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ABSTRACT 

Intel® Virtualization TechnologyΔ delivers improved 
computing benefits for home users, business users, and IT 
managers alike. This paper describes the unique 
requirements that embedded systems and communications 
infrastructure equipment place on virtualized 
environments and shows how Intel is working with a 
number of third parties to extend the benefits of Intel 
Virtualization Technology to these market segments. 
Bounded real-time performance can be maintained while 
using virtualization to consolidate systems; system uptime 
can be increased by enabling software failover without 
redundant hardware; and software migration can be 
performed without bringing down the application. 
Virtualization also allows legacy applications to co-exist 
with new applications by executing both software 
environments in parallel, and it provides the means for 
applications to take advantage of multi-core processors 
without re-architecting for multi-threaded execution. 

INTRODUCTION 
As in the desktop, mobile, or IT server domains, 
embedded systems and communications infrastructure 
equipment can also realize several benefits from 
virtualizing the hardware execution environment, so that 
multiple operating systems (OSs) can share the common 
resources of the hardware platform. These benefits may be 
realized in terms of cost reduction (either by reducing 
capital costs or operational costs), in terms of increased 
performance and functionality, or in terms of increased 
system reliability and security. There are also several 
different “usage models” (mechanisms by which 

virtualization can be used) which provide these benefits. 
In this paper we survey several of these models within 
embedded and communication systems.  

Regardless of the mechanism by which virtualization is 
used, one commonality between usage models is that it is 
always necessary for an additional layer of software to 
exist that schedules the operating systems which share the 
hardware platform, manages the resources assigned to 
each OS, and saves/restores state when context switching 
between the OSs. In this way each OS executes within a 
“virtual machine” (VM) rather than on a physical 
machine. This additional layer of software, the Virtual 
Machine Monitor (VMM), manages the execution of OSs 
in much the same way that OSs manage the execution of 
applications. 

Although the existence of a VMM is common to all usage 
models, we shall see that the architecture of these VMMs 
is tailored to the constraints of the market segments they 
address, and that different design decisions must be made 
to optimize the VMM for the specific requirements of 
each market segment. It is not only the VMM that is 
tailored to different market segments, but also the OSs 
that execute within the VMs that must be tailored to the 
requirements of these market segments. Whereas a 
General Purpose-Operating System (GPOS) such as 
Linux*, Microsoft Windows* or Microsoft Windows 
Server* addresses the requirements of desktop or IT server 
environments, a different class of OS—the Real-Time 
Operating System (RTOS)—is required to address the 
requirements of embedded and communications systems. 
As we shall see, providing specific real-time behaviors in 
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a virtualized environment becomes an overriding factor in 
embedded system design.  

EMBEDDED VMM DESIGN 
CONSIDERATIONS  

Embedded systems have requirements that make software 
design for these systems different than software design for 
a server or desktop environment. These requirements 
come from many factors, including the closed nature of 
the systems and the real-time workloads that often run on 
these systems. The design requirements of these devices 
impact the design of VMMs that are targeted to this 
environment. Although there are some similarities in the 
requirements of many embedded systems, even within the 
embedded systems market segments, different vertical 
market segments have different requirements. Before Intel 
released processors with Intel Virtualization Technology 
(Intel VT), the complexity and costs involved in 
developing a VMM for different embedded systems 
market segments was extremely high. With Intel VT, 
however, the unique requirements of embedded systems 
can be inexpensively met by targeted products like those 
highlighted in this paper. 

In this paper, we highlight three design considerations for 
VMMs for an embedded system. These design 
considerations include the unique isolation requirements, 
the prevalence of static VMs, and support for real-time 
workloads. 

Unique Isolation Requirements 
One difference between the requirements of an embedded 
VMM and a general-purpose VMM affects how well VMs 
are isolated from one another. Most embedded systems 
are closed systems, where all of the software is either 
written by or installed by a single vendor, and where end 
users do not have the flexibility to run their own software. 
In some cases this can reduce the isolation requirements 
that exist in general-purpose VMMs. In embedded 
systems, this reduced isolation often increases 
performance or increases the predictability of 
performance. In other cases such as security-critical 
applications, the isolation requirements are increased 
rather than reduced, often to the point of requiring formal 
analysis and certification. 

