intel.

i960® Jx Microprocessor
Developer’'s Manual

Release Date: December, 1997
Order Number: 272483-002

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

The 1960® Jx Processor may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel’'s website at http://www.intel.com.

Copyright © Intel Corporation, 1997
*Third-party brands and names are the property of their respective owners.

ii May, 1998 272483-002

intel

i960® Jx Microprocessor
Developer's Manual

CHAPTER 1
INTRODUCTION
11 PrOOUCT FRATUIES ...ttt ettt ettt et e e nae s
1.1.1 INSIIUCTION CACNE ...t e e aeeeeeas
1.1.2 (D= 1= WO To] o[TP TS PR TPP
1.1.3 On-chip (Internal) Data RAM
1.14 Local Register Cacheccc.uu..
1.15 Interrupt Controllercccvvveee
1.1.6 TIMET SUPPOIT ©evvteieiee it ieeeeeee ettt e e e e e e e s e s e s e s s se e e e reeeeeas
1.1.7 Memory-Mapped Control Registers (MMR)cccccvvenees
1.1.8 EXIErnal BUScceeiiiiiiiie e
1.1.9 Complete Fault Handling and Debug Capabilities
1.2 ABOUT THIS MANUAL ...ttt ettt ettt ettt ettt ern e ettt eneeeaeneean
1.3 NOTATION AND TERMINOLOGYcoiiiiiiiiitiisieie ittt e
131 Reserved and PreSErved ..o
1.3.2 Specifying Bit and Signal ValUEScueuiiiiiiiiiiiiiiii et
1.3.3 Representing NUMDEISuiiiiiiiii e es
1.34 Register Names
1.4 Related Documents
CHAPTER 2

DATA TYPES AND MEMORY ADDRESSING MODES
2.1 DATA TYPES ..o

211 LT C=T0 = £ TP PPPPPTPN
2.1.2 OFINAIS ettt et e e h et e s sb ettt et e b e e e b ee e e e e
2.13 BitS @nd Bit FIEIUSoooiiiiiiiiie e
2.1.4 Triple- and QUAA-WOISocooiiiiiiiiiie e ee e e e e e e s e s e s senenee
2.1.5 Register Data AIGNMENTuuiiiiiiiiie e s e ee s
2.1.6 LITEIAIS .ottt et e e

2.2 BIT AND BYTE ORDERING IN MEMORYcciiiiiiiiiiiiiiiiieie et
2.2.1 Bit Orderingooooviuiviriiiiiiie et
2.2.2 Byte Ordering

2.3 MEMORY ADDRESSING MODEScoiiiititiiiiiitiee et
231 ADSOIULE . et
2.3.2 REQGISLEr INAIFECT .ttt et e e e e e e e e s b e e reeeeeas
2.3.3 Index With DISPIACEMENTiviiiiiiiieieiie e aee e eas
2.34 IP With DISPIACEMENTeiiiiiiiiiiiiie e e e e ae e eeeeeeas
2.3.5 Addressing Mode EXAMPIESccooiiiiiiiiiiiiiie e e aeae e

