future Page Buffer expandability.

mov EDI,params.write_base ; Offset of block base address.
mov ES:([EDI],7171H ; Read ESR command
BSROFF EDI

Q@ _unavailabled:

mov AX,ES: [EDI] ; Read BSR
test AX, 8
jne short g _unavailable4

; Loop while BSR.3 of target address is 1, meaning queue full.

mov ES: [EDI], OCOCH ; Page Buffer Write command
mov ES:[EDI],SI ; Write count

;Only A0 valid here; low or high byte loaded depending on A0.
mov ES:[EDI}, O

;A0 internally complemented; alternate byte loads; write starts.
mov ES: [EDI],7171H ; Read ESR command

block_busy3:

mov AX,ES: [EDI] ; Read BSR
test AX,80H
jz short block_busy3

;Loop while BSR.7 of target address is 0, meaning block busy.

mov BL,ES: [EDI] ; Read BSR

GSRBSROFF EDI ; point EDI to GSR from BSR

mov BH, ES: [EDI] ; Read GSR

mov ES:[EDI],5050H ; Clear Status Registers command
mov ES: [EDI], OFFFFH ; Reset device to read array mode
pop SI ; Retrieve old SI.

ret ; Return to calling routine.

ESR_pagebuffer_ write endp
292126-32

35

AP-377

PROCEDURE ESR_block_erase

This procedure erases a block on the 28F016SA.

Param fields needed:

H params.erase_addr: offset of base of 28F016SA block to erase

Set up offset of address.

Output: BX: GSR in high byte and BSR in low byte
AX, DX: trash
ESR_block_erase proc near
mov EDI,params.erase_addr
mov ES: [EDI],7171H

BSROFF EDI

q _unavailableS:

mov AX,ES: [EDI]
test AX,08H
jne short @ _unavailable5

7

Read ESR command
point EDI to BSR

Read BSR

; Loop while BSR.3 of target address is 1, meaning queue full.

mov ES: [EDI],2020H
mov ES:[EDI],DODOH
mov ES: [EDI],DODOH
mov ES:[EDI],7171H

;Note that EDI still points to BSR

block_busy4d:

mov AX,ES: [EDI]
test AX,80H
jz short block_busy4
;Loop while BSR.7 of target address
mov BL, AL
GSRBSROFF EDI
mov BH,ES: [EDI]
mov ES:[EDI],5050H
mov ES: [EDI], OFFFFH
ret

ESR_block_erase endp

’
7
7
7

7

’

Block Erase command
Confirm command

Resume command, per latest
errata update

Read ESR command

Read BSR

0, i.e. block busy.

Store BSR in BL.

point EDI to GSR from BSR

Read GSR, store in BH

Clear Status Registers command
Reset device to read array mode
Return to calling routine.

292126-33

36

intel . AP-377

BX: Failure list
AX, DX: trash

ESR_erase_all_unlocked_blocks proc near

; PROCEDURE ESR_erase_all_unlocked_blocks

; This procedure erases all the unlocked blocks on a 28F016SA.

; params.erase_addr: offset of base of device to erase
; Output: CX: GSR in both high byte and low byte

push SI ; Save old SI.
mov EDI,params.erase_addr ; erase_addr should be set to
; the device address
mov ES: [EDI],7171H ; Read ESR command
BSROFF EDI ; point EDI to BSR
g _unavailable6:
mov AX,ES: [EDI] ; Read BSR
test AX,08H
jnz short q unavailableé6

; Poll BSR while BSR.3 of target address is 1, meaning queue full.

mov ES: [EDI],A7A7H ; Full-chip Erase command
mov ES:[EDI],DODOH ; Confirm command

mov ES: [EDI],7171H ; Read ESR command
GSRBSROFF EDI ; Point EDI to GSR from BSR

WSM_busy6:

mov AX,ES: [EDI) ; Read GSR
test AX, 80H
jz short WSM_busyé6

;loop until GSR.7 indicates WSM is ready

mov AX,ES: [EDI] ; Read GSR for operation success
test AX,20H
jz short operation_successful