There are two examples of optimizations supported by 
embedded VMMs that capitalize on reduced isolation 
requirements. First, many real-time OSs run without 
paging [1]. Page walks make it difficult for real-time 
systems to predict the performance of code and meet real-
time guarantees efficiently. They can also result in a 
reduction in overall performance. In an Intel VT-enabled 
system, running guests with paging disabled reduces the 
isolation of that guest—the guest can read and write all of 

physical memory, including that of devices or other 
guests. This is a tradeoff that would not be acceptable in a 
general-purpose environment, but may be preferred in 
some embedded environments. Second, I/O performance 
can be critical to the success of an embedded system. This 
has caused some embedded VMM vendors to allow VMs 
to have direct access to Direct Memory Access (DMA)-
capable devices. This increases performance, but would 
allow a malicious application or device driver to use the 
device to read and write the memory of the other guest 
OSs on the system. Again, in environments where the 
software environment is fixed, this tradeoff might be 
acceptable. 

Even though some embedded environments will accept 
reduced isolation between guests, there are exceptions 
with other embedded environments. Specifically, security-
critical and safety-critical environments like those 
supported by LynuxWorks would not allow these types of 
tradeoffs [2]. Again, Intel VT reduces the cost of 
producing a VMM so that the development of targeted 
VMMs with different design tradeoffs is possible. 

Static Virtual Machines 
Many embedded systems are designed with the knowledge 
of exactly what workloads will be run at all times. They 
are also designed knowing exactly what hardware will be 
available on the system. This allows designers to make 
design-time choices about how to allocate hardware to the 
tasks running in the workload. As such, when using an 
embedded OS it is typical for the designer to statically 
allocate specific cores and specific regions of memory to 
processing tasks. This reduces the emphasis on dynamic 
scheduling and dynamic memory management that is often 
important in a GPOS. Although scheduling multiple tasks 
that are running on the same core is still important, 
especially in an RTOS, deciding which cores will run 
which particular tasks is less important. 

In a virtualized environment, the VMM is responsible for 
performing processor scheduling and memory 
management for the guest OSs just as the OS is 
responsible for processor scheduling and memory 
management for applications. Therefore, many of the 
requirements that apply to OSs in an embedded 
environment also apply to VMMs in an embedded 
environment. With this in mind, VMMs can be designed 
so that system designers can make static configuration 
choices at design time with respect to how resources are 
allocated to VMs. This changes the design of VMMs for 
embedded environments in two ways. First, the design of 
the scheduler is simplified since the designer will likely 
statically map tasks to processor cores manually. The 
scheduler must still schedule between VMs running on the 
same core, and must do so using different scheduling 



Intel Technology Journal, Volume 10, Issue 3, 2006 

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 219 

policies than would be used in desktop or IT data center 
domains, but scheduling between cores is simplified. 
Second, memory management is designed more for 
configurability than for dynamic reallocation. VMMs rely 
on the designer to specify which memory ranges should be 
given to each VM. This simplifies the design of memory 
managers within the VMM, but increases the complexity 
of configuring the VMM. 

Real-time System Support 
Many embedded systems are required to support real-time 
workloads. One of the reasons why GPOSs such as 
Microsoft Windows cannot provide real-time control is 
due to the limitations of the scheduler. The scheduler in 
this case is the entity which determines how much time a 
specific process or thread is allowed to spend on a given 
processor. Microsoft Windows uses a quantum-based, 
preemptive priority scheduling algorithm. This basically 
means that threads with equal priority are scheduled round 
robin and threads with higher priority are serviced above 
threads with a lower priority. Linux uses a priority-based 
scheduling algorithm as well. An RTOS, however, often 
schedules tasks using a strict priority scheduler [3]. A 
priority scheduler will let higher priority tasks run for as 
long as they have work to do, whereas a general-purpose 
scheduler tries to guarantee that no task can prevent 
another from progressing. 

Supporting real-time workloads in a virtualized 
environment is a challenge. A VMM does not typically 
have visibility into the individual tasks running in an 
RTOS, nor does it have knowledge about their priority. 
The solutions that embedded VMM vendors are using 
today is to isolate RTOSs alone on a processor core, or to 
only allow the RTOS to share a core with a GPOS and 
give the RTOS strict priority over the GPOS.  

There are also differences between a real-time 
environment and a general-purpose environment in the 
way interrupts are handled. In many embedded 
applications, interrupts generated by external hardware 
have to be serviced within a specific time frame. GPOSs 
do not necessarily have this capability built in as they can 
frequently turn off interrupt processing for an unbounded 
amount of time. This kind of behavior is unacceptable for 
applications that require real-time control.  

For real-time interrupt handling, Intel VT plays a key role. 
With Intel VT, the system can be configured such that 
when a guest disables interrupts, only the delivery of 
interrupts to itself is disabled and not the delivery to other 
guests. Therefore, if a GPOS guest were to disable 
interrupts, and an interrupt for a real-time device were to 
be asserted, the VMM could still decide to interrupt an 
RTOS that required small, predictable interrupt latencies. 
On the other hand, if an interrupt targeted for the GPOS 

would occur while the RTOS is executing a critical task, 
the VMM should delay delivery of the interrupt until the 
RTOS has finished execution of the time-critical task to 
maintain determinism. 

