
Boot Integrity Services
Application Programming Interface Page 1

Wired for Management Review Request bis037
Identify required signer in BIS_GetSignatureInfo

CLOSED 1 02-01-1999 8-4-1999
Status Priority Received Complete

BIS BIS V1.0 BIS V1.0 1.0 errata
Specification Release Target Specification Target Release

Paul Drews Intel (503) 264-8488 paul.drews@intel.com
Requester Company Voice Email

The following text describes an approved change to the Boot Integrity Services Application Programming
Interface Version 1.0 Dated December 28, 1998. Please substitute the Changed Text given below in the
appropriate section of the specification. If you are interested in the rationale and history behind this
Review Request, this information follows at the end of the document.

Changed Text:
Replace the entire text of section 2.3 “Remote-boot authentication” with the following text:

2.3 Remote-boot authentication

A typical Remote-boot authentication example begins with activities outside the platform boot
sequence. The IT organization that manages the platform(s) configures the Boot Object Authorization
Certificate for the platform as described previously.

The IT organization evaluates a boot image and decides that it should be authorized to execute on the
managed platform(s). The IT organization generates several boot image credential files for the boot
image, one for each of the signature algorithm and key-length combinations mandated by this
specification. The boot image credential is a signed manifest. The format of this credential and the tools
to generate one are described in more detail in the associated Software Development Kit (SDK)
specification. For the purpose of this example, the manifest includes the following:

! Integrity data for the boot image.

! The signing IT organization’s certificate. This is the IT organization’s Boot Object
Authorization Certificate.

! A digital signature of the entire manifest. This digital signature is generated using the signing
organization’s (secret) private key. This private key corresponds to the public key found in the
signer’s certificate.

The IT organization puts the boot image file and the corresponding boot image credential files on a
Boot Server accessible to the managed platform(s). The managed platform must know how to locate the
boot image credential files corresponding to a boot image on the Boot Server.

Now that the boot image and corresponding boot image credential files are stored on a Boot Server, the
example shifts to the managed platform boot sequence. A typical boot sequence starts becoming
interesting to Remote-Boot authentication late in the BIOS initialization sequence. At a high level, the
relevant sequence of typical steps are:

1. The remote-boot code for a Network Interface Card uses Dynamic Host Configuration Protocol
(DHCP) to obtain a platform IP address, a Boot Server IP address, and a boot file name.

2. The remote-boot code uses the Preboot Execution Environment (PXE) code to download a boot
file.

3. The remote-boot code uses the BIS_GetSignatureInfo function described in this document to
find a digital certificate, signature algorithm, and key-length combination that the platform

Boot Integrity Services
Application Programming Interface Page 2

supports. This also indirectly determines which of the corresponding boot image credential files to
download from the Boot Server.

4. The remote-boot code downloads the corresponding boot image credential.

5. The remote-boot code calls the BIS_VerifyBootObject function described in this document to
perform the integrity and authorization check of the image. The integrity check must succeed as
described in detail in the function specification. The authorization check involves checking the
signer’s certificate supplied in the credential. The public key in the certificate is compared against
the public key in the Boot Object Authorization Certificate configured for this platform. If a match
is found, the signature was generated by the accepted authority and the authorization check passes,
otherwise the boot attempt fails.

6. Assuming all checks in the previous step pass, the remote-boot code branches to the downloaded
boot image, which never returns.

7. This first downloaded boot image is subject to fairly tight size and memory-model constraints.
Consequently in the typical example it is merely a first-stage bootstrap. It contains a rudimentary
memory manager to make additional memory space available, and a more robust download
protocol that can take advantage of the expanded memory. It downloads a second-stage bootstrap
using a server, protocol, and file location that may be determined from information obtained in the
first-stage download.

8. The second-stage boot image has its own integrity and authorization credentials, separate from the
first-stage boot image. The first stage code may use the BIS_VerifyObjectWithCredential
function to validate the second stage. This function is similar to the BIS_VerifyBootObject
function except that it allows the caller to supply a certificate that shall be recognized as the source
of authority. In particular, the source of authority for second-stage signature is typically the vendor
of the software being booted, not the IT organization that manages the platform.

9. Assuming the checks in the previous step pass, the first stage code invokes the second stage code,
which never returns.

10. The bootstrap process may involve several more stages, with each stage downloading the
credential and image of the next, and validating it before executing it.

11. Eventually, an OS typically has enough capabilities initialized that it no longer needs the BIS
service and can take advantage of the memory space that the BIS service occupies. To ensure clean
termination of the BIS service, the client code calls a BIS_Shutdown function to terminate the
service. The memory occupied by the BIS service may then be reclaimed, managed, and over-
written by an OS. This makes the BIS service no longer available.