; If GSR.5 = 1, meaning that the operation was unsuccessful,
; go through blocks, looking for the ones which didn't erase.

xor SI,SI ; Clear ST.
xor EBX, EBX ; Clear EBX for failure list
mov EDX, 1 ; use EDX as mask to set failures
mov EDI, params.erase_addr ; start at the beginning of the

; device
mov CX, 32 ; 32 blocks in 28F016SA
BSRGSROFF EDI ; point EDI to BSR from GSR

look_for_bad_erase:
; Looking at each BSR.3 for operation success.

mov AX,ES: [EDI] ; Read BSR
test AX,08H
iz short ok_erased

; record number of bad block here
or EBX, EDX

ok_erased:
shl EDX
292126-34

37

AP-377 in‘tel .

add EDI, 10000H ; Increment EDI to next block
loop look_for_bad_erase

operation_successful:

mov EDI, params.erase_address ; reset EDI to device address
GSROFF EDI ; point EDI to GSR

mov BX, ES:[EDI]

mov ES: [EDI],5050H ; Clear Status Registers command
mov ES: [EDI], OFFFFH ; Reset device to read array mode
pop ST

ret ; Return to calling routine.

ESR_erase_all_unlocked_blocks endp
292126-35

38

AP-377

PROCEDURE

test
pushf
mov
mov
mov

mov
popf
jz

ESR_suspend_to_read_array

This procedure suspends an erase on the 28F016SA.
Param fields needed:
params.erase_addr: offset of base of erasing 28F016SA block

params.read_addr: offset of 28F016SA address to read

Output: BX: GSR in high byte and BSR in low byte (of erase block)
CX: data read from flash
AX, DX: trash
ESR_suspend_to_read_array proc near
mov EDI,params.erase_addr
BSROFF EDI ; point EDI to BSR
mov ES: [EDI],7171H ; Read ESR command
block_busy5:
mov AX,ES: [EDI] ; Read BSR
test AX,80H
jz block_busy5
; Loop 1f BSR.7 of target address is 0, meaning block busy.
mov ES: [EDI], OBOBOH ; Operation Suspend command
GSRBSROFF EDI ; Point EDI to GSR from BSR
WSM_busy7:
nov AX,ES: [EDI] ; Read GSR
test AX, 80H
jz short WSM_busy7

; Poll GSR until GSR.7 indicates WSM is ready.

AX,40H

; store result for later
EDI,params.read_addr ; Set up offset of read address.
ES: [EDI], FFFFH ; Write Read Flash Array command
CX,ES: [EDI] ; Read the data
EDI,params.erase_addr ; Set up offset of erase address.

short nothing_suspended

; If GSR.6 indicates an operation was suspended on this device,
; then resume the operation.

mov ES: [EDI], 0DODOH ; Resume command
nothing_suspended:

mov BH, AH ; Store GSR in BH.

sub EDI, 2 ; Move EDI down to read BSR.

mov BL,ES: [EDI] ; Read BSR and store in BL

mov ES: [EDI],5050H ; Clear Status Registers command

mov ES: [EDI], OFFFFH ; Reset device to read array mode

ret ; Return to calling routine.

ESR_suspend_to_read_array endp
292126-36

39

AP-377

ESR_automatic_erase_suspend_to_write
This procedure writes to one block while another is erasing.