Many embedded systems also require strict prioritization 
of I/O traffic between code running at different priority 
levels [4]. For example, if multiple VMs are to access a 
network device, the application may require some quality 
of service (QoS) guarantees be enforced between the 
guests. These guarantees may come in the form of 
bandwidth or latency guarantees. Such requirements are 
not typically found in a general-purpose system. This 
complicates the design of the infrastructure used to share 
devices between VMs. 

Embedded systems have unique design criteria that have a 
large impact on how VMMs are designed for such 
systems. Intel VT reduces the cost of producing a VMM 
such that targeting an individual embedded environment is 
a possibility. It allows VMM vendors to focus on how 
they meet the requirements of their market segment 
without dealing as much with the complexities of 
virtualizing system hardware. 

VIRTUALIZATION IN INDUSTRIAL 
CONTROL 
Many industrial control systems feature highly visual 
human interfaces that depict the process under control, 
which may be a medical device, an industrial plant, an 
assembly line, etc. These displays may also involve 
rapidly changing data, or they may include interfaces to 
network-accessible databases to access schematic 
diagrams or diagnostic and maintenance procedures. Such 
systems therefore benefit from the ubiquity and richness 
of GPOSs such as Microsoft Windows and the 
computational performance of powerful CPUs. Yet they 
also require strict real-time control to ensure that robotic 
machines assemble parts with exacting precision, move 
gantries and X-ray machines to exact locations, operate 
switches and actuators at precise times, or perform 
functions for exact durations. Many require closed-loop 
feedback control systems: for example, if a sensor detects 
that a machine has reached a specific point, that sensor 
sends a signal that must be acted upon by the control 
software within a timeframe that is measured in 
microseconds in order that the machine can be halted in 
that exact position without variance.  

As we noted above, GPOSs such as Microsoft Windows 
are not suitable for performing this level of real-time 
control because they are designed to share processor 
resources fairly between running processes, thereby 
preventing “starvation” of some processes. Traditional 
industrial control systems therefore typically separate their 



Intel Technology Journal, Volume 10, Issue 3, 2006 

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 220 

processing and control functions into a Master Station 
component that implements the human computer interface, 
database interface, and other non-real-time management 
functions, and separate Remote Terminal Units (RTUs) 
which are small, rugged computers that implement the 
real-time control functions, traditionally using separate 
Programmable Logic Controllers for that purpose. These 
RTUs contain the sensors and actuators to detect and 
control the operating environment, along with sufficient 
computing performance to react to environmental changes 
and control commands extremely quickly, and to execute 
the communications protocol stack to exchange data with 
the Master Station. RTUs frequently must also operate 
within extreme temperature, humidity, vibration, or other 
environmental conditions that are more challenging for the 
electronics than for the mechanical components. These 
environmental conditions restrict the choice of computing 
components that can be employed, or they increase the 
cost of those components, particularly if ample 
performance headroom is desired to support future 
functionality. Therefore, for reasons of cost reduction and 
the desire for a common, scalable infrastructure upon 
which greater functionality can be layered, trends in 
industrial control are toward a consolidated platform that 
can provide the required separation of the real-time 
control functionality from the non-real-time functions [5]. 
In this way RTUs can be simplified, while the Master 
Station provides real-time control that can be given 
absolute priority so that signals can be operated upon 
within strictly defined bounded timeframes, while still 
providing the rich graphical environment, databases, and 
device support of a GPOS.  

Scheduler and Interrupt Latencies for 
Virtualized Solutions in Industrial Control 
Although the graphical user interface of a GPOS such as 
Microsoft Windows or Linux combined with XWindows 
meets the requirements for control of medical equipment 
or industrial equipment, the applications’ response times 
are often not acceptable. The average interrupt latency 
provided by a GPOS may indeed be within acceptable 
limits (on the order of 5-20 microseconds), but the worst- 
case latency must be designed for, and this may be orders 
of magnitude too long in a GPOS. 

The main reasons why GPOSs are not suitable are due to 
the policies of the scheduler and the design of the kernel. 
The scheduler is the entity that determines how much time 
a specific task/process/thread is allowed to spend on a 
given processor. Modern GPOS schedulers allow users to 
provide an element of application scheduling control. 
Both Windows and Linux OSs provide such features.  
Still, even when equipped with these kinds of features, the 
scheduling algorithms utilized by GPOSs do not provide 
sufficient real-time control.  