Most of this usage model example involves activities outside the direct scope of the interfaces defined
or referenced in this document. The parts actually within this interface scope are:

! The Boot Object Authorization Certificate and Boot Authorization Check Flag as platform
configuration parameters.

! The generalized BIS_UpdateBootObjectAuthorization function for storing these parameters in a
persistent and protected manner.

! A boot image credential including the certificate used to sign the boot image credentials. The
public key in the signer’s certificate must match the public key in the Boot Object Authorization
Certificate of this platform.

! BIS_GetSignatureInfo function to find a digital certificate, signature algorithm, and key-length
combination that the platform supports.

! BIS_VerifyBootObject function to test integrity and authorization of the boot image.

Boot Integrity Services
Application Programming Interface Page 3

! BIS_VerifyObjectWithCredential function for implementing a more customized authentication
model.

! BIS_Shutdown function for terminating BIS usage and preparing to reclaim its resources.

It is the responsibility of other parts of software inside and outside of the managed platform to perform
the remaining parts of the usage model.

Changed Text:
Replace the entire text of section 3.8.5 “BIS_ALG_ID” with the following text:

3.8.5 BIS_ALG_ID
typedef UINT16 BIS_ALG_ID;

This type represents a digital signature algorithm. A digital signature algorithm is often composed of a
particular combination of secure hash algorithm and encryption algorithm. This type also allows for
digital signature algorithms that cannot be decomposed.

Changed Text:
Insert the Sections 3.8.16 “BIS_CERT_ID”, 3.8.17 “BIS_CERT_ID_MASK”, and 3.8.18 “Predefined
BIS_CERT_ID values” before Section 3.8.16 “BIS_SIGNATURE_INFO”. Renumber the old 3.8.16 and
following sections appropriately. The text of the sections to be inserted is as follows:

3.8.16 BIS_CERT_ID
typedef UINT32 BIS_CERT_ID;

This type represents a shortened value that identifies the platform’s currently configured Boot Object
Authorization Certificate. The value is the first four bytes, in “little-endian” order, of the SHA-1 hash
of the certificate, except that the most-significant bits of the second and third bytes are reserved, and
must be set to zero regardless of the outcome of the hash function. This type is included in the array of
values returned from the BIS_GetSignatureInfo function to indicate the required source of a signature
for a boot object or a configuration update request. There are a few predefined reserved values with
special meanings as described below.

3.8.17 BIS_CERT_ID_MASK
#define BIS_CERT_ID_MASK (0xFF7F7FFF)

This C preprocessor symbol may be used as a bit-wise “AND” value to transform the first four bytes (in
little-endian order) of a SHA-1 hash of a certificate into a certificate ID with the “reserved” bits
properly set to zero.

3.8.18 Predefined BIS_CERT_ID values
#define BIS_CERT_ID_DSA BIS_ALG_DSA //CSSM_ALGID_DSA
#define BIS_CERT_ID_RSA_MD5 BIS_ALG_RSA_MD5 //CSSM_ALGID_MD5_WITH_RSA

These C preprocessor symbols provide values for the BIS_CERT_ID type. These values are used
when the platform has no configured Boot Object Authorization Certificate. They indicate the
signature algorithm and key length that is supported by the platform. Users must be careful to avoid
constructing Boot Object Authorization Certificates that transform to BIS_CERT_ID values that
collide with these predefined values or with the BIS_CERT_ID values of other Boot Object
Authorization Certificates they use.

Changed Text:

Boot Integrity Services
Application Programming Interface Page 4

Replace the entire Section 3.8.16 “BIS_SIGNATURE_INFO” with the following text (renumbered to
Section 3.8.19):

3.8.19 BIS_SIGNATURE_INFO
typedef struct _BIS_SIGNATURE_INFO
{

 BIS_CERT_ID certificateID; // A truncated hash of the
 // platform’s Boot Object
 // Authorization Certificate.
 BIS_ALG_ID algorithmID; //A signature algorithm number.
 UINT16 keyLength; //Length of alg. keys in bits.
}
BIS_SIGNATURE_INFO;

#if defined(COMPILER_IS_32_BIT)
typedef struct _BIS_SIGNATURE_INFO *BIS_SIGNATURE_INFO_PTR;
#endif

#if defined(COMPILER_IS_16_BIT)
typedef UINT32 BIS_SIGNATURE_INFO_PTR;
#endif

This type defines a digital certificate, digital signature algorithm, and key-length combination that may
be supported by the BIS implementation. This type is returned by BIS_GetSignatureInfo to describe the
combination(s) supported by the implementation.

