
Intel® Virtualization Technology in Embedded and
Communications Infrastructure Applications

Intel® Virtualization Technology

Intel®

Technology
Journal

Volume 10 Issue 03 Published, August 10, 2006 ISSN 1535-864X DOI: 10.1535/itj.1003

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 217

Intel® Virtualization Technology in Embedded and
Communications Infrastructure Applications

Dean Neumann, Communication Infrastructure Architecture & Planning, Intel Corporation
Dileep Kulkarni, Communication Infrastructure Architecture & Planning, Intel Corporation

Aaron Kunze, Corporate Technology Group, Intel Corporation
Gerald Rogers, Infrastructure Processor Division, Intel Corporation

Edwin Verplanke, Infrastructure Processor Division, Intel Corporation

Index words: virtualization, virtual machine monitor (VMM), hypervisor, real-time operating system
(RTOS), multi-core, isolation, consolidation, embedded, communications, industrial control,
aerospace

ABSTRACT

Intel® Virtualization TechnologyΔ delivers improved
computing benefits for home users, business users, and IT
managers alike. This paper describes the unique
requirements that embedded systems and communications
infrastructure equipment place on virtualized
environments and shows how Intel is working with a
number of third parties to extend the benefits of Intel
Virtualization Technology to these market segments.
Bounded real-time performance can be maintained while
using virtualization to consolidate systems; system uptime
can be increased by enabling software failover without
redundant hardware; and software migration can be
performed without bringing down the application.
Virtualization also allows legacy applications to co-exist
with new applications by executing both software
environments in parallel, and it provides the means for
applications to take advantage of multi-core processors
without re-architecting for multi-threaded execution.

INTRODUCTION
As in the desktop, mobile, or IT server domains,
embedded systems and communications infrastructure
equipment can also realize several benefits from
virtualizing the hardware execution environment, so that
multiple operating systems (OSs) can share the common
resources of the hardware platform. These benefits may be
realized in terms of cost reduction (either by reducing
capital costs or operational costs), in terms of increased
performance and functionality, or in terms of increased
system reliability and security. There are also several
different “usage models” (mechanisms by which

virtualization can be used) which provide these benefits.
In this paper we survey several of these models within
embedded and communication systems.

Regardless of the mechanism by which virtualization is
used, one commonality between usage models is that it is
always necessary for an additional layer of software to
exist that schedules the operating systems which share the
hardware platform, manages the resources assigned to
each OS, and saves/restores state when context switching
between the OSs. In this way each OS executes within a
“virtual machine” (VM) rather than on a physical
machine. This additional layer of software, the Virtual
Machine Monitor (VMM), manages the execution of OSs
in much the same way that OSs manage the execution of
applications.

Although the existence of a VMM is common to all usage
models, we shall see that the architecture of these VMMs
is tailored to the constraints of the market segments they
address, and that different design decisions must be made
to optimize the VMM for the specific requirements of
each market segment. It is not only the VMM that is
tailored to different market segments, but also the OSs
that execute within the VMs that must be tailored to the
requirements of these market segments. Whereas a
General Purpose-Operating System (GPOS) such as
Linux*, Microsoft Windows* or Microsoft Windows
Server* addresses the requirements of desktop or IT server
environments, a different class of OS—the Real-Time
Operating System (RTOS)—is required to address the
requirements of embedded and communications systems.
As we shall see, providing specific real-time behaviors in

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 218

a virtualized environment becomes an overriding factor in
embedded system design.

EMBEDDED VMM DESIGN
CONSIDERATIONS

Embedded systems have requirements that make software
design for these systems different than software design for
a server or desktop environment. These requirements
come from many factors, including the closed nature of
the systems and the real-time workloads that often run on
these systems. The design requirements of these devices
impact the design of VMMs that are targeted to this
environment. Although there are some similarities in the
requirements of many embedded systems, even within the
embedded systems market segments, different vertical
market segments have different requirements. Before Intel
released processors with Intel Virtualization Technology
(Intel VT), the complexity and costs involved in
developing a VMM for different embedded systems
market segments was extremely high. With Intel VT,
however, the unique requirements of embedded systems
can be inexpensively met by targeted products like those
highlighted in this paper.

In this paper, we highlight three design considerations for
VMMs for an embedded system. These design
considerations include the unique isolation requirements,
the prevalence of static VMs, and support for real-time
workloads.