The scheduler behavior has an immediate effect on 
interrupt handling. When controlling a critical process, 
interrupts generated by the equipment under control must 
be serviced within a very specific and bounded time 
frame. GPOSs do not have this capability, as high priority 
tasks/processes or threads can take priority. This behavior 
is unacceptable for applications that require real-time 
control. The design of the OS kernel may also include 
critical sections of code that must execute atomically, and 
therefore interrupts must be disabled during these critical 
sections, thereby causing the worst-case latency to 
increase by the length of the longest critical section in the 
OS.  

Today there are different solutions available to provide 
this element of real-time control. Some solutions provide a 
real-time kernel and run the GPOS and graphical user 
interface within a complete thread. An API is defined that 
allows the GPOS to interact with the real-time kernel. If 
the requirement for thread scheduling exists, an 
application within the GPOS would utilize the thread 
mechanism offered by the real-time kernel.  

Another approach is to run a small real-time kernel along 
with the GPOS. Both OSs share the CPU, memory, and 
interrupt controller. However, each version of the kernel 
has its own context (descriptor tables, memory 
management etc.). The real-time kernel determines when 
specific processes have to be executed to maintain 
determinism, and interrupt delivery is also controlled so 
that it does not affect the behavior of the system. If an 
interrupt occurs during the execution of a real-time task, 
the real-time kernel will not necessarily execute the 
interrupt service routine if it is associated with the GPOS. 
Instead it will continue execution of the real-time task and 
on completion it will hand over control to the GPOS, 
which will then deal with the interrupt.  

Designing in determinism in a GPOS this way can be very 
complex. The OS source may not be available: with this in 
mind, some assumptions must be made in order to predict 
the behavior of the general-purpose kernel.  

Commercial Virtualization Solutions for 
Industrial Control Applications 
Commercial solutions exist that meet the stringent latency 
constraints of real-time control while still providing the 
rich and ubiquitous development framework of Microsoft 
Windows. Products such as TenAsys Corporation’s 
INtime* employ the hardware capabilities of Intel’s 
processors with Intel VT to provide extremely low 
latencies (worst-case measured as low as 3 microseconds) 
and real-time capabilities for Microsoft Windows, while 
allowing Visual Studio* to be used for development in 
both the Windows environment and the INtime 
environment. This enables developers to create and 
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deploy sophisticated real-time applications without trying 
to force a GPOS or device driver to achieve real-time 
performance. 

VIRTUALIZATION IN 
COMMUNICATIONS NETWORKS  

Communication Usage Models 
As Intel Corporation and other vendors migrate towards 
multi-core processors, communications equipment 
manufacturers are changing their programming paradigms 
to take advantage of these additional cores. 
Communications equipment tends to utilize highly 
specialized software that has been optimized and validated 
to execute as sequential logic. Thus, it is not easily ported 
to a multi-core platform. By eliminating the need for 
equipment manufacturers to refactor their software for 
multi-threaded execution, Intel VT makes this migration 
simpler. Equipment manufacturers can instead execute 
multiple instances of their single-threaded software, each 
within a separate VM, each processing a portion of the 
total workload. A suitably architected VMM provides the 
software infrastructure necessary to distribute the 
workload between VMs. Examples of multi-core 
migration include multiple Home Location Registers in a 
cellular network; or splitting workloads between intrusion 
detection systems. 

 

 

Figure 1: Virtualized vs. non-virtualized environment 

Consolidation is common across all market segments, but 
offers unique benefits in communication market segments. 
Telecommunications Equipment Manufacturers could 
utilize a VMM to consolidate multiple instances of an 
older legacy single threaded application on a multi-core 
platform, avoiding the need to spend expensive R&D 
cycles on modifying legacy code to take advantage of 
multi-core architectures (see Figure 1). Much of the 
communication equipment processing is split between 

Data Plane, Control Plane, and Management Plane 
processing. Each plane has different processing 
requirements, memory latency and bandwidth 
requirements, and network I/O requirements. By using 
Intel VT and a real-time VMM, a manufacturer can 
consolidate these different planes onto fewer processing 
elements. This reduces equipment and operational costs, 
and these savings allow the equipment manufacturers as 
well as their customers (the service providers) to remain 
competitive. An example of such a consolidation is in the 
Mobile Wireless business where a system for determining 
the current location of a mobile unit, called a Home 
Location Register (HLR), exists. Many of these systems 
are proprietary in nature, and restricted to 32-bit 
addressing. Using Intel VT, more than one HLR can be 
collocated onto a single system. The VMM allows for the 
splitting of workloads to multiple HLRs, and allows for a 
HLR database to be greater than 4 GB in size. 