CHAPTER 3
PROGRAMMING ENVIRONMENT
3.1 OVERVIEW ...ttt ettt ket bt e st eaee e abe e e et ae e e 3-1
3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS.........ccoocveiiiieeniie e, 3-1
3.21 (€1 10] o T 1l 2 {=T o |1 (=T £ TP PP RPPRRPR 3-2
3.2.2 LOCAI REQISIEIS ..viviiiiiiiiiieie ittt et e e e e e s s s s sttt e e eeeaeaeae s e e e e s asnenen 3-3
3.2.3 Register SCOreDOArdINGooieiiiiii i e ae e e e e e e nenen 3-4
3.24 LITEIAIS .ottt e ens 34
3.25 Register and Literal Addressing and AlIGNMENTcoooiiiiiiiniiieiie e 34
3.3 MEMORY-MAPPED CONTROL REGISTERS......c.utttiiiiiiieeeiiien et 3-6
3.31 Memory-Mapped Registers (MMR)
3.311 Restrictions on Instructions that Access Memory-Mapped Registers 3-6
3.3.1.2 ACCESS FAUILS .. e
3.4 ARCHITECTURALLY DEFINED DATA STRUCTURES.ccoooiiiiviieee e
3.5 MEMORY ADDRESS SPACE
3.5.1 Memory REQUIrEMENLES ...ccciiieiiiiiicciiieie e s
3.5.2 Data and Instruction Alignment in the Address Space
3.5.3 Byte, Word and Bit ADAreSSING ...cccocuiriiiiiieiiiie e ee e e e
354 Internal Data RAM ... s
3.5.5 INSTFUCEION CACNE ..ottt e n e
3.5.6 DAta CACNE ...t e
3.6 LOCAL REGISTER CACHEcciiiiiiiiitee ettt et st
3.7 PROCESSOR-STATE REGISTERScoiitiiiiitiitie ettt
3.7.1 Instruction Pointer (IP) REGISLETcuvuiiiiiiiiiieiee e
3.7.2 Arithmetic Controls (AC) REGISIENuuiiiiiiiiiiiiiie i
3.7.21 Initializing and Modifying the AC ReQISterccccviviiiiiiiiiiiiiiieeeeee i
3.7.2.2 (o] aTe 111 o] g W oo [N oY O3 o1 o) PP PRSP
3.7.3 Process Controls (PC) REGISLETccuuvuiiiiiiriiieiee e ee e ae e s e e e
3.731 Initializing and Modifying the PC ReQIStercooviiiiiiiiiiiiiieieceiece e
3.74 Trace Controls (TC) REGISTENuviiiiiiiiiiee ettt e
3.8 USER-SUPERVISOR PROTECTION MODELccuvviiiiiiiiiiis e
3.8.1 SUPErVISOr MOAE RESOUICES ...cccciiiiiiiiiiii ittt ettt aee e ae e s
3.8.2 Using the User-Supervisor Protection Modelccccoveviiiiiiiiiiiiiiiiiiecee e
CHAPTER 4
CACHE AND ON-CHIP DATA RAM
4.1 INTERNAL DATA RAM ...ttt ettt ettt ettt ettt ettt see e ens
4.2 LOCAL REGISTER CACHE
4.3 BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA CACHE.......c.ccccccvcuveennne. 4-4
4.4 INSTRUCTION CACHEottt ettt ettt et eas
4.4.1 Enabling and Disabling the Instruction Cacheccccccoeiiiiiiiiiiiiiiie e
4.4.2 Operation While the Instruction Cache Is Disabled
4.4.3 Loading and Locking Instructions in the Instruction Cache

intel

4.4.4 Instruction Cache VISiDIlILYocoeviiiiiiiiiiii s
445 Instruction Cache Coherency
4.5 DATA CACHE ...ttt ettt ettt ettt ettt e ettt es e ee s st e e neaes
451 Enabling and Disabling the Data Cachecccoiiiiiiiiiii
45.2 Multi-Word Data Accesses that Partially Hit the Data Cache
45.3 Data Cache Fill PONCYuuiuiiiiiiiiiiiieiis ettt aeeee s
454 Data Cache Wt PONICY ...uuuuiiiiiiiiiiiiiiiiie it e e s s aae e eas
455 Data Cache Coherency and Non-Cacheable ACCESSEScuvuiviiiviiiiiiiiiiiiiiiiiiininns
4.5.6 External 1/0 and Bus Masters and Cache COherencyccccccccveviveicninvnieininnennns
457 Data Cache VISIDIlITYuviiiiiiiiiiiie e e en e e
CHAPTER 5