Unique Isolation Requirements
One difference between the requirements of an embedded
VMM and a general-purpose VMM affects how well VMs
are isolated from one another. Most embedded systems
are closed systems, where all of the software is either
written by or installed by a single vendor, and where end
users do not have the flexibility to run their own software.
In some cases this can reduce the isolation requirements
that exist in general-purpose VMMs. In embedded
systems, this reduced isolation often increases
performance or increases the predictability of
performance. In other cases such as security-critical
applications, the isolation requirements are increased
rather than reduced, often to the point of requiring formal
analysis and certification.

There are two examples of optimizations supported by
embedded VMMs that capitalize on reduced isolation
requirements. First, many real-time OSs run without
paging [1]. Page walks make it difficult for real-time
systems to predict the performance of code and meet real-
time guarantees efficiently. They can also result in a
reduction in overall performance. In an Intel VT-enabled
system, running guests with paging disabled reduces the
isolation of that guest—the guest can read and write all of

physical memory, including that of devices or other
guests. This is a tradeoff that would not be acceptable in a
general-purpose environment, but may be preferred in
some embedded environments. Second, I/O performance
can be critical to the success of an embedded system. This
has caused some embedded VMM vendors to allow VMs
to have direct access to Direct Memory Access (DMA)-
capable devices. This increases performance, but would
allow a malicious application or device driver to use the
device to read and write the memory of the other guest
OSs on the system. Again, in environments where the
software environment is fixed, this tradeoff might be
acceptable.

Even though some embedded environments will accept
reduced isolation between guests, there are exceptions
with other embedded environments. Specifically, security-
critical and safety-critical environments like those
supported by LynuxWorks would not allow these types of
tradeoffs [2]. Again, Intel VT reduces the cost of
producing a VMM so that the development of targeted
VMMs with different design tradeoffs is possible.

Static Virtual Machines
Many embedded systems are designed with the knowledge
of exactly what workloads will be run at all times. They
are also designed knowing exactly what hardware will be
available on the system. This allows designers to make
design-time choices about how to allocate hardware to the
tasks running in the workload. As such, when using an
embedded OS it is typical for the designer to statically
allocate specific cores and specific regions of memory to
processing tasks. This reduces the emphasis on dynamic
scheduling and dynamic memory management that is often
important in a GPOS. Although scheduling multiple tasks
that are running on the same core is still important,
especially in an RTOS, deciding which cores will run
which particular tasks is less important.

In a virtualized environment, the VMM is responsible for
performing processor scheduling and memory
management for the guest OSs just as the OS is
responsible for processor scheduling and memory
management for applications. Therefore, many of the
requirements that apply to OSs in an embedded
environment also apply to VMMs in an embedded
environment. With this in mind, VMMs can be designed
so that system designers can make static configuration
choices at design time with respect to how resources are
allocated to VMs. This changes the design of VMMs for
embedded environments in two ways. First, the design of
the scheduler is simplified since the designer will likely
statically map tasks to processor cores manually. The
scheduler must still schedule between VMs running on the
same core, and must do so using different scheduling

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 219

policies than would be used in desktop or IT data center
domains, but scheduling between cores is simplified.
Second, memory management is designed more for
configurability than for dynamic reallocation. VMMs rely
on the designer to specify which memory ranges should be
given to each VM. This simplifies the design of memory
managers within the VMM, but increases the complexity
of configuring the VMM.

Real-time System Support
Many embedded systems are required to support real-time
workloads. One of the reasons why GPOSs such as
Microsoft Windows cannot provide real-time control is
due to the limitations of the scheduler. The scheduler in
this case is the entity which determines how much time a
specific process or thread is allowed to spend on a given
processor. Microsoft Windows uses a quantum-based,
preemptive priority scheduling algorithm. This basically
means that threads with equal priority are scheduled round
robin and threads with higher priority are serviced above
threads with a lower priority. Linux uses a priority-based
scheduling algorithm as well. An RTOS, however, often
schedules tasks using a strict priority scheduler [3]. A
priority scheduler will let higher priority tasks run for as
long as they have work to do, whereas a general-purpose
scheduler tries to guarantee that no task can prevent
another from progressing.

Supporting real-time workloads in a virtualized
environment is a challenge. A VMM does not typically
have visibility into the individual tasks running in an
RTOS, nor does it have knowledge about their priority.
The solutions that embedded VMM vendors are using
today is to isolate RTOSs alone on a processor core, or to
only allow the RTOS to share a core with a GPOS and
give the RTOS strict priority over the GPOS.