A unique requirement of communication systems is their 
extremely high reliability. Communication systems may 
be required to be available to process calls 99.999% of the 
time. This corresponds to less than five minutes per year 
of downtime, which includes all scheduled maintenance, 
software and hardware upgrades, and system corrective 
actions. In comparison, we may spend five minutes per 
day brushing our teeth, so communication systems permit 
approximately 1/300th the maintenance that we perform on 
our teeth. Due to the implications on software design, 
today only high-end communication systems can provide 
this level of reliability. With Intel VT, communication 
systems can provide greater availability without the 
traditional software infrastructure costs. Many of these 
reliability issues arise from the customized nature of the 
communication software. Intel VT provides for software 
fault isolation on all levels of communication systems. 
This is achieved by allowing Active and Standby instances 
of the executing software, each within its own VM. In the 
event of a software failure, the Standby instance will 
continue execution and assume Active status, while the 
failed instance is restarted by the VMM. With this 
capability, the cost of a software fault, which has 
traditionally been protected against via redundant 
hardware, is eliminated.  

In addition to redundancy, the ability to perform live 
upgrades of software is accomplished by providing 
redundant hardware components. As indicated in Figure 2, 
a Standby partition could be used for either hot upgrades 
or fault tolerance. With Intel VT, the need for redundant 
hardware is eliminated. Now simply upgrading the 
standby instance, restarting it, and designating it the 
Active instance accomplishes the software upgrade. In the 
event the new software fails, the previous software version 
is still available to fall back on. 
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Figure 2: Hot upgradeability and fault tolerance 

Workload migration is a more common feature of 
virtualized enterprise servers; however, it also has 
applicability to the communications market segment. For 
instance, in many Voice over Internet Protocol (VoIP) 
implementations, there is a device called a Soft Switch. 
This switch handles all aspects of call establishment and 
management. This switch has a set level of capacity, and 
once exceeded must be replaced or augmented with a new 
switch. The process of configuring the new switch is very 
time consuming due to its manual nature. Intel VT 
simplifies this process by allowing for the migration of a 
complete switch instance from one hardware platform to 
another. In addition, expanding a network can be 
simplified by first performing all configuration in a 
controlled lab environment and then pushing that 
configuration to the live switch, thus reducing the risks 
associated with expansion. Using a test harness and traffic 
patterns from the live environment, an expansion switch 
can be fully configured and tested in the lab prior to 
deployment in the field. Once the expansion switch 
configuration has been tested, and a migration strategy put 
into place, the live upgrade can proceed. This migration is 
shown in Figure 3, where the expansion switch has been 
added into the network, and a Region, from the installed 
switch, is being migrated to the expansion switch. This 
makes for a simpler management model than existing 
solutions. 

Figure 3: Virtual machine migration 

Communication-Oriented Operating Systems 
More so than any other market segment, the 
communications market segment contains many 
customized home grown OSs. Many times these systems 
are developed with a specific product in mind and don’t 
lend themselves well to maintainability either due to 
complexity or lack of original knowledge. Virtualization 
allows a company to take advantage of this valuable 
intellectual property while still moving forward with new 
technology. By providing an environment within which 
the proprietary OS can operate, Intel VT allows new 
development to occur on general-purpose or modern OSs, 
while providing a link back to the proprietary OS. Intel 

VT offers the first step in providing support for these 
legacy OSs. It provides migration to advanced hardware 
technologies such as multi-core, without requiring multi-
processor support within the OS. It also eliminates the 
need for modification of the OS, and it improves 
performance by eliminating the need for binary 
translation. With this capability, the proprietary 
technology is utilized for the purpose it was intended, and 
it is saved from costly revalidation and software 
development efforts. 

Sharing vs. Assigning I/O Devices  

The communications market segment demands high I/O 
performance from the hardware/software solution. Cost is 
always a factor in the design, and obtaining the most 
performance per watt is a driving fact for every design. In 
virtualized solutions, two methods exist for providing 
access to high-performance I/O, namely Shared I/O and 
Direct Assignment models (i.e., driver domains).  

In Shared I/O the VMM (or its host OS) provides access 
to an I/O device by multiplexing that access through 
emulation. The guest OSs are presented with a virtual 
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device through which they communicate. The VMM then 
multiplexes the access from those virtual devices to the 
real I/O device below. The Shared I/O mechanism results 
in a performance loss due to the introduction of a 
multiplexing and emulation layer; yet provides for the 
most flexibility in migration. Due to this performance 
impact, shared I/O in communication systems is limited to 
non-performance critical tasks, such as the management 
plane. 