INSTRUCTION SET OVERVIEW

51 INSTRUCTION FORMATS
5.1.1 Assembly Language Format
5.1.2 Instruction Encoding Formats
5.1.3 INSLIUCTION OPEIANGSvviiiiiiiiiiiie it e e et e e e e e e e e e s et e b e e reeeeeas
5.2 INSTRUCTION GROUPS ...ttt ettt
5.2.1 Data MOVEMENT ..ottt e ar e e e ee e ettt s e e e e e eaeeeees
5211 Load and Store Instructions
5.2.1.2 MOVE o
5.2.1.3 [0 T= To I Yo [0 [=] PSP PPPPPPPPRP O
5.2.2 SeleCt CONAILIONAL ...oiiieii e e e
5.2.3 ANERMELIC e aa e e e e
5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract 5-8
5.2.3.2 Remainder and ModUIOccuuuiiiiiiiiien e
5.2.3.3 Shift, Rotate and Extended Shift
5.2.3.4 Extended Arithmeticcooevvvvivnienene
5.24 LOGICAI civiiieiiieiie e
5.2.5 Bit, Bit Field and Byte Operationsccccoeeviviviviiiiiiieiieeecen e
5.25.1 Bit OPEIALIONS .oieiiiiiiiiiii ettt s s s e et a e e e s e e
5.25.2 Bit Field OPErationsSoooii ittt ea e e e e e s e s e s aeaen
5.2.5.3 BYLe OPEIAtIONS .ieiiiiiiiii ittt s s e e ar e e ae e e s e e e e
5.2.6 (O70] 401 o= 14110] o KPP PP UP PP TPTPRPRTPN
5.2.6.1 Compare and Conditional Compareccccevvvvnnnns
5.2.6.2 Compare and Increment or Decrement
5.2.6.3 Test Condition COUESuuiriiiiiiiiiieieiee e
5.2.7 BIaNCR oot
5.2.7.1 Unconditional Branch
5.2.7.2 Conditional Branch
5.2.7.3 Compare and Branch
5.2.8 Call/Return
5.2.9 Faults
5.2.10 (=T o 18 o [PPSO OTPTRPRPRPRRRN
5.2.11 ALOMIC INSIIUCHIONS ..vvviiiiiiit ittt e e e e e aeaaaeeeas

5.2.12 Processor ManagemEeNtuuuiiieiree ettt e e ee e s 5-19
5.3 PERFORMANCE OPTIMIZATION ..ottt ettt ettt 5-20
5.3.1 INStruction OPtIMIZALIONS ...ecieiii i e e e e e e e e aenen 5-20
5.3.11 Load / Store Execution Modelcccooiiiiiiiiiiieininiieee e 5-20
5.3.1.2 Compare Operations
5.3.1.3 MiCrocoded INSITUCTIONSooviiiiiiiiie ettt
5314 Multiply-Divide Unit Instructions
5.3.15 Multi-Cycle Register Operations
5.3.1.6 Simple Control Transfer
5.3.1.7 Memory Instructionsccccuuee.
5.3.1.8 Unaligned Memory Accesses
5.3.2 Miscellaneous OPLIMIZALIONSccciciiiiiiieieiree e e e e nees
5.3.2.1 Masking of Integer OVErflOWccooiiiiiiiiiiiiie s
5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions 5-23
5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions 5-23
5.3.24 Execute in Imprecise Fault MOAEc.oooiiiiiiiiiiiiiiiece e 5-24
CHAPTER 6
INSTRUCTION SET REFERENCE
6.1 NOTATION L.ttt e ettt et e bt e e s ek e e e e e e san e ee s e e reee s e e 6-1
6.1.1 AlphabetiC REEIENCEcocv i e e eeaes 6-2
6.1.2 IMINEIMONIC ettt ettt ettt bt e e et et e e e e san e e s e nan e ee e e e 6-2
6.1.3 FOMMAL ..ottt ettt e e ah e e e e st e e nn e as 6-2
6.1.4 DTS Tod] o) 1o] o ISP PPPPTP 6-3
6.1.5 ACTION e ettt e e s 6-3
6.1.6 FAUITS ..ottt eas 6-5
6.1.7 EXBIMPIE .ttt r et e e e aan e e 6-5
6.1.8 Opcode and INStrUCtiON FOMMALcooviiiii i aa e 6-6
6.1.9 SEE AlISO .ttt e et
6.1.10 SHOE EffECES it
6.1.11 N0 (= OO P PP PUP P PRTRPPP
6.2 INSTRUCTIONS
6.2.1 ADDSCC> ittt ettt e e e e ee e e
6.2.2 =0 (o [o TP PP PP PPTPPPPPIN
6.2.3 F= o [0 1= Te [o [I OO PP PP PPPPPPPPPPPPPPPPPIN
6.2.4 alterbit
6.2.5 and, andnot ..
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13