There are also differences between a real-time
environment and a general-purpose environment in the
way interrupts are handled. In many embedded
applications, interrupts generated by external hardware
have to be serviced within a specific time frame. GPOSs
do not necessarily have this capability built in as they can
frequently turn off interrupt processing for an unbounded
amount of time. This kind of behavior is unacceptable for
applications that require real-time control.

For real-time interrupt handling, Intel VT plays a key role.
With Intel VT, the system can be configured such that
when a guest disables interrupts, only the delivery of
interrupts to itself is disabled and not the delivery to other
guests. Therefore, if a GPOS guest were to disable
interrupts, and an interrupt for a real-time device were to
be asserted, the VMM could still decide to interrupt an
RTOS that required small, predictable interrupt latencies.
On the other hand, if an interrupt targeted for the GPOS

would occur while the RTOS is executing a critical task,
the VMM should delay delivery of the interrupt until the
RTOS has finished execution of the time-critical task to
maintain determinism.

Many embedded systems also require strict prioritization
of I/O traffic between code running at different priority
levels [4]. For example, if multiple VMs are to access a
network device, the application may require some quality
of service (QoS) guarantees be enforced between the
guests. These guarantees may come in the form of
bandwidth or latency guarantees. Such requirements are
not typically found in a general-purpose system. This
complicates the design of the infrastructure used to share
devices between VMs.

Embedded systems have unique design criteria that have a
large impact on how VMMs are designed for such
systems. Intel VT reduces the cost of producing a VMM
such that targeting an individual embedded environment is
a possibility. It allows VMM vendors to focus on how
they meet the requirements of their market segment
without dealing as much with the complexities of
virtualizing system hardware.

VIRTUALIZATION IN INDUSTRIAL
CONTROL
Many industrial control systems feature highly visual
human interfaces that depict the process under control,
which may be a medical device, an industrial plant, an
assembly line, etc. These displays may also involve
rapidly changing data, or they may include interfaces to
network-accessible databases to access schematic
diagrams or diagnostic and maintenance procedures. Such
systems therefore benefit from the ubiquity and richness
of GPOSs such as Microsoft Windows and the
computational performance of powerful CPUs. Yet they
also require strict real-time control to ensure that robotic
machines assemble parts with exacting precision, move
gantries and X-ray machines to exact locations, operate
switches and actuators at precise times, or perform
functions for exact durations. Many require closed-loop
feedback control systems: for example, if a sensor detects
that a machine has reached a specific point, that sensor
sends a signal that must be acted upon by the control
software within a timeframe that is measured in
microseconds in order that the machine can be halted in
that exact position without variance.

As we noted above, GPOSs such as Microsoft Windows
are not suitable for performing this level of real-time
control because they are designed to share processor
resources fairly between running processes, thereby
preventing “starvation” of some processes. Traditional
industrial control systems therefore typically separate their

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 220

processing and control functions into a Master Station
component that implements the human computer interface,
database interface, and other non-real-time management
functions, and separate Remote Terminal Units (RTUs)
which are small, rugged computers that implement the
real-time control functions, traditionally using separate
Programmable Logic Controllers for that purpose. These
RTUs contain the sensors and actuators to detect and
control the operating environment, along with sufficient
computing performance to react to environmental changes
and control commands extremely quickly, and to execute
the communications protocol stack to exchange data with
the Master Station. RTUs frequently must also operate
within extreme temperature, humidity, vibration, or other
environmental conditions that are more challenging for the
electronics than for the mechanical components. These
environmental conditions restrict the choice of computing
components that can be employed, or they increase the
cost of those components, particularly if ample
performance headroom is desired to support future
functionality. Therefore, for reasons of cost reduction and
the desire for a common, scalable infrastructure upon
which greater functionality can be layered, trends in
industrial control are toward a consolidated platform that
can provide the required separation of the real-time
control functionality from the non-real-time functions [5].
In this way RTUs can be simplified, while the Master
Station provides real-time control that can be given
absolute priority so that signals can be operated upon
within strictly defined bounded timeframes, while still
providing the rich graphical environment, databases, and
device support of a GPOS.

Scheduler and Interrupt Latencies for
Virtualized Solutions in Industrial Control
Although the graphical user interface of a GPOS such as
Microsoft Windows or Linux combined with XWindows
meets the requirements for control of medical equipment
or industrial equipment, the applications’ response times
are often not acceptable. The average interrupt latency
provided by a GPOS may indeed be within acceptable
limits (on the order of 5-20 microseconds), but the worst-
case latency must be designed for, and this may be orders
of magnitude too long in a GPOS.