In Direct I/O Assignment, the VM is assigned an I/O 
device exclusively. Intel VT for Directed I/O (Intel VT-d) 
addresses this requirement, and today this assignment 
occurs on the PCI bus within commercial VMMs 
architected to address this need. The VMM hides access 
to PCI devices that are not assigned to a particular guest 
OS.  

Technical challenges exist for Direct I/O Assignment. The 
biggest challenge comes with those devices that perform 
DMA operations. Since a guest OS is unaware that it has 
been moved to a location in memory above its known 
starting point, it will provide addresses to DMA devices 
that may reside outside its memory range. To overcome 
this problem, it is necessary for either the VMM to remap 
these memory accesses or for hardware to dynamically do 
so. In the case where the VMM remaps addresses, this 
either will require that the guest OS be aware of the fact 
that it will be relocated into a new memory location, or 
that the VMM restrict the relocation accordingly. In the 
case where the hardware remaps DMA addresses (as with 
Intel VT-d), it is necessary that the VMM program the 
hardware with the VM base address, and that VM’s device 
assignments. Direct I/O Assignment provides an order of 
magnitude performance improvement over Shared I/O, at 
the expense of VM dynamic migration ability. This 
performance improvement is mandatory for all high 
throughput interfaces in communications equipment and 
thus the tradeoff is warranted.  

Partitioning the Platform for Better 
Communication Performance 
When designing for general-purpose architectures, 
communication systems designers are often forced into a 
paradox: They want to leverage GPOSs, various operator 
interface options, and other general-purpose software, but 
the networking performance provided by GPOSs is less 
than acceptable. Virtualization can be used to solve this 
paradox by creating one partition that executes a minimal 
OS containing just what is needed to run the performance-
critical parts of the application and provide direct access 
to networking devices, while another partition runs a 
GPOS that executes those parts of the system that are not 
performance-critical, such as operator interfaces or 
management agents for configuration, monitoring, and 

statistics and alarm reporting. Intel has prototyped an 
application running on such a system and found that it 
outperforms the same application running on a GPOS on 
the same hardware by 24%. 

Commercial Virtualization Solutions for 
Communication Networks 
Commercial products such as Jaluna OSware* offer 
solutions that are optimized to meet the stringent demands 
of communications equipment. OSware provides a robust 
platform that offers the key ingredients: Direct and Shared 
I/O, hard real-time guarantees, bounded interrupt latencies 
(measured at 21 microseconds), efficient memory 
virtualization, and the ability to execute both commercial 
as well as proprietary OSs without requiring them to be 
modified. Figure 4 shows that OSware provides identical 
network I/O performance of benchmark applications on 
RedHat Enterprise Linux* when executing in virtualized 
and non-virtualized environments. 

 

Figure 4: Virtualized vs. native OS networking 
performance  

VIRTUALIZATION IN SAFETY-
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The US government is migrating its Department of 
Defense, Department of Energy, and Homeland Security 
infrastructures from proprietary systems developed solely 
for government specifications to commercial off-the-shelf 
(COTS)-based systems with incremental security and 
reliability requirements. It is easy to imagine that the 
efficiencies and cost savings resulting from migrating to 
COTS systems would easily run into the billions of 
dollars, but the real benefits lie beyond that. Rapid 
deployment of new technologies allows the US armed 
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forces to retain the technological superiority so vital to 
their military and intelligence actions. Modern COTS-
based systems permit increasingly sophisticated security 
methods to be employed to safeguard data while 
permitting the sharing of data that has proven very 
difficult across different proprietary architectures of the 
past. Safety-critical systems are also found in many other 
non-governmental applications where human life is at 
stake, such as aerospace (flight control systems). 

A major challenge in migrating to COTS architectures is 
ensuring the security of both the hardware and software 
elements. The Federal Aviation Administration (FAA) has 
established criteria for certifying software for safety-
critical aviation systems, and likewise the National 
Institute of Standards and Technology (NIST) and the 
National Security Agency (NSA) have established a 
common criteria for evaluation of technology products for 
security-critical systems. An enabling architecture known 
as Multiple Independent Levels of Security (MILS) is in 
the process of dramatically reducing the size and 
complexity of security-critical code, thus allowing faster 
and more cost-effective development and evaluation.  

The MILS architecture defines four conceptual layers of 
separation: 

• separation kernel and hardware 

• middleware services 

• trusted applications 

• distributed communications 

Our focus in this discussion is mainly on the MILS 
separation kernel. The separation kernel must be 
mathematically verified and evaluated. This practically 
limits kernel size to less than 5,000 lines of code. Also, 
the separation kernel must be completely isolated from 
other layers of software including OS services, which 
themselves must also be separated from other middleware 
components. 