PROCEDURE

Param fields

Output:

ESR_automatic_erase_suspend_to_write proc
EDI,params.erase_addr ;
ES:[EDI],7171H H
EDI ;

mov
mov
BSROFF

Q _unavailable7:
mov
test
jnz

; Loop while BSR.3 of target address

mov
mov
mov
mov
mov

; Erase will suspend, write will take place,

mov
mov
BSROFF

block_busyé6:
mov
test
jz

; Loop while BSR.7 of target address is 0, meaning block busy.

mov

needed:
params.data:

params.write_addr:

AX, DX: trash

AX,ES: [EDI] i

AX, 08H
short ¢ _unavailableé6

ES: [EDI],2020H H
ES: [EDI], DODOH ;
EDI,params.write_addr ;
ES:[EDI],4040H H
ES: [EDI],params.data ;

EDI,params.erase_addr ;
ES:[EDI],7171H i
EDI H

AX, ES:[EDI]
AX, 80H
short block_busyé6

BH,ES: [EDI]} ;

GSRBSROFF EDI

mov
mov
mov
ret

BL,ES: [EDI] ;
ES: [EDI],5050H ;
ES: [EDI], OFFFFH ;

ESR_automatic_erase_suspend_to_write endp

data word to write to 28F016SA
params.erase_addr: offset of 28F016SA address to
offset of 28F016SA address to
BX: GSR in high byte and BSR in low byte

near

is 1, meaning gueue full.

then erase resumes.

Set up offset of
Read ESR command
point EDI to BSR

Read BSR

Write Erase Block command
Erase Confirm command

Set up offset of address.
Write Word command

Write actual data

Set up offset of address.
Read ESR command
point EDI to BSR

Read BSR

Read and store GSR

Clear Status Registers command
Reset device to read array mode
Return to calling routine.

292126-37

40

in‘tel . AP-377

PROCEDURE ESR_full_status_check_for_data_write
This procedure performs a full status check of the Extended Status
Register

params.write_base: offset of base of device
Output: CX : errorcode

;
;
; Param fields needed:
7
’
; AX, BX: trash

ESR_full status_check_for_data_write proc near

mov EDI, params.write_base
mov ES:[EDI], 7171H ; Read ESR command
GSROFF EDI ; Point EDI to GSR
WSM_busy8:
mov AX,ES: [EDI] ; Read GSR
test AX, 80H
jz short WSM_busyS8
; Poll GSR while GSR.7 = 0, indicating WSM busy.
BSRGSROFF EDI ; Point EDI to BSR from GSR
mov AX,ES: [EDI]
test AX, 04H ; BSR.2 = 1 indicates VPP_LOW
jz vpp_high
mov CX, VPP_LOW
jmp cont
vpp_high:
test AX, 10H ; BSR.4 = 1 indicates operation
jz op_not_aborted ; was aborted
mov CX, OP_ABORTED
Jmp cont

op_not_aborted:

get_pin WPB ; get_pin returns output in BX
cnp BX, O00H
je wpb_high ; no error if WPB is low
Jmp no_error
wpb_high:
test AX, 40H ; BSR.6 indicates BLOCK_LOCKED
jz no_error
mov CX, BLOCK_LOCKED
Jmp cont

no_error:
mov CX, NO_ERROR

cont:
GSRBSROFF EDI ; Point EDI to GSR from BSR

WSM_busy9:
mov AX, ES:[EDI]
292126-38

41

AP-377

intgl.

test AX, 80H

;

Clear Status Registers command

jz WSM_busy9

; Poll GSR while GSR.7 = 0, indicating WSM busy.
mov ES:[EDI],5050H

ret

ESR_full_ status_check_for_data_write endp

292126-39

42

AP-377

PROCEDURE

;
; Register

; Param fields needed:
;

;

CX errorcode
AX, BX: trash

Output:

ESR_full_status_check_ for_erase proc near

mov CX, NO_ERROR

mov EDI, params.write_base

mov ES: [EDI], 7171H H
GSROFF EDI ;