The main reasons why GPOSs are not suitable are due to
the policies of the scheduler and the design of the kernel.
The scheduler is the entity that determines how much time
a specific task/process/thread is allowed to spend on a
given processor. Modern GPOS schedulers allow users to
provide an element of application scheduling control.
Both Windows and Linux OSs provide such features.
Still, even when equipped with these kinds of features, the
scheduling algorithms utilized by GPOSs do not provide
sufficient real-time control.

The scheduler behavior has an immediate effect on
interrupt handling. When controlling a critical process,
interrupts generated by the equipment under control must
be serviced within a very specific and bounded time
frame. GPOSs do not have this capability, as high priority
tasks/processes or threads can take priority. This behavior
is unacceptable for applications that require real-time
control. The design of the OS kernel may also include
critical sections of code that must execute atomically, and
therefore interrupts must be disabled during these critical
sections, thereby causing the worst-case latency to
increase by the length of the longest critical section in the
OS.

Today there are different solutions available to provide
this element of real-time control. Some solutions provide a
real-time kernel and run the GPOS and graphical user
interface within a complete thread. An API is defined that
allows the GPOS to interact with the real-time kernel. If
the requirement for thread scheduling exists, an
application within the GPOS would utilize the thread
mechanism offered by the real-time kernel.

Another approach is to run a small real-time kernel along
with the GPOS. Both OSs share the CPU, memory, and
interrupt controller. However, each version of the kernel
has its own context (descriptor tables, memory
management etc.). The real-time kernel determines when
specific processes have to be executed to maintain
determinism, and interrupt delivery is also controlled so
that it does not affect the behavior of the system. If an
interrupt occurs during the execution of a real-time task,
the real-time kernel will not necessarily execute the
interrupt service routine if it is associated with the GPOS.
Instead it will continue execution of the real-time task and
on completion it will hand over control to the GPOS,
which will then deal with the interrupt.

Designing in determinism in a GPOS this way can be very
complex. The OS source may not be available: with this in
mind, some assumptions must be made in order to predict
the behavior of the general-purpose kernel.

Commercial Virtualization Solutions for
Industrial Control Applications
Commercial solutions exist that meet the stringent latency
constraints of real-time control while still providing the
rich and ubiquitous development framework of Microsoft
Windows. Products such as TenAsys Corporation’s
INtime* employ the hardware capabilities of Intel’s
processors with Intel VT to provide extremely low
latencies (worst-case measured as low as 3 microseconds)
and real-time capabilities for Microsoft Windows, while
allowing Visual Studio* to be used for development in
both the Windows environment and the INtime
environment. This enables developers to create and

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 221

deploy sophisticated real-time applications without trying
to force a GPOS or device driver to achieve real-time
performance.

VIRTUALIZATION IN
COMMUNICATIONS NETWORKS

Communication Usage Models
As Intel Corporation and other vendors migrate towards
multi-core processors, communications equipment
manufacturers are changing their programming paradigms
to take advantage of these additional cores.
Communications equipment tends to utilize highly
specialized software that has been optimized and validated
to execute as sequential logic. Thus, it is not easily ported
to a multi-core platform. By eliminating the need for
equipment manufacturers to refactor their software for
multi-threaded execution, Intel VT makes this migration
simpler. Equipment manufacturers can instead execute
multiple instances of their single-threaded software, each
within a separate VM, each processing a portion of the
total workload. A suitably architected VMM provides the
software infrastructure necessary to distribute the
workload between VMs. Examples of multi-core
migration include multiple Home Location Registers in a
cellular network; or splitting workloads between intrusion
detection systems.

Figure 1: Virtualized vs. non-virtualized environment

Consolidation is common across all market segments, but
offers unique benefits in communication market segments.
Telecommunications Equipment Manufacturers could
utilize a VMM to consolidate multiple instances of an
older legacy single threaded application on a multi-core
platform, avoiding the need to spend expensive R&D
cycles on modifying legacy code to take advantage of
multi-core architectures (see Figure 1). Much of the
communication equipment processing is split between

Data Plane, Control Plane, and Management Plane
processing. Each plane has different processing
requirements, memory latency and bandwidth
requirements, and network I/O requirements. By using
Intel VT and a real-time VMM, a manufacturer can
consolidate these different planes onto fewer processing
elements. This reduces equipment and operational costs,
and these savings allow the equipment manufacturers as
well as their customers (the service providers) to remain
competitive. An example of such a consolidation is in the
Mobile Wireless business where a system for determining
the current location of a mobile unit, called a Home
Location Register (HLR), exists. Many of these systems
are proprietary in nature, and restricted to 32-bit
addressing. Using Intel VT, more than one HLR can be
collocated onto a single system. The VMM allows for the
splitting of workloads to multiple HLRs, and allows for a
HLR database to be greater than 4 GB in size.