Intel VT is ideally suited to meet these separation kernel 
requirements. Figure 5 illustrates how Intel’s family of 
virtualization technologies provides the foundation for an 
implementation of the MILS architecture.  

Benefits of Intel Virtualization Technology 
In summary, the benefits of Intel VT are these: 

• It provides the separate root ring structure 
necessary for isolation of separation kernel from 
non-separation kernel services.  

• Just as we would not expect a minivan to do the 
same job as a pickup truck, we cannot expect a 
desktop-oriented OS or a desktop-oriented VMM 

to operate within the constraints of embedded, 
communications or safety-critical environments, 
and still provide the functionality, 
configurability, separation, or performance of 
solutions that have been architected specifically 
for those attributes.  

• It simplifies VMM design keeping the separation 
kernel code very small and thus making it 
possible to build a mathematically verifiable 
separation kernel.  

• It simplifies the migration of single-threaded 
legacy software to multi-core processors by 
allowing virtualization of unmodified OSs. This 
gives end customers an option to simultaneously 
run multiple instances of non-SMP OSs. 

• Intel VT-d allows for direct access to assigned 
devices. Separation of network interfaces is an 
essential component of system security. Intel’s 
family of virtualization technologies will be 
extended to allow efficient sharing of physical 
I/O devices among VMs without requiring a 
“service” partition that has access to all network 
traffic, thus allowing the directing of network 
traffic to the specific guest OS and application 
for which it is intended.  

• Intel VT also supports the use of a Trusted 
Platform Module (TPM) to provide the ability to 
authenticate both the VMM and the guest OSs 
and applications, to ensure that their image on 
disk has not been tampered with between 
reboots. The TPM is a microcontroller that stores 
keys, passwords, and digital certificates. 
Microcontrollers that adhere to the TPM 
specification as defined by the Trusted 
Computing Group [6] are available from a 
number of manufacturers.  

Commercial Virtualization Solutions for 
Safety-Critical Applications  
Safety-critical systems and security-critical systems are 
being developed using Intel VT by companies such as 
LynuxWorks, which provides its LynxOS* RTOS and 
LynxOS-178* safety-critical RTOS and corresponding 
development tools. Intel and LynuxWorks are working 
together to demonstrate the MILS architecture shown in 
Figure 5 using Intel® Core™ Duo processors. The 
LynuxWorks separation kernel has been developed to be 
mathematically verifiable, and it utilizes Intel VT and 
Intel® EM64TΦ technologies to support virtualization and 
both 32-bit and 64-bit operating modes. It provides SMP 
support and is architected to take full advantage of Intel® 
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multi-core processors and their various platform-
enhancing technologies.  

CONCLUSION  
We have shown that virtualization has many varied uses in 
embedded systems, communications infrastructure, and 

safety- and security-critical environments. The 
requirements of these domains are however quite different 
from one another and from the more familiar desktop, 
mobile, and IT data center environments. These 
requirements dictate that different architectural and design 
tradeoffs be made within the VMM and the guest OSs 
executing within the VMs. 

 

Figure 5: Example of MILS architecture with Intel Virtualization Technology 

REFERENCES 
[1]  Abrossimov, E., Rozier, M., and Shapiro, M., 

“Generic virtual memory management for operating 
system kernels,” in Proceedings of the twelfth ACM 
symposium on Operating systems principles, 1989, 
pp. 123–136. 

[2]  United States Department of Defense, Department Of 
Defense Trusted Computer System Evaluation 
Criteria, 1985. 

[3]  Ramamritham, K., Stankovic, J.A., “Scheduling 
algorithms and operating systems support for real-
time systems,” in Proceedings of the IEEE, January 
1994, pp. 55–67. 

[4]  Kuhns, F., Schmidt, D., Levine, D., “The Design and 
Performance of a Real-time I/O Subsystem,” in 
Proceedings of the Fifth IEEE Real-Time Technology 
and Applications Symposium, June 1999, pp.  
154–163. 

[5]  Falco, J, Gilsinn, J., and, Stouffer, K., “IT Security 
for Industrial Control Systems: Requirements 
Specification and Performance Testing,” 2004 NDIA 
Homeland Security Symposium & Exhibition. 

[6]  Trusted Computing Group, at 
http://www.trustedcomputinggroup.org*. 

AUTHORS’ BIOGRAPHIES 
Dean Neumann specializes in strategic planning of 
advanced technologies for Intel’s Communication 
Infrastructure Group. He holds Bachelor’s and Master’s 
degrees in Computer Science, and has 20 years of 
experience in engineering fault tolerant and highly 
available systems for the communications and financial 
industries. His e-mail is dean.neumann at intel.com. 