WSM_busyl10:

mov AX,ES: [EDI] H
test AX, 80H
jz short WSM_busyl0

; Poll GSR while GSR.7 = 0,

BSRGSROFF EDI H
mov AX,ES: [EDI]
test AX, 04H ;
jz vpp_high
mov CX, VPP_LOW
Jmp cont

vpp_high:
test AX, 10H H
jz op_not_aborted H
mov CX, OP_ABORTED
Jjmp cont

op_not_aborted:
get_pin WPB H
cmp BX, 0O0H
jne no_error ;
test AX, 40H ;
jz no_error
mov CX, BLOCK_LOCKED
jmp cont

no_error:

mov ES:[EDI], 7070H H
mov AX, ES:[EDI]
test AX, 10H ;
jz cont B
test AX, 20H
jz cont
mov CX, COMMAND_SEQ_ERROR

cont:
mov ES:[EDI], 7171H ;

ESR_full_status_check_for_erase
This procedure performs a full status check of the Extended Status

params.write_base: offset of base of device

Read ESR command
Point EDI to GSR

Read GSR

indicating WSM busy.

Point EDI to BSR from GSR

BSR.2 = 1 indicates VPP_LOW

BSR.4 = 1 indicates operation
was aborted

get_pin returns output in BX

BSR.6 and WPB LOW indicates
BLOCK_LOCKED

Read CSR command

CSR.4 and CSR.5 indicate
command sequence error

Read ESR command
292126-40

43

44

AP-377

intgl.

; EDI still points to GSR

WSM_busyll:
mov AX,ES: [EDI]
test AX, 80H
jz short WSM_busyll
; Poll GSR while GSR.7 = 0,
mov ES: [EDI],5050H
ret

ESR_full_status_check_for_erase endp

;

indicating WSM busy.

i

Read GSR

Clear Status Registers command

292126-41

AP-377

PROCEDURE single_load_to_pagebuffer

Param fields needed:

Output: AX: trash
single_pagebuffer_load proc near
mov EDI,params.write_base
mov ES: [EDI],7171H

GSROFF EDI

wait_for pb:

mov AX,ES: [EDI]
test AX, 04H
jz short wait_for_pb

single_load_to_pagebuffer endp

This procedure loads a single byte or word to a page buffer.

params.data: data to be written to page buffer

H
;

H params.write_base: offset of base of device

;

; params.pagebuffer_start_addr: byte giving pb location to write

Set up offset of base address.

; Read ESR command
; point EDI to GSR

;

nov ES: [EDI],7474H ;
; Actual write to page buffer.

add EDI,params.pagebuffer_ start_addr
mov ES: [EDI],params.data

; BP+4 is location in pb to write.

ret ;

Read GSR

; Poll GSR until GSR.2 indicates that a page buffer is available

Single PB Write command
; Set up offset of
; address.

Return to calling routine.

292126-42

45

AP-377

PROCEDURE

buffer

wait_for_ pb2:
mov
test
jz

mov

mov

mov

mov
jmp

not_done:
mov

mov
cbw
add
cwd
mov

mov
mov
mov
add

; This procedure loads the page buffer.
; bParam fields needed:

: params.pagebuffer_start_addr: starting pb address of data to
write
; Output: AX, BX, DX: trash
sequential_load_to_pagebuffer proc near
sub SP,2 ; Set aside room for counter.
mov byte ptr [BP-1],0 ; Clear high byte of counter
; word.
push SI ; Save old SI.
mov SI,word_count ;Put # of words to write in SI.
; SP+6 must be 128 or fewer, SP+7 must be O.
; High byte exists for future Page Buffer expandability.
mov EDI,params.write_addr ; Set up offset of device
; address.
mov ES:[EDI],7171H ; Read ESR command

; Commands to control entire 28F016SA do not need to be written to any
; particular address.

GSROFF EDI ; point EDI to GSR
AX,ES: [EDI] ; Read GSR
AX,4

; Poll GSR until GSR.2 indicates that a page buffer is available.

; Loads high or low byte of count register, depending on AQ.

; Automatically loads alternate byte of count register.

; Loop through data, writing to page buffer.

sequential_load_to_pagebuffer

params.write_addr: offset of origin of device
params.data_addr: pointer to data to be written to pg buffer
params.pagebuffer_word_count: number of words to write to pg

short wait_for_pb2

ES: [EDI],EQEOH ; Sequential Page Buffer Load
; cmd.