A unique requirement of communication systems is their
extremely high reliability. Communication systems may
be required to be available to process calls 99.999% of the
time. This corresponds to less than five minutes per year
of downtime, which includes all scheduled maintenance,
software and hardware upgrades, and system corrective
actions. In comparison, we may spend five minutes per
day brushing our teeth, so communication systems permit
approximately 1/300th the maintenance that we perform on
our teeth. Due to the implications on software design,
today only high-end communication systems can provide
this level of reliability. With Intel VT, communication
systems can provide greater availability without the
traditional software infrastructure costs. Many of these
reliability issues arise from the customized nature of the
communication software. Intel VT provides for software
fault isolation on all levels of communication systems.
This is achieved by allowing Active and Standby instances
of the executing software, each within its own VM. In the
event of a software failure, the Standby instance will
continue execution and assume Active status, while the
failed instance is restarted by the VMM. With this
capability, the cost of a software fault, which has
traditionally been protected against via redundant
hardware, is eliminated.

In addition to redundancy, the ability to perform live
upgrades of software is accomplished by providing
redundant hardware components. As indicated in Figure 2,
a Standby partition could be used for either hot upgrades
or fault tolerance. With Intel VT, the need for redundant
hardware is eliminated. Now simply upgrading the
standby instance, restarting it, and designating it the
Active instance accomplishes the software upgrade. In the
event the new software fails, the previous software version
is still available to fall back on.

 Uni-Core

 OS

 APP

Single Threaded

 Multi-Core

OS

APP

Multi-Instanced

OS

APP

 VMM

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 222

Figure 2: Hot upgradeability and fault tolerance

Workload migration is a more common feature of
virtualized enterprise servers; however, it also has
applicability to the communications market segment. For
instance, in many Voice over Internet Protocol (VoIP)
implementations, there is a device called a Soft Switch.
This switch handles all aspects of call establishment and
management. This switch has a set level of capacity, and
once exceeded must be replaced or augmented with a new
switch. The process of configuring the new switch is very
time consuming due to its manual nature. Intel VT
simplifies this process by allowing for the migration of a
complete switch instance from one hardware platform to
another. In addition, expanding a network can be
simplified by first performing all configuration in a
controlled lab environment and then pushing that
configuration to the live switch, thus reducing the risks
associated with expansion. Using a test harness and traffic
patterns from the live environment, an expansion switch
can be fully configured and tested in the lab prior to
deployment in the field. Once the expansion switch
configuration has been tested, and a migration strategy put
into place, the live upgrade can proceed. This migration is
shown in Figure 3, where the expansion switch has been
added into the network, and a Region, from the installed
switch, is being migrated to the expansion switch. This
makes for a simpler management model than existing
solutions.

Figure 3: Virtual machine migration

Communication-Oriented Operating Systems
More so than any other market segment, the
communications market segment contains many
customized home grown OSs. Many times these systems
are developed with a specific product in mind and don’t
lend themselves well to maintainability either due to
complexity or lack of original knowledge. Virtualization
allows a company to take advantage of this valuable
intellectual property while still moving forward with new
technology. By providing an environment within which
the proprietary OS can operate, Intel VT allows new
development to occur on general-purpose or modern OSs,
while providing a link back to the proprietary OS. Intel

VT offers the first step in providing support for these
legacy OSs. It provides migration to advanced hardware
technologies such as multi-core, without requiring multi-
processor support within the OS. It also eliminates the
need for modification of the OS, and it improves
performance by eliminating the need for binary
translation. With this capability, the proprietary
technology is utilized for the purpose it was intended, and
it is saved from costly revalidation and software
development efforts.

Sharing vs. Assigning I/O Devices

The communications market segment demands high I/O
performance from the hardware/software solution. Cost is
always a factor in the design, and obtaining the most
performance per watt is a driving fact for every design. In
virtualized solutions, two methods exist for providing
access to high-performance I/O, namely Shared I/O and
Direct Assignment models (i.e., driver domains).

In Shared I/O the VMM (or its host OS) provides access
to an I/O device by multiplexing that access through
emulation. The guest OSs are presented with a virtual

 Hardware

 OS

 Active

 OS

 Standby

 VMM

Standby instance
provides for hot
upgradeability and
software fault
tolerance.

 Installed Switch

Region

Multi-Core

OS

Switch

Switch Fabric

VMM

OS

Switch

OS

Switch

 Expansion Switch

Region

 Multi-Core

 OS

Switch

 Switch Fabric

 VMM

Migrate

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 223

device through which they communicate. The VMM then
multiplexes the access from those virtual devices to the
real I/O device below. The Shared I/O mechanism results
in a performance loss due to the introduction of a
multiplexing and emulation layer; yet provides for the
most flexibility in migration. Due to this performance
impact, shared I/O in communication systems is limited to
non-performance critical tasks, such as the management
plane.

In Direct I/O Assignment, the VM is assigned an I/O
device exclusively. Intel VT for Directed I/O (Intel VT-d)
addresses this requirement, and today this assignment
occurs on the PCI bus within commercial VMMs
architected to address this need. The VMM hides access
to PCI devices that are not assigned to a particular guest
OS.

Technical challenges exist for Direct I/O Assignment. The
biggest challenge comes with those devices that perform
DMA operations. Since a guest OS is unaware that it has
been moved to a location in memory above its known
starting point, it will provide addresses to DMA devices
that may reside outside its memory range. To overcome
this problem, it is necessary for either the VMM to remap
these memory accesses or for hardware to dynamically do
so. In the case where the VMM remaps addresses, this
either will require that the guest OS be aware of the fact
that it will be relocated into a new memory location, or
that the VMM restrict the relocation accordingly. In the
case where the hardware remaps DMA addresses (as with
Intel VT-d), it is necessary that the VMM program the
hardware with the VM base address, and that VM’s device
assignments. Direct I/O Assignment provides an order of
magnitude performance improvement over Shared I/O, at
the expense of VM dynamic migration ability. This
performance improvement is mandatory for all high
throughput interfaces in communications equipment and
thus the tradeoff is warranted.

Partitioning the Platform for Better
Communication Performance
When designing for general-purpose architectures,
communication systems designers are often forced into a
paradox: They want to leverage GPOSs, various operator
interface options, and other general-purpose software, but
the networking performance provided by GPOSs is less
than acceptable. Virtualization can be used to solve this
paradox by creating one partition that executes a minimal
OS containing just what is needed to run the performance-
critical parts of the application and provide direct access
to networking devices, while another partition runs a
GPOS that executes those parts of the system that are not
performance-critical, such as operator interfaces or
management agents for configuration, monitoring, and

statistics and alarm reporting. Intel has prototyped an
application running on such a system and found that it
outperforms the same application running on a GPOS on
the same hardware by 24%.

Commercial Virtualization Solutions for
Communication Networks
Commercial products such as Jaluna OSware* offer
solutions that are optimized to meet the stringent demands
of communications equipment. OSware provides a robust
platform that offers the key ingredients: Direct and Shared
I/O, hard real-time guarantees, bounded interrupt latencies
(measured at 21 microseconds), efficient memory
virtualization, and the ability to execute both commercial
as well as proprietary OSs without requiring them to be
modified. Figure 4 shows that OSware provides identical
network I/O performance of benchmark applications on
RedHat Enterprise Linux* when executing in virtualized
and non-virtualized environments.

Figure 4: Virtualized vs. native OS networking
performance

VIRTUALIZATION IN SAFETY-
CRITICAL APPLICATIONS
The US government is migrating its Department of
Defense, Department of Energy, and Homeland Security
infrastructures from proprietary systems developed solely
for government specifications to commercial off-the-shelf
(COTS)-based systems with incremental security and
reliability requirements. It is easy to imagine that the
efficiencies and cost savings resulting from migrating to
COTS systems would easily run into the billions of
dollars, but the real benefits lie beyond that. Rapid
deployment of new technologies allows the US armed

2 G bps IP F o rwa rding T hro ughput - Linux

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500

Packet Size

Redhat EL4 A S U2 (2.6.9)

Redhat EL4 A S U2 (2.6.9) on OSWare w/ vM M U

Redhat EL4 A S U2 (2.6.9) on OSWare w/o vM M U

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 224

forces to retain the technological superiority so vital to
their military and intelligence actions. Modern COTS-
based systems permit increasingly sophisticated security
methods to be employed to safeguard data while
permitting the sharing of data that has proven very
difficult across different proprietary architectures of the
past. Safety-critical systems are also found in many other
non-governmental applications where human life is at
stake, such as aerospace (flight control systems).