vi

intel

6.2.14
6.2.15
6.2.16
6.2.17
6.2.18
6.2.19
6.2.20
6.2.21
6.2.22
6.2.23
6.2.24
6.2.25
6.2.26
6.2.27
6.2.28
6.2.29
6.2.30
6.2.31
6.2.32
6.2.33
6.2.34
6.2.35
6.2.36
6.2.37
6.2.38
6.2.39
6.2.40
6.2.41
6.2.42
6.2.43
6.2.44
6.2.45
6.2.46
6.2.47
6.2.48
6.2.49
6.2.50
6.2.51
6.2.52
6.2.53
6.2.54
6.2.55
6.2.56
6.2.57

(ol 0] oJo [Tl o] 1 4] oo [=To] o R PP PPURPPR PPN 6-31
CMPINCI, CMPINCO w1ttiiiiiieieies sttt e e e e eeeeseses e s s st e e tebebeeaeeaeaeaeseseanan e aenen 6-32
COMPARE it e e bttt te et e ae e e e e e bbb ae 6-33
COMPARE AND BRANGCHSCCSuuiiiiiiiiiiiiiiieie e es e e e e e s an s aenen 6-35
(ofo] aTodaq] o] o]0] aTe3 1 o] o Lo PP PP PR PPN 6-38
o o o | PP TP 6-40
(o 117 IR0 11V o T PRSP TR 6-47
=0 1 PP TR 6-48
=] 0.0 11 | TP TP TP 6-49
(1] o o TP TP TR 6-50
(=)= Uo! SO UPPPPPPPPTNE 6-51
FAULT CCCS oiiiiiiii ittt ettt e e e e e e e e e b bbbt e teetetaeeeaeaasaseasaantntbnbebnbneees 6-52
FIUSNIEQ e e e e e e s s e er e e e e e ae e 6-54
FIMAITK oo e ar et e aaaa e 6-55
= | PP PRSP 6-56
o o1 £ RPN 6-58
1] (o3 | PP PPN 6-66
1] (o TP 6-68
101 (T o OO 6-69
LOADD ittt et e e ar e e aaaaaaaas 6-70
[0 = PP PPN 6-73
L1714 PP UP PR PPTUPN 6-74
modac 6-75
modi 6-76
modify 6-77
modpc 6-78
modtc 6-80
MOVEc.cccceeviviinnnne 6-81
muli, mulo 6-84
nandccceceveveenennn. 6-85

6-86
[0 B 470] =T o PP PP PP PP PP TOTPRPRTPN 6-87
(L0} 1 o] | PP PR PPN 6-88
10 1o] S PP PUPRPPPTPPT 6-89
(o] e] 4 o) AR PP PSP PPPPPPPPUTNE 6-90
(=] 04T (=] 0 Lo T PP PP RPUPUP R PRPRPRTPN 6-91
5] PO UPRPPPT P 6-92
(0] £ 1= PP UPRPPPTPPT 6-94
LSTor= T o] o] | A PRSP TP TR 6-95
LSTor=T 0] 077 (= 2 PP RPPP TR PPN 6-96

vii

6.2.58 SEL<cc>
6.2.59 setbit
6.2.60 SHIFT
6.2.61 spanbit
6.2.62 STORE
6.2.63 LS11 oLoEPOT TP PP TP
6.2.64 SUB<cc>

6.2.65 subi, subo

6.2.66 1S3V o] PP PO U U TP TP TTPPPN
6.2.67 SYSCE ettt ittt e e e e e e s,
6.2.68 TEST<cc>