Dileep Kulkarni specializes in strategic planning of 
advanced technologies for Intel’s Communication 
Infrastructure Group. He holds an Engineering degree 
from the Indian Institute of Technology and an M.B.A. 

http://www.trustedcomputinggroup.org


Intel Technology Journal, Volume 10, Issue 3, 2006 

Intel® Virtualization Technology in Embedded and Communications Infrastructure Applications 226 

degree from the University of Michigan He has broad 
experience in planning, marketing, sales, and finance. His 
e-mail is dileep.kulkarni at intel.com.  

Aaron Kunze is a network software engineer in Intel’s 
Corporate Technology Group. He has a Bachelor’s degree 
from Purdue University and a Master’s degree from 
Oregon Graduate Institute. Aaron’s area of research is in 
the design of communication systems, and he co-wrote 
two books about Intel’s IXP Network Processors. His 
e-mail is aaron.kunze at intel.com. 

Gerald Rogers is a software engineer specializing in 
Performance Analysis of Intel® Architecture for 
Communications, and he works for Intel’s Infrastructure 
Processor Division. He holds a Bachelors degree in 
Electrical Engineering and a Masters degree in Computer 
Science. He has 16 years of embedded software 
development experience in the Telecommunications and 
Networking industry. His e-mail is gerald.rogers at 
intel.com. 

Edwin Verplanke is a platform solution architect and is 
part of Intel’s Infrastructure Processor Division. He holds 
a Bachelor’s and Master’s degree in Computer Science 
and Electrical Engineering, respectively. For the past 12 
years Edwin has focused on communications board 
design, participated in various standards development 
covering high-speed interconnects, and more recently, 
researching multi-core architectures for the embedded 
market. His e-mail is edwin.verplanke at intel.com. 

 
Δ Intel® Virtualization Technology requires a computer 
system with an enabled Intel® processor, BIOS, virtual 
machine monitor (VMM) and, for some uses, certain 
platform software enabled for it.  Functionality, 
performance or other benefits will vary depending on 
hardware and software configurations and may require a 
BIOS update.  Software applications may not be 
compatible with all operating systems.  Please check with 
your application vendor.  

Φ Intel® EM64T requires a computer system with a 
processor, chipset, BIOS, operating system, device drivers 
and applications enabled for Intel EM64T. Processor will 
not operate (including 32-bit operation) without an Intel 
EM64T-enabled BIOS. Performance will vary depending 
on your hardware and software configurations. See 
www.intel.com/info/em64t for more information including 
details on which processors support Intel EM64T or 
consult with your system vendor for more information. 

Copyright © Intel Corporation 2006. All rights reserved. 
Intel and Core are trademarks or registered trademarks of 

Intel Corporation or its subsidiaries in the United States 
and other countries.  

* Other names and brands may be claimed as the property 
of others. 

Performance tests and ratings are measured using specific 
computer systems and/or components and reflect the 
approximate performance of Intel products as measured 
by those tests. Any difference in system hardware or 
software design or configuration may affect actual 
performance. Buyers should consult other sources of 
information to evaluate the performance of systems or 
components they are considering purchasing. For more 
information on performance tests and on the performance 
of Intel products, visit Intel Performance Benchmark 
Limitations at 
http://www.intel.com/performance/resources/limits.htm. 

This document contains information on products in the 
design phase of development. The information here is 
subject to change without notice. Do not finalize a design 
with this information. Contact your local Intel sales office 
or your distributor to obtain the latest specifications and 
before placing your product order.  

INFORMATION IN THIS DOCUMENT IS PROVIDED 
IN CONNECTION WITH INTEL® PRODUCTS. NO 
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL 
OR OTHERWISE, TO ANY INTELLECTUAL 
PROPERTY RIGHTS IS GRANTED BY THIS 
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S 
TERMS AND CONDITIONS OF SALE FOR SUCH 
PRODUCTS, INTEL ASSUMES NO LIABILITY 
WHATSOEVER, AND INTEL DISCLAIMS ANY 
EXPRESS OR IMPLIED WARRANTY, RELATING TO 
SALE AND/OR USE OF INTEL PRODUCTS 
INCLUDING LIABILITY OR WARRANTIES 
RELATING TO FITNESS FOR A PARTICULAR 
PURPOSE, MERCHANTABILITY, OR 
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT.  

Intel may make changes to specifications and product 
descriptions at any time, without notice. 

This publication was downloaded from 
http://developer.intel.com/. 

Legal notices at 
http://www.intel.com/sites/corporate/tradmarx.htm. 

 

http://www.intel.com/info/em64t
http://www.intel.com/performance/resources/limits.htm
http://www.intel.com/performance/resources/limits.htm
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm


Copyright © 2006 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. 
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm



