
E
APPLICATION

NOTE

AP-604

Using Intel's Boot Block
Flash Memory
Parameter Blocks To
Replace Eeprom

Order Number: 292148-002

PETER HAZEN
SENIOR TECHNICAL
MARKETING ENGINEER

November 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1994 CG-041493

E AP-604

1

PRELIMINARY

1.0 INTRODUCTION

Intel’s boot block flash memories provide updatable code
and data storage for a wide range of applications
including cellular phones, modems, PC BIOS,
automobile engine control and many others. System
designers reduce system cost and improve reliability by
using Intel’s flash memory parameter blocks to replace
EEPROM for parameter data storage.

Using software techniques described in this paper,
designers can replace EEPROM with Intel’s flash
memory parameter blocks in many applications that
previously used EEPROM for parameter data storage.
For example, cellular phone designs use Intel’s flash
memory parameter blocks to store data such as telephone
numbers, time of use and user identification information.
Automobile manufacturers use Intel’s parameter blocks
in engine control applications to store fault codes and
engine optimization parameters. In each of these cases,
manufacturers save both EEPROM component and
inventory costs by using Intel’s boot block flash memory
for parameter storage in addition to storing application
code. Additionally, improved reliability is achieved with
lower system device and pin counts. Finally, the amount
and frequency of parameter storage is improved.

This paper describes a linked-list data structure for
storing parameters in Intel's flash memory parameter
blocks using a scheme that emulates byte alterablility. A
review of flash memory fundamentals shows how flash is
used in a system and defines the constraints for
implementing the software scheme. Reference source
code is available from Intel.

2.0 REVIEW OF FLASH MEMORY
FUNDAMENTALS

Flash technology brings unique attributes to system
memory. Like RAM, flash memory is electrically
modified in-system. Like ROM, flash is nonvolatile,
retaining data after power is removed. However, unlike
RAM, flash cannot be rewritten on a byte basis. Flash
memory reads and writes on a byte-by-byte basis, and
adds a new requirement: it must be erased before it can
be rewritten. Table 1 shows each flash memory
operation, the size of data, and the time it takes for each
operation.

Writing (or programming) flash is the process of
changing “1”s to “0”s. Erasing flash is the process of
changing “0”s to “1”s flash memory is erased on a block-
by-block basis. Blocks are defined by a fixed address
range as shown in Intel’s 4-M Boot Block Memory Map
in Figure 1. When a block is erased, all address locations

within a block are erased in parallel, independent of other
blocks in the flash memory device.

Intel’s flash memory boot block products are specified to
work over 100,000 cycles when operating at
5V VCC. A cycle is defined as an erase operation. For
example, if each of the 8 Kbytes in one of the parameter
blocks are successively programmed and then the block
erased, 1 cycle has completed. This specification is
important in determining how many parameters can be
stored and how many times those parameters can be
updated.

Since flash memory cannot be re-written to the same
address location without first erasing an entire block of
memory, software techniques are used to emulate byte
alterability using the two 8-KB parameter blocks shown
in Figure 1.

Table 1. Flash Memory Read, Write and Erase
Operations*

Operation Min
Segment

Typical
Time

Max
Time

Read Byte 60 ns 60 ns

Write Byte 10 µs 160 µs

Erase Block
(8 KB)

0.8 sec 4.4 sec

*Specifications for Intel’s SmartVoltage 4-M boot block
product operating in x8 mode at 5.0V VCC and 5.0V VPP.
Refer to the SmartVoltage 2/4-M datasheets.

3.0 SYSTEM OPERATION

In addition to storing parametric data, Intel’s boot block
flash memory is often used to store updatable application
code. In many systems, the hardware- lockable boot
block stores the kernel code necessary to initialize the
system and invoke a recovery routine if code is lost. The
boot block also typically stores the code necessary to
program and erase the flash memory.1 Today, flash
memory products do not provide the capability to read
from one address location in the flash device while
writing to another address in the same device. This
means any code that writes to flash must be downloaded
to RAM.

1Program and Erase code for Intel’s boot block flash
memory products is available on the Intel BBS.

AP-604 E

2

PRELIMINARY

3FFFFH

3E000H
3DFFFH

3D000H
3CFFFH

3C000H
3BFFFH

30000H
2FFFFH

20000H
1FFFFH

10000H
0FFFFH

00000H

8-Kbyte PARAMETER BLOCK

8-Kbyte PARAMETER BLOCK

96-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

128-Kbyte MAIN BLOCK

16-Kbyte BOOT BLOCK

(Word Addresses)

2148_01

Figure 1. Intel’s Boot Block Flash Memory Map

CPU

RAM

Flash

2148_02

Figure 2. For In-System Write to Flash, Code is
Executed out of RAM

4.0 SOFTWARE SCHEME FOR
EMULATING BYTE
ALTERABILITY

By using the two parameter blocks in Intel’s boot block
components along with software techniques, data can be
stored a byte at a time and the erase operation of flash
can be completed as a background task, to emulate byte
alterability.

5.0 PARAMETER DATA STRUCTURE

A linked-list data structure provides an arrangement of
data that is well-suited to the needs of flash memory. For
example, suppose we want to store three parameters that
will be updated. We store each parameter in a record.
Each record has two fields: parameter_value and
next_record. The first field contains the value of the
parameter. The second field is a pointer containing the
address of the next record for that parameter. ParameterX
is a pointer variable that contains the address of the first
record for that parameter. So Parameter1 represents an
address. Stored at that address is the address of the first
record of Parameter1. The first record contains the first
Parameter1 value and the address of the second
Parameter1 record. The second record contains the latest
value for that parameter and the address of the third
record, and so on. In the last record, the next_record field
contains FFH to indicate there are no more records. FFH
is used here to indicate no more records, since this is the
default state of an erased byte in flash memory. Each
time a parameter is updated, the code searches for the
first available address location in the parameter block,
writes the new value in the value field of the new record,
and then updates the next_record field of the previous
record. So, each record includes a value and a pointer, or
link to the next record. Such a data structure is called a
linked list. By using a linked list the system can quickly
find the latest value for a given parameter.

Figure 3 shows an example of the linked-list structure.
To simplify the example, a one-byte field is used for both
parameter_value and next_record. In an actual
implementation, at least two bytes would be needed for
next_record, which points to another location in the
parameter block. The number of bytes required for
parameter_value will depend on the specific parameter
information being stored.

E AP-604

3

PRELIMINARY

Parameter1

Parameter2

Parameter3

01H

02H

03H

04H

05H

06H

07H

08H

09H

0AH

0BH

0CH

01H

03H

05H

F8H

07H

22H

09H

44H

FFH

55H

0BH

F2H

FFH

F4H

FFH

Parameter 1 Pointer variable

Parameter 2 Pointer variable

Parameter 3 Pointer variable

Parameter 1 value = F8H

Parameter 1 next_record = 07H

Parameter 2 value = 22H

Parameter 2 next_record = 09H

Parameter 3 value = 44H

Parameter 3 next_record = FFH = latest

Parameter 1 value = 55H

Parameter 1 next_record = 0BH

Parameter 2 value = F2H

Parameter 2 next_record = FFH = latest

Parameter 1 value = F4H

Parameter 1 next_record = FFH = latest

Address Content

2148_03

Figure 3. A Linked List Parameter Record
Includes Two Fields: Parameter_Value and Next_

Record

An alternative approach to using a linked-list structure, is
to define a parameter ID field and a parameter status field
that indicates whether the current parameter record is the
latest. In this alternate scheme, to retrieve the latest
parameter, the system reads through every parameter
instance until it finds the latest value for a given
parameter.

6.0. BLOCK TRANSFERS

Parameters are stored until the parameter block is filled
or until there is not enough memory in the parameter
block to store another complete record. When this point
is reached, the latest value for each parameter is
transferred to the second parameter block, and the
linked-list data structure continues in the second
parameter block.

A Block_Header record at the beginning of each
parameter block indicates the status of the block. That is,
information such as which parameter block is the active
block, if the block is transferring data, and if the block is
erased.

7.0 ERASING THE PARAMETER
BLOCK

After the valid parameters are transferred from the first
parameter block to the second, the first parameter block
is erased. Recall that flash memory requires
approximately half a second to erase each parameter
block. Since this much time may not be available during
system operation, Intel’s flash memory products feature
an Erase Suspend command. With this command, the
erase operation can be suspended to allow the system to
read from another block in the device. When an Erase
Suspend command is given to the flash memory, the
erase operation is suspended and the memory enters an
erase suspend state where the system can read from
another block in the flash memory. When time is
available again for erasure, the Erase Resume command
instructs the flash memory to continue erase from the
point where it previously suspended erase. This allows
the erase operation to be implemented within a finite
software loop time, by using multiple calls. Once the first
parameter block is completely erased, it is ready to store
parameter records after the second parameter block is
filled. It is important to note that no new parameters may
be written until the block erase operation completes.
Current boot block flash memories do not allow writes
while erase is suspended. See Figure 4 for a review of the
parameter storage scheme.