6.2.69 xnor, xor

CHAPTER 7
PROCEDURE CALLS
7.1 CALL AND RETURN MECHANISMiiiiiiiiitiie ettt 7-2
7.1.1 Local Registers and the Procedure Stackccccccciiiiiiiiniiiiiiiiiiiiiicieien e 7-2
7.1.2 Local Register and Stack Management
7121 Frame POINTETc.uiiiiiie e
7.1.2.2 SEACK POINTET ..ottt ettt e
7.1.2.3 Considerations When Pushing Data onto the Stackccccccvviiiiiiinininnnnn. 7-4
7.1.2.4 Considerations When Popping Data off the Stack
7.1.25 Previous Frame POINTETooiuiiiii ittt
7.1.2.6 RetUrN TYPE FIEIAeveiiiiiiieieieiie e e e ae e
7.1.2.7 Return INStruction POINTETvuiiiiiiiiiieie ettt
7.1.3 Call and Return Action
7.1.3.1 Call Operation
7.1.3.2 Return Operation
7.1.4 Caching Local RegISter SetScciuviiiiiii it
7.1.4.1 Reserving Local Register Sets for High Priority Interrupts
7.1.5 Mapping Local Registers to the Procedure Stackccooeviiviiiiiiiiiiinnnneee,
7.2 MODIFYING THE PFP REGISTER
7.3 PARAMETER PASSINGooiiiiiiiiiie ettt ettt et st sbe e s ee et e
7.4 LOCAL CALLS ..ottt ettt ettt ettt e e ettt e et e
7.5 SYSTEM CALLS
7.5.1 System Procedure Tablec.c.c........
7511 ProCeaUIre ENTIESooiiiiiiiiii ettt ettt et
7.5.1.2 SUPErVISOr StACK POINTETieiiiiiiiiiiiii e e
7.5.13 Trace CONrol Bilcoooieiiiei e e
7.5.2 System Call to a LoCal ProCeAUIEccooiiiiiiiiiiiiie e ae s
7.5.3 System Call to a SUPErVISOr PrOCEAUIEuviiiiiiiiieiieieieeee e eisivivire e e e e
7.6 USER AND SUPERVISOR STACKS
7.7 INTERRUPT AND FAULT CALLS...........
7.8 RETURNS L.ttt ettt ettt et ettt ettt s et e sttt e et b e e ab e e bt e e eaeeas

viii

intel

7.9 BRANCH-AND-LINK ...ttt e e e e e
CHAPTER 8
FAULTS
8.1 FAULT HANDLING OVERVIEWoiiiiiiiiiiiie ettt
8.2 FAULT TYPES ..ottt ettt ettt e ettt e e et et e e et e e e e e ennnes
8.3 FAULT TABLE ..ottt ettt ettt e e e b
8.4 STACK USED IN FAULT HANDLING.....c.ociittieiitiit ettt
8.5 FAULT RECORD ...ttt ettt ettt sttt e e et e e enne s
8.5.1 Fault RECOrd DESCIIPLION ...uuviiiiiiiiieieiieie e et ee e e e e e e s e s e s s st abe e e eeeeeeas
8.5.2 Fault RECOrd LOCALIONcoiiiiiiiiiie ittt
8.6 MULTIPLE AND PARALLEL FAULTS ..ottt
8.6.1 Multiple Non-Trace Faults on the Same Instructionccccccvee.n..
8.6.2 Multiple Trace Fault Conditions on the Same Instruction
8.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction 8-9
8.6.4 Parallel FAUILSeieiiiie et
8.6.4.1 Faults on Multiple Instructions Executed in Parallel
8.6.4.2 Fault Record for Parallel Faultsccccocciiiiiiiiiiie e
8.6.5 OVEITIAE FAUILS ..ottt e e e e
8.6.6 SYSIEM ETOT i
8.7 FAULT HANDLING PROCEDURES...................
8.7.1 Possible Fault Handling Procedure Actions ..
8.7.2 Program Resumption Following a Faultcccccvvevenes
8.7.2.1 Faults Happening Before Instruction Execution
8.7.2.2 Faults Happening During Instruction EXecUtioncccovovviiiiiiiiiiiiinnieeennnn,
8.7.2.3 Faults Happening After Instruction EXeCUtiOnccoceviviiiiiieiiiinieien e,
8.7.3 Return Instruction PoINter (RIP) ...oieiiiiiiiiiii e
8.7.4 Returning to the Point in the Program Where the Fault Occurred
8.7.5 Returning to a Point in the Program Other Than Where the Fault Occurred 8-15
8.7.6 FAUIT CONMIOIS .ottt e et e s st e e e e e
8.8 FAULT HANDLING ACTIONciiitititiit ettt ettt e st e ae e st e e e
8.8.1 LOCAl FAUIL Call ... et e e
8.8.2 System-Local Fault Call ...
8.8.3 System-Supervisor Fault Call ...
8.8.4 Faults and Interrupts
8.9 PRECISE AND IMPRECISE FAULTS
8.9.1 PreCiSe FAUILSc..eiieieieee ettt e e
8.9.2 IMPIECISE FAUILS ...ttt e e e e e e e e s e s st rn e e rne e
8.9.3 ASYNCRIONOUS FAUILS ...ooviiiiiiiiiiiii e aaae s
8.94 No Imprecise Faults (AC.NIF) Bit ...ocooiiiiiiriiiiii e
8.9.5 Controlling Fault PreCiSIONuueeuiiieieieiieie e e e e s e s e s sieenineeeee e
8.10 FAULT REFERENCEcoiittii ittt e e e e
8.10.1 ARITHMETIC FAUILS ...ttt e e
8.10.2 CONSTRAINT FAUILS ..ottt