Definitions:
certificateID - A shortened value identifying the platform’s currently configured Boot Object
Authorization Certificate, if one is currently configured. The shortened value is derived from the
certificate as defined in section 3.8.16, “BIS_CERT_ID”. If there is no certificate currently
configured, the value is one of the reserved BIS_CERT_ID_XXX values defined above.

algorithmID - A predefined constant representing a particular digital signature algorithm. Often
this represents a combination of hash algorithm and encryption algorithm, however, it may also
represent a standalone digital signature algorithm.

keyLength - The length of the public key, in bits, supported by this digital signature algorithm.

The 16-bit pointer type is declared as a 32-bit unsigned integer instead of a pointer because the actual
value used by the BIS interface is a 32-bit physical address. Any necessary translation between physical
address and 16-bit segment:offset addressing must be accomplished by the caller.

Changed Text:
Replace entire Section 3.8.17 “BIS_GET_SIGINFO_COUNT” with the following text (renumbered to
Section 3.8.20):

3.8.20 BIS_GET_SIGINFO_COUNT
#define BIS_GET_SIGINFO_COUNT(bisDataPtr) \
 ((bisDataPtr)->length/sizeof(BIS_SIGNATURE_INFO))

This macro computes how many BIS_SIGNATURE_INFO elements are contained in a BIS_DATA
structure returned from BIS_GetSignatureInfo. It represents the list of supported digital certificate,
digital signature algorithm, and key-length combinations.

Definitions:
bisDataPtr - Supplies the 32-bit physical-address pointer of the target BIS_DATA structure.

(return value) - The number of BIS_SIGNATURE_INFO elements contained in the array.

Boot Integrity Services
Application Programming Interface Page 5

This macro is supplied for use only in the 32-bit compilation environment. In the 16-bit compilation
environment, it is the caller’s responsibility to accomplish this computation, including any necessary
translation between physical address and 16-bit segment:offset addressing.

Changed Text:
Replace the entire Section 3.18.18 “BIS_GET_SIGINFO_ARRAY” with the following text (renumbered to
Section 3.18.21):

3.8.21 BIS_GET_SIGINFO_ARRAY
#define BIS_GET_SIGINFO_ARRAY(bisDataPtr) \
 ((BIS_SIGNATURE_INFO_PTR)(bisDataPtr)->data)

This macro returns a 32-bit physical address pointer to the BIS_SIGNATURE_INFO array contained
in a BIS_DATA structure returned from BIS_GetSignatureInfo representing the list of supported
digital certificate, digital signature algorithm, and key-length combinations.

Definitions:
bisDataPtr - Supplies the 32-bit physical-address pointer of the target BIS_DATA structure.

(return value) - The 32-bit physical address pointer to the BIS_SIGNATURE_INFO array, cast as
a BIS_SIGNATURE_INFO_PTR.

This macro is supplied for use only in the 32-bit compilation environment. In the 16-bit compilation
environment, it is the caller’s responsibility to accomplish this computation, including any necessary
translation between physical address and 16-bit segment:offset addressing.

Changed Text:
Replace the entire Section 3.11 “Initialization, Shutdown, and Utility functions” up to but not including
Section 3.11.1 “BIS_Initialize” with the following text:

3.11 Initialization, Shutdown, and Utility functions

This group of functions consists of miscellaneous support functions used for initialization, shutdown,
information, and freeing memory allocated and returned by other functions. The functions in this group
are:

BIS_Initialize - Initializes the BIS service, checking that it is compatible with the version requested
by the caller. After this call, other BIS functions may be invoked.

BIS_Shutdown - Shuts down the BIS service. After this call, other BIS functions may no longer be
invoked.

BIS_Free - Deallocates a BIS_DATA_PTR and associated memory allocated by one of the other
BIS functions.

BIS_GetSignatureInfo - Retrieves a list of digital certificate, digital signature algorithm, hash
algorithm, and key-lengths that the platform supports.

The functions in this group are described in detail in the next sections.

Changed Text:
Replace the entire Section 3.11.4 “BIS_GetSignatureInfo” with the following text:

3.11.4 BIS_GetSignatureInfo
typedef
struct _BIS_GetSignatureInfo_PARMS
{
 UINT32 sizeOfStruct; //[in] Byte length of this
 //structure.
 BIS_STATUS returnValue; //[out] BIS_OK | error code.
 BIS_APPLICATION_HANDLE appHandle; //[in] From BIS_Initialize().