ES: [EDI],SI ; Write

ES: [EDI],SI ; Write

byte ptr [BP-1],0 ; Load counter.
short compare

DX,word ptr [BP-2] ; Put current val. of counter in
; DX.

AL, params.pagebuffer_start_addr ; Get starting address in pb.
; Convert it to a word.

AX,DX ; Add to get abs. address in pb.
; Convert AX to a double word.
BP+12,DX ; Store segment of pb address
;7 (0).
BP+10,AX ; Store offset of pb address.
AX,word ptr [BP-2] ; Get current value of counter.
EBX, params.data_addr ; Get address of where data is.
EBX, AX ; Add value of counter to it.
292126-43

46

intgl.

AP-377

mov ES,word ptr [BX]

mov EDI,params.write_base

mov ES: [EDI)],AX

inc word ptr [BP-2]
compare:

mov AX,word ptr [BP-21]

cmp AX, SI

jl short not_done

; End of loop.

pop s1
mov SP, BP
ret

sequential_load_to_pagebuffer endp

Put data at that address on
stack.

Set up offset of address.
Write

Increment counter.

Get current value of counter.
Compare to final value.

Retrieve old SI.
Retrieve o0ld SP.
Return to calling routine.

292126-44

47

AP-377

; PROCEDURE upload_device_information
; This procedure uploads the device revision code into the page buffer.
; Param fields needed:

H parans.write_base: offset of 28F016SA device

; DX: Device revision number

F AX, CX: trash

Output:

proc near

mov EDI,params.write_base

mov ES:[EDI]),7171H ; Read ESR command.

inc EDI ; Move EDI up to GSR.

inc EDI
q_unavailable8:

mov AX,ES: [EDI] ; Read GSR

test AX,8

Jjne short @ unavailable8

; Poll GSR while GSR.3 = 1, indicating queue unavailable.
WSM_busyl2:

mov AX,ES: [EDI] ; Read GSR

test AX, 80H

je short WSM_busyl2

; Poll GSR while GSR.7 = 0, indicating WSM busy.

mov ES:[EDI],9999H ; Lock-status Upload command

mov ES: [EDI],DODOH ; Confirmation command

mov ES:[EDI],7171H ; Read ESR command
WSM_busyl3:

mov AX,ES: [EDI] ; Read GSR

test AX, 80H

jz short WSM_busyl3

; Poll GSR while GSR.7 = 0, indicating WSM_busy

mov ES: [EDI],7272H H
mov ES: [EDI],7575H ;
mov DX, [params.write_base+3] ;

Swap Page Buffer command
Read Page Buffer command
Put revision number in DX

; Revision number is 3 words above write_base in page buffer space.
; GSR.5 should be checked for operation success before using revision

; number.
ret ;

upload_device_information endp

Return to calling routine.

292126-45

48

AP-377

PROCEDURE RYBY_reconfiguration

This procedure reconfigures the RY/BY# output mode

Param fields needed:

;

H

; params.write_base: offset of 28F016SA device
; params.data: reconfiguration define

;

Output: AX : GSR
RYBY_reconfiguration proc near
mov EDI, params.write_base
mov ES:[EDI], 7171H

GSROFF EDI

Q_unavailable9:

mov AX,ES: [EDI]
test AX,8
jne short q unavailable9
mov ES:[EDI], 9696H
cmp params.data, 01
jne switchl
mov ES:[EDI], 0101H
Jmp break
switchl:
cmp params.data, 02
jne switch2
mov ES:[EDI], 0202H
jmp break
switch2:
cmp params.data, 03
jne default
mov ES:[EDI], 0303H
Jjmp break
default:
mov ES: [EDI], 0404H
break:
mov ES:[EDI], 7171H