8.10.3 OPERATION FAUILS ..oceiitieiie ettt e eeaneee 8-24
8.10.4 OVERRIDE Faults
8.10.5 PARALLEL Faults
8.10.6 PROTECTION FAUIES ...eiiiiiiieie ettt ettt 8-28
8.10.7 TRACE FAUILS ..ottt ettt e e s aanee 8-29
8.10.8 TYPE FAUILS ..ottt ettt et e st esaaeee 8-32
CHAPTER 9
TRACING AND DEBUGGING
9.1 TRACE CONTROLS ...ttt ettt et et e e e e st n e e e esnnnes
9.1.1 Trace Controls (TC) REQISIEL ...uuuiiiiiiiiiieieieiee et ee
9.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flagcccooviiiiiiiiiinn e,
9.2 TRACE MODES ...ttt ettt et e bt e e et b e e e e abn e e e ennannes
9.2.1 Instruction Trace
9.2.2 Branch Trace
9.2.3 Call Traceccccovcvvvvveernnns
9.24 Return Traceccccceeeeee.
9.2.5 Prereturn Trace
9.2.6 Y0 o1 VTS To] gl I = o] = T USSP RPPPRPR
9.2.7 IMIBIK TTACE ittt ettt bt e et e e e e san e s e san e ee e e e
9.2.7.1 Software Breakpoints
9.2.7.2 Hardware Breakpoints
9.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources
9.2.7.4 Breakpoint CoNntrol REGISIETiciviiiiiiiiiiici et
9.2.7.5 Data Address Breakpoint (DAB) Registers
9.2.7.6 Instruction Breakpoint (IPB) Registers
9.3 GENERATING A TRACE FAULTooviiiiiiiiieeee e
9.4 HANDLING MULTIPLE TRACE EVENTS ..ottt
9.5 TRACE FAULT HANDLING PROCEDUREociiiiiiiiiiieiee e
9.5.1 Tracing and INterrupt ProCeAUIEScoiiiiiiiiiiiiis it
9.5.2 Tracing on Calls @and RELUINSuuuiiiiiiiiiieiiiie et seenn e
9.5.21 Tracing on EXPlCIt Callccveeiiiiie e
9.5.2.2 Tracing on IMPLCIt Callcoooiiiii e
9.5.2.3 Tracing on Return from EXplicit Callcccocviviiiiiiiniiiinns
9.5.24 Tracing on Return from Implicit Call: Fault Case
9.5.2.5 Tracing on Return from Implicit Call: Interrupt Case
CHAPTER 10
TIMERS
10.1 TIMER REGISTERS ...ttt ettt e e
10.1.1 Timer Mode Registers (TMRO, TMR1)
10.1.1.1 Bit 0 - Terminal Count Status Bit (TMRX.IC) ...ccccvvviviiiiiiiiiiiee i 10-4
10.1.1.2 Bit 1 - Timer Enable (TMRX.€nable)ccooiiiiiiiiiiie e 10-4
10.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRX.reload)ccccccccevieieiininiiiiiiiinnnins 10-5
10.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRX.SUP) 10-5

intel

10.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csell1:0)