A major challenge in migrating to COTS architectures is
ensuring the security of both the hardware and software
elements. The Federal Aviation Administration (FAA) has
established criteria for certifying software for safety-
critical aviation systems, and likewise the National
Institute of Standards and Technology (NIST) and the
National Security Agency (NSA) have established a
common criteria for evaluation of technology products for
security-critical systems. An enabling architecture known
as Multiple Independent Levels of Security (MILS) is in
the process of dramatically reducing the size and
complexity of security-critical code, thus allowing faster
and more cost-effective development and evaluation.

The MILS architecture defines four conceptual layers of
separation:

• separation kernel and hardware

• middleware services

• trusted applications

• distributed communications

Our focus in this discussion is mainly on the MILS
separation kernel. The separation kernel must be
mathematically verified and evaluated. This practically
limits kernel size to less than 5,000 lines of code. Also,
the separation kernel must be completely isolated from
other layers of software including OS services, which
themselves must also be separated from other middleware
components.

Intel VT is ideally suited to meet these separation kernel
requirements. Figure 5 illustrates how Intel’s family of
virtualization technologies provides the foundation for an
implementation of the MILS architecture.

Benefits of Intel Virtualization Technology
In summary, the benefits of Intel VT are these:

• It provides the separate root ring structure
necessary for isolation of separation kernel from
non-separation kernel services.

• Just as we would not expect a minivan to do the
same job as a pickup truck, we cannot expect a
desktop-oriented OS or a desktop-oriented VMM

to operate within the constraints of embedded,
communications or safety-critical environments,
and still provide the functionality,
configurability, separation, or performance of
solutions that have been architected specifically
for those attributes.

• It simplifies VMM design keeping the separation
kernel code very small and thus making it
possible to build a mathematically verifiable
separation kernel.

• It simplifies the migration of single-threaded
legacy software to multi-core processors by
allowing virtualization of unmodified OSs. This
gives end customers an option to simultaneously
run multiple instances of non-SMP OSs.

• Intel VT-d allows for direct access to assigned
devices. Separation of network interfaces is an
essential component of system security. Intel’s
family of virtualization technologies will be
extended to allow efficient sharing of physical
I/O devices among VMs without requiring a
“service” partition that has access to all network
traffic, thus allowing the directing of network
traffic to the specific guest OS and application
for which it is intended.

• Intel VT also supports the use of a Trusted
Platform Module (TPM) to provide the ability to
authenticate both the VMM and the guest OSs
and applications, to ensure that their image on
disk has not been tampered with between
reboots. The TPM is a microcontroller that stores
keys, passwords, and digital certificates.
Microcontrollers that adhere to the TPM
specification as defined by the Trusted
Computing Group [6] are available from a
number of manufacturers.

Commercial Virtualization Solutions for
Safety-Critical Applications
Safety-critical systems and security-critical systems are
being developed using Intel VT by companies such as
LynuxWorks, which provides its LynxOS* RTOS and
LynxOS-178* safety-critical RTOS and corresponding
development tools. Intel and LynuxWorks are working
together to demonstrate the MILS architecture shown in
Figure 5 using Intel® Core™ Duo processors. The
LynuxWorks separation kernel has been developed to be
mathematically verifiable, and it utilizes Intel VT and
Intel® EM64TΦ technologies to support virtualization and
both 32-bit and 64-bit operating modes. It provides SMP
support and is architected to take full advantage of Intel®

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 225

multi-core processors and their various platform-
enhancing technologies.

CONCLUSION
We have shown that virtualization has many varied uses in
embedded systems, communications infrastructure, and

safety- and security-critical environments. The
requirements of these domains are however quite different
from one another and from the more familiar desktop,
mobile, and IT data center environments. These
requirements dictate that different architectural and design
tradeoffs be made within the VMM and the guest OSs
executing within the VMs.

Figure 5: Example of MILS architecture with Intel Virtualization Technology

REFERENCES
[1] Abrossimov, E., Rozier, M., and Shapiro, M.,

“Generic virtual memory management for operating
system kernels,” in Proceedings of the twelfth ACM
symposium on Operating systems principles, 1989,
pp. 123–136.