Boot Integrity Services
Application Programming Interface Page 6

 BIS_DATA_PTR signatureInfo; //[out] Signature info struct.
}
BIS_GSI_PARMS;

Calling Example:
UINT8 integrityOk;
BIS_ENTRY_POINT entryStructure;
BIS_GSI_PARMS params;
BIS_APPLICATION_HANDLE appHandle;
. . .
// Set “in” parameter values
params.sizeOfStruct = sizeof(params);
params.appHandle = appHandle;
// Invoke operation through entry point procedure pointer
integrityOk = (* entryStructure.bisEntry32)(
 BISOP_GetSignatureInfo, // opCode
 (void *) & params, // pParamBundle
 BIS_TRUE); // checkFlag

The function selected with the BISOP_GetSignatureInfo operation code retrieves a list of digital
certificate identifier, digital signature algorithm, hash algorithm, and key-length combinations that the
platform supports. The list is an array of (certificate id, algorithm id, key length) triples, where the
certificate id is derived from the platform’s Boot Object Authorization Certificate as described in
section 3.8.16, “BIS_CERT_ID”, the algorithm id represents the combination of signature algorithm
and hash algorithm, and the key length is expressed in bits. The number of array elements can be
computed using the Length field of the retrieved BIS_DATA_PTR.

The retrieved list is in order of preference. A digital signature algorithm for which the platform has a
currently configured Boot Object Authorization Certificate is preferred over any digital signature
algorithm for which there is not a currently configured Boot Object Authorization Certificate. Thus the
first element in the list has a certificateID representing a Boot Object Authorization Certificate if the
platform has one configured. Otherwise the certificateID of the first element in the list is one of the
reserved values representing a digital signature algorithm.

bisEntry32 or bisEntry16 Parameters
opCode (input) - The manifest constant BISOP_GetSignatureInfo.

pParamBundle (input, output) - A 32-bit physical address pointer to a specific parameter bundle
structure of type BIS_GSI_PARMS as described below.

checkFlag (input) - A boolean value indicating whether or not an internal integrity check should be
performed before performing the specific operation. If this value is non-zero (BIS_TRUE) the
check should be performed.

bisEntry32 or bisEntry16 Return Value
Zero - No integrity fault was detected.

Non-zero - An integrity fault of some sort was detected and the operation was not performed.
“Out” field values in the parameter bundle structure are not valid.

Parameter Bundle Fields
sizeOfStruct (input) - The length of the BIS_GSI_PARMS structure, in bytes.

returnValue (output) - If the specific operation is successful, the function writes the value
BIS_OK. Otherwise, the function writes a non-zero error code indicating the detailed error that
occurred.

appHandle (input) - An opaque handle that identifies the caller’s instance of initialization of the
BIS service.

signatureInfo (output) - The function writes an allocated BIS_DATA_PTR containing the array of
BIS_SIGNATURE_INFO structures representing the supported digital certificate identifier,
algorithm, and key length combinations. The caller must eventually free the memory allocated by
this function using the function BIS_Free.

Boot Integrity Services
Application Programming Interface Page 7

See Also
BIS_Free

Boot Integrity Services
Application Programming Interface Page 8

Review Request History -this section documents the discussion behind this Review Request. It shows the
rationale behind the proposal, including the reason the fix was desired and why the particular fix was
chosen.

***Only those changes explicitly in the Changed Text section above have
been approved and are now officially a part of the specification.***

Summary - When PXE and BIS are integrated, PXE puts (a subset of) the compact information from
BIS_GetSignatureInfo into a DHCP packet that requests the Boot Image signature file name from the boot
server. However, the BIS_GetSignatureInfo information identifies only the required signature algorithm,
not the required signer identity out of possibly multiple signers that use this signature algorithm. This
proposal would add data into the return from BIS_GetSignatureInfo to identify the required signer.

Background This problem was encountered while working through an integration scenario between PXE
and BIS. The typical usage scenario described for BIS involves small groups of platforms, where each
group of platforms is managed by a distinct Information Technology authority, represented by a distinct
cryptographic key. Each of the platforms within a group gets configured with the Boot Object
Authorization Certificate containing the public key of this authority that the platform shall recognize as the
source of authority for Boot Object signatures.