WSM_busyl4:

mov AX,ES: [EDI]

test AX, 80H

jz short WSM_busyl4
mov ES: [EDI],5050H
mov ES: [EDI], OFFFFH

RYBY_reconfiguration endp

Read ESR command
Point EDI to GSR

Read GSR
test bit 3

RY/BY# reconfiguration code

Enable RY/BY# to level mode

Enable RY/BY# to pulse on write

Enable RY/BY# to pulse on erase

Enable RY/BY# to disable

Read ESR command

Read GSR (EDI already points to
GSR)

Clear Status Registers command
Reset device to read array mode

292126-46

49

AP-377

PROCEDURE

page_buffer_swap

This procedure swaps the page buffers.

Output:

;
; Param fields needed:
;

params.write_base: offset of 28F016SA device
AX : GSR before operation in high byte, GSR in low

byte after operation

page_buffer_ swap proc near

mov
mov
GSROFF

mov

mov

mov

mov
mov

EDI, params.write_base
ES: [EDI]}, 7171H
EDI

AH,ES: [EDI)
ES: [EDI], 7272H
AL, ES: [EDI]

ES:[EDI],5050H
ES: [EDI], OFFFFH

page_buffer_ swap endp

TEXT

ends

; Read ESR command
; Point EDI to GSR

; Read GSR and store in AH
; Page Buffer Swap command
; Read GSR and store in AL

; Clear Status Registers command
; Reset device to read array mode

292126-47

50

AP-377

APPENDIX A
FUNCTION CHANGES

OLD FUNCTION NAME

NEW FUNCTION NAME

compatible__block__erase

CSR__block__erase

compatible__suspend__to__read

CSR__erase__suspend__to__read

compatible__byte__write

CSR__word__byte__writes

ESR__block__erase

N/C

ESR__status__check__after__erase*

ESR__full__status__check__for__erase

ESR__status__check__after__write*

ESR__full__status__check__for__data__write

ESR__suspend__to__read

ESR__suspend__to__read__array

ESR__word__write N/C
erase__all__unlocked__blocks ESR__erase__all__unlocked__blocks
lock__block N/C

status__upload

lock__status__upload__to__BSR

pagebuffer__write__to__flash

ESR__pagebuffer__write

sequential__pagebuffer__load

sequential__load__to__pagebuffer

single__pagebuffer__load

single__load__to__pagebuffer

two__byte__write

N/C

write__during__erase

ESR__automatic__erase__suspend__to__write

NOTE:

*code added in Rev 2.0.

A-1

in‘tel . AP-377

APPENDIX B
Glossary of Terms

BSR: Block Status Register. Each BSR reflects the status of its 64KB block.

CSR: Compatible Status Register. The CSR reflects the status of the entire device and is identical in format
to the Status Register of the 28 FOO8SA.

EDI: Extended Data Index register on 80386 and higher CPUs.

ESR: Extended Status Registers. The GSR and BSRs.

GSR: Global Status Register. The GSR provides additional information about entire device status.

RY/BY#: Output pin from the 28F016SA indicating status of current operation.

Vpp: Voltage necessary to program the 28F016SA (12V).

WSM: Write State Machine. On-board processor automating write, erase and other functions.

B-1

in‘tel . AP-377

APPENDIX C
ADDITIONAL INFORMATION
Order Number Document
290489 28F016SA Datasheet
292124 AP-375 Upgrade Considerations from the 28F008SA to the 28F016SA
297372 16-Mbit Flash Product User’s Manual
292127 AP-378 System Optimization Using the Enhanced Features of the 28F016SA
294016 ER-33 Flash Memory Technology ETOX IV
290528 28F016SV Datasheet
292144 AP-393 28F016SV Compatibility with 28F016SA
REVISION HISTORY
Number Description
001 Original Version
002 Updated Version of C and ASM code, compatible with 28F016SV/XS/XD
003 Added 28F016XS and 28F016XD Feature Set notice

C-1