[2] United States Department of Defense, Department Of
Defense Trusted Computer System Evaluation
Criteria, 1985.

[3] Ramamritham, K., Stankovic, J.A., “Scheduling
algorithms and operating systems support for real-
time systems,” in Proceedings of the IEEE, January
1994, pp. 55–67.

[4] Kuhns, F., Schmidt, D., Levine, D., “The Design and
Performance of a Real-time I/O Subsystem,” in
Proceedings of the Fifth IEEE Real-Time Technology
and Applications Symposium, June 1999, pp.
154–163.

[5] Falco, J, Gilsinn, J., and, Stouffer, K., “IT Security
for Industrial Control Systems: Requirements
Specification and Performance Testing,” 2004 NDIA
Homeland Security Symposium & Exhibition.

[6] Trusted Computing Group, at
http://www.trustedcomputinggroup.org*.

AUTHORS’ BIOGRAPHIES
Dean Neumann specializes in strategic planning of
advanced technologies for Intel’s Communication
Infrastructure Group. He holds Bachelor’s and Master’s
degrees in Computer Science, and has 20 years of
experience in engineering fault tolerant and highly
available systems for the communications and financial
industries. His e-mail is dean.neumann at intel.com.

Dileep Kulkarni specializes in strategic planning of
advanced technologies for Intel’s Communication
Infrastructure Group. He holds an Engineering degree
from the Indian Institute of Technology and an M.B.A.

http://www.trustedcomputinggroup.org

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 226

degree from the University of Michigan He has broad
experience in planning, marketing, sales, and finance. His
e-mail is dileep.kulkarni at intel.com.

Aaron Kunze is a network software engineer in Intel’s
Corporate Technology Group. He has a Bachelor’s degree
from Purdue University and a Master’s degree from
Oregon Graduate Institute. Aaron’s area of research is in
the design of communication systems, and he co-wrote
two books about Intel’s IXP Network Processors. His
e-mail is aaron.kunze at intel.com.

Gerald Rogers is a software engineer specializing in
Performance Analysis of Intel® Architecture for
Communications, and he works for Intel’s Infrastructure
Processor Division. He holds a Bachelors degree in
Electrical Engineering and a Masters degree in Computer
Science. He has 16 years of embedded software
development experience in the Telecommunications and
Networking industry. His e-mail is gerald.rogers at
intel.com.

Edwin Verplanke is a platform solution architect and is
part of Intel’s Infrastructure Processor Division. He holds
a Bachelor’s and Master’s degree in Computer Science
and Electrical Engineering, respectively. For the past 12
years Edwin has focused on communications board
design, participated in various standards development
covering high-speed interconnects, and more recently,
researching multi-core architectures for the embedded
market. His e-mail is edwin.verplanke at intel.com.

Δ Intel® Virtualization Technology requires a computer
system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and, for some uses, certain
platform software enabled for it. Functionality,
performance or other benefits will vary depending on
hardware and software configurations and may require a
BIOS update. Software applications may not be
compatible with all operating systems. Please check with
your application vendor.

Φ Intel® EM64T requires a computer system with a
processor, chipset, BIOS, operating system, device drivers
and applications enabled for Intel EM64T. Processor will
not operate (including 32-bit operation) without an Intel
EM64T-enabled BIOS. Performance will vary depending
on your hardware and software configurations. See
www.intel.com/info/em64t for more information including
details on which processors support Intel EM64T or
consult with your system vendor for more information.

Copyright © Intel Corporation 2006. All rights reserved.
Intel and Core are trademarks or registered trademarks of

Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property
of others.

Performance tests and ratings are measured using specific
computer systems and/or components and reflect the
approximate performance of Intel products as measured
by those tests. Any difference in system hardware or
software design or configuration may affect actual
performance. Buyers should consult other sources of
information to evaluate the performance of systems or
components they are considering purchasing. For more
information on performance tests and on the performance
of Intel products, visit Intel Performance Benchmark
Limitations at
http://www.intel.com/performance/resources/limits.htm.

This document contains information on products in the
design phase of development. The information here is
subject to change without notice. Do not finalize a design
with this information. Contact your local Intel sales office
or your distributor to obtain the latest specifications and
before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED
IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product
descriptions at any time, without notice.

This publication was downloaded from
http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/info/em64t
http://www.intel.com/performance/resources/limits.htm
http://www.intel.com/performance/resources/limits.htm
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Copyright © 2006 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