Meanwhile, the PXE boot algorithm determines whether BIS is present and enabled on the platform. If
present and enabled, the PXE boot algorithm calls BIS_GetSignatureInfo to retrieve information about the
digital signature capabilities supported by BIS in the platform. The returned information is an array, where
each array element is a pair of 4-byte items that identify (1) the digital signature algorithm, and (2) the key-
length to be used within that algorithm. PXE ignores the key-length parts of the pairs and packs the 4-byte
signature algorithm identifiers into a DHCP request sent to the PXE-enabled boot server.

For every boot image that the PXE-enabled boot server can supply, the boot server also has a list of digital
signature files it can supply. The PXE-enabled boot server selects the digital signature filename it puts in
the DHCP response based on a 4-byte signature algorithm identifier retrieved from the DHCP request.

The mismatch between the BIS scenario and the PXE scenario becomes evident when one considers a
medium to large-sized installation. In such an installation, it is likely that platform management
responsibility is partitioned into small domains of, say, a few dozen platforms managed by a each different
Boot Object Authorization Certificate. At the same time, it is likely that a single PXE-enabled boot server
will be called on to serve the needs of hundreds of platforms. Several different platforms using the same
digital signature algorithm but with different Boot Object Authorization Certificates installed, may all send
their DHCP requests to the same PXE-enabled boot server. The PXE-enabled boot server has no
information in the DHCP request that directly distinguishes which of several boot image signature files,
generated by different authorities, is the appropriate one to satisfy the DHCP request.

There are several different ways this problem could be solved. However, several considerations led to this
particular choice of solutions to propose:

(1) Any mechanism that requires passing and maintaining platform/signer relationship information outside
of the standard PXE and BIS mechanisms carries the risk of getting out of sync with respect to the
information passed and maintained within PXE and BIS.

(2) The PXE client firmware was expecting first production release within a few days at the time the
problem was identified. Any change to PXE client firmware at this late date should be avoided.

This proposal takes advantage of the existing PXE client firmware by re-organizing the structures returned
from BIS_GetSignatureInfo. PXE uses only the first 4 bytes of each 8-byte array element, packing these
into the PXE_CREDENTIAL_TYPES tag of a DHCPREQUEST packet. So this proposal squeezes the old

Boot Integrity Services
Application Programming Interface Page 9

information into the last 4 bytes, then re-defines the first 4 bytes to be a “certificate identifier” that is carried
through the PXE protocol by the existing PXE client firmware instead. Since this part of the information
carried through the PXE protocol was very loosely defined, this still fits well within the definition of the
contents of the PXE protocol. The newly-defined “certificate identifier” is a 4-byte hash of the desired
signing certificate for this platform as defined in detail in the attached Review Request change text. Using a
hash value here keeps the identifier to a short fixed length while still providing a high probability of
providing unique certificate identifiers. A graphical view of the old and new structures and usage is shown
below:

Key Length

Key Length

Key Length

Algorithm ID

Algorithm ID

Algorithm ID

Not Used
by PXE

Old Way

Alg ID Key LenCertificate ID

Alg ID Key LenCertificate ID

Alg ID Key LenCertificate ID

Not Used
by PXE

New Way

PXE Protocol
Message

PXE_
CREDENTIAL_

TYPES
Tag

Amendment - As of 03-18-1999, another issue was encountered. The PXE client software build 67
encounters a failure if either of two particular bit positions have a “1” value in them. The problem was
traced to a code-generation bug and a fix put in place for subsequent PXE client releases. Nevertheless it is
possible that there are products in the field derived from PXE client software build 67, so this Review
Request was amended to set these particular bits to “reserved, must be zero”. This amendment was done
before the Review Request was submitted to the reviewers.

Boot Integrity Services
Application Programming Interface Page 10

Status - This section summarizes the milestones in the proposal and approval of this review request.

02-01-1999 Original discovery of problem and proposed solution internally to PXE engineers.

03-18-1999 Another BIS/PXE integration problem discovered and amendment added to proposal.

03-18-1999 Review Request published to Wired for Management review list for public comment.

07-29-1999 Final deadline set at 08-04-1999 for public comment and approval published to WfM review
list.

08-04-1999 Final approval (no comments received by deadline) Review Request is CLOSED and fully
approved as a corrigendum to the Boot Integrity Services Application Programming Interface Version 1.0
specification.

	Remote-boot authentication
	BIS_ALG_ID
	BIS_CERT_ID
	BIS_CERT_ID_MASK
	Predefined BIS_CERT_ID values
	BIS_SIGNATURE_INFO
	BIS_GET_SIGINFO_COUNT
	BIS_GET_SIGINFO_ARRAY

	Initialization, Shutdown, and Utility functions
	BIS_GetSignatureInfo