8.0 SYSTEM REQUIREMENTS

As described earlier, RAM is required to execute code
during program and erase operations. The amount of
RAM required depends on the complexity of the
parameter storage data base. The code that must be
downloaded to RAM includes the flash memory read,
write and erase routines. The size of this code is in the
range of 512 bytes to 1 Kbyte. In addition, flash memory
space will be necessary to store the program code.
Reference code that will be available from Intel, is
approximately 15 KB in size. Only a small subset if this,
approximately 1 KB, is downloaded to RAM.

Another system requirement is an adequate VPP voltage
for write and erase. Many of today’s flash memory
products require 12V to write and erase in-system. Intel’s
new SmartVoltage products feature 5V write and erase
operation when 12V is not available.

AP-604 E

4

PRELIMINARY

Step 1: Store parameter records in Parameter Block 1.

Step 2: When Parameter Block 1 fills up, transfer the latest parameter records to
 Parameter Block 2, and change the block_status records

Step 3: Store parameter records in Parameter Block 2. Erase Parameter Block 1, using
 the Erase Suspend command to return to reading flash, when necessary.

PARAMETER BLOCK 1 PARAMETER BLOCK 2

block_status record block_status record

parameter records erased

PARAMETER BLOCK 1

block_status record

parameter records

PARAMETER BLOCK 2

block_status record

PARAMETER BLOCK 1

block_status record

erased

PARAMETER BLOCK 2

block_status record

parameter records

2148_04

Figure 4. Using Two Parameter Blocks to Emulate Byte Alterability

9.0 POWER LOSS

What if power is lost in the middle of an erase or in the
process of updating parameter values? Power loss can be
reliably handled by defining additional fields in both the
parameter and block records. For example, in addition to
the parameter_value and next_record fields that we
defined for our parameter record, we can define a

parameter_status field. One status field bit indicates that
a parameter update is beginning and another that the
parameter update has completed. So, if we lose power in
the process of updating a parameter, we know the status
of each parameter entry when power is restored. For
example, when power is restored, if we find that the
status bit reflects that a parameter update began but did
not finish, we know that record is invalid and should be

E AP-604

5

PRELIMINARY

discarded. The same concept can be applied to the
block_status record to handle erase operations that may
be interrupted by power failure as well as parameter
transfers between blocks.

10.0 INITIALIZATION

An initialization process determines the state of the
parameter blocks. By reading the block_status record
you can determine which block is the active block and
whether the other block must be erased. Upon the first
initialization, the parameter blocks can be erased and the
block_status records created.

11.0 BIT MANIPULATION

Earlier, we reviewed how flash memory is read and
programmed on a byte-by-byte basis, and erased on a
block basis. Intel’s flash memory actually has the
capability to be programmed one bit (or multiple bits) at
a time. Recall flash memory programming is the process
of changing “1”s to “0”s. Single bits can be programmed
by masking the other bits in a byte or word with “1”s as
shown in Figure 5. By taking advantage of this feature,
you can minimize the memory space necessary for the
various status fields.

Example 1:
 1111 1111 Memory Contents
 0111 1111 Program Data

 0111 1111 Resultant Memory Contents

Example 2:
 0111 1111 Memory Contents
 1011 1111 Program Data

 0011 1111 Resultant Memory Contents

Example 3:
 0011 1111 Memory Contents
 0001 1111 Program Data

 0001 1111 Resultant Memory Contents

2148_05

Figure 5. Flash Memory can be Programmed a
Bit at a Time by Masking all Other Bits in a Byte

with "1"s

12.0 TIMING

System timing analysis is required to determine the
amount of time available for:

• Reading parameters

• Downloading write/erase code to RAM

• Writing parameters

• Transferring parameters to a new block

• Erasing a parameter block

Precise timing will depend on the specific system
implementation. In addition to the device timing,
software overhead timing should be considered.

The time required for reading parameters will depend on
the size of each parameter record and the number of
parameter record instances that must be read before
reaching the valid parameter record. Multiply the number
of byte or word reads by the system read cycle time to
determine the total time for reading a valid parameter.

Each time a write or erase operation is executed on the
flash memory, a sub-routine containing the program and
erase drivers must first be downloaded to RAM. The time
required for downloading this code to RAM depends on
the size of the code, which is likely to be
1 KB or less. Multiplying the code size by the write cycle
time determines the time for downloading the code to
RAM.

To determine the maximum time required for writing a
parameter, the worst case word or byte write time is
needed for the flash memory component. By multiplying
the worst-case word write time by the number of words
per parameter record, the worst-case parameter write
time can be determined.

The time for transferring valid parameters from one
parameter block to the other will, of course, depend on
the number of parameters stored. If this operation is
completed as a foreground task, a block of time will be
required that includes the time to read the valid
parameters and write these parameters to the new
parameter block. This operation can also be treated as a
background task which is often necessary. For
applications with a defined main software loop time, the
transfer operation can be executed by determining the
available time in the main loop, beginning the transfer of
parameters and then suspending this task before the main
loop time expires. Multiple calls of the main loop are
required to completely transfer all parameters to the new
block. Total time to complete the task will depend on the

AP-604 E

6

PRELIMINARY

amount of time available in each loop and the number of
calls necessary to complete the operation.

Like parameter transfers, block erase can be treated as a
foreground or background operation. When treating
erase as a background operation, total erase time will
depend on the amount of time available in the software
loop. Determine the number of calls required by dividing
the total erase time by the amount of time available in
each call. Multiply the number of calls by the total time
per loop to determine the total time for erasing a
parameter block.

13.0 CYCLING

Intel’s flash memory boot block products are specified at
100,000 erase cycles. To determine how this affects your
parameter storage, use the equation shown in Figure 6.
The equation can be solved for either the number of
parameter_record instances or the parameter_record size,
depending on which variables are known. This
implementation provides improved cycling endurance, as
compared to EEPROM.

100,000
 Cycles

8 KB - (block_record size)

parameter_record size

number of
parameter_record
instances

x=

Figure 6. Parameter Storage Equation

14.0 CONCLUSION

This paper describes software techniques for emulating
byte alterability using two flash memory parameter
blocks. System designers reduce system cost and
improve reliability by using Intel’s boot block parameter
blocks for parameter data storage, replacing EEPROM.

15.0 ADDITIONAL INFORMATION

15.1 References

Order
Number

Document

290530 2-Mbit SmartVoltage Boot Block Flash Memory Family

290531 4-Mbit SmartVoltage Boot Block FlashMemory Family

292130 AB-57 “Intel’s Boot Block Architecture for Safe Firmware Updates”

15.2 Revision History

Item Description

-001 Original Version

-002 Parameter Storage Equation changed

Filename: 292148_2.DOC
Directory: C:\TESTDOCS
Template: C:\WORD\ZAN____1.DOT
Title:Using Intel's BB Flash Memory Parameter Blocks to Replace EEPRO<
Subject:
Author: Mary Ann Hooker
Keywords:
Comments:
Creation Date: 10/19/95 9:42 AM
Revision Number: 5
Last Saved On: 01/19/96 9:04 AM
Last Saved By: Ward McQueen
Total Editing Time: 2 Minutes
Last Printed On: 01/19/96 9:04 AM
As of Last Complete Printing

Number of Pages: 8
Number of Words: 2,650 (approx.)
Number of Characters: 15,107 (approx.)

	Title Page
	1.0 INTRODUCTION
	2.0 REVIEW OF FLASH MEMORY FUNDAMENTALS
	3.0 SYSTEM OPERATION
	4.0 SOFTWARE SCHEME FOR EMULATING BYTE ALTERABILITY
	5.0 PARAMETER DATA STRUCTURE
	6.0. BLOCK TRANSFERS
	7.0 ERASING THE PARAMETER BLOCK
	8.0 SYSTEM REQUIREMENTS
	9.0 POWER LOSS
	10.0 INITIALIZATION
	11.0 BIT MANIPULATION
	12.0 TIMING
	13.0 CYCLING
	14.0 CONCLUSION
	15.0 ADDITIONAL INFORMATION
	15.1 References
	15.2 Revision History