10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.3
10.4
105
10.6

Timer Count Register (TCRO, TCR1)
Timer Reload Register (TRRO, TRR1)
TIMER OPERATION ...ttt ittt ittt ettt ettt sttt et et ete e sbe e ettt e saneas
BasSiC TIMeEr OPEIALIONuuuiiiiiiiiiiieieiee e e e st ree e eeeeeaeaesesess s aeebnaneesaeees
Load/Store Access Latency for Timer ReQISterscccvcviiiiriiiinisiiisiiiiiieieieiee s
TIMER INTERRUPTS ...ttt ettt sttt et e sbe e e b e san e ene
POWERUP/RESET INITIALIZATION ..ottt
UNCOMMON TCRX AND TRRX CONDITIONS......ccoiiiiiiiieiniiee e
TIMER STATE DIAGRAM ..ottt ittt ettt ettt ettt et eenaeeste e ene

CHAPTER 11
INTERRUPTS

111
1111
11.2

OVERVIEW ...ttt ettt ettt ettt et ettt et e et sate e b ean
The 1960% Jx Processor Interrupt Controller
SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

11.3 INTERRUPT PRIORITY
11.4 INTERRUPT TABLEcccceoviierien.
1141 Vector Entries
11.4.2 Pending Interruptsccccceeevene
11.4.3 Caching Portions of the Interrupt Table
11.5 INTERRUPT STACK AND INTERRUPT RECORDcccutiiiiiiiiiiiniieeen e
11.6 MANAGING INTERRUPT REQUESTScoiiiiiiiiitiriiiee ettt
11.6.1 EXtErNal INTEITUDLS ...ttt e e e e e e e e e s e s e st re e enbne e
11.6.2 Non-Maskable INterrupt (NIMI)coovieeeieieeeieie e e e ere e
11.6.3 TIMET INTEITUPLS weeteiiiiiiie et e s s sttt tee e e e aeae s e s e e s nnnenes
11.6.4 SOftWATE INTEITUPDLS ..ottt r e e aeteae s e s e e e et be e bnbaeees
11.6.5 POSHING INTEITUPLS .ttt re e e e e e e e e e s e s e s st rn e bnbne e
11.6.5.1 Posting Software Interrupts via SYSCHccovvvviiiiiiiiiiii
11.6.5.2 Posting Software Interrupts Directly in the Interrupt Tablecccccceeeeennnn. 11-11
11.6.5.3 Posting External Interrupts
11.6.5.4 Posting Hardware INTEITUPLSvvuiiiiiiiiiiiiriie e
11.6.6 ResoIVING INTEITUPL PHOKILY ..vvvviiieiiiieiie et s s sieen e e
11.6.7 Sampling Pending Interrupts in the Interrupt Table
11.6.8 Interrupt Controller MOAEScevviiiiiiiiiiiiiie e
11.6.8.1 DediCated MOOEeeiiieiieie et
11.6.8.2 EXPANdEd MOEccooiiiiiiiii et e e e e e e
11.6.8.3 MIXEA MOTE ...t e e e
11.6.9 Saving the INterrupt MASKuviiiiiiiiiirie e
11.7 EXTERNAL INTERFACE DESCRIPTIONcoiiiiiiiiiiiiiiiie et
11.7.1 PiN DESCHPLIONS .ttt et r e te e ae e e e e e e asas e s enenbeaebeeees
11.7.2 Interrupt Detection OPLIONSuiiiiiiiiiiiieieiei e s s as s neneees
11.7.3 Memory-Mapped Control REGISIEISccoiiiiiiii it
11.7.4 Interrupt Control Register (ICON) ...cocviiiiiiiiii e nenes

Xi

11.7.5 Interrupt Mapping Registers (IMAPO-IMAP2) ...
11.7.5.1 Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers
11.7.5.2 Interrupt Controller Register Access Requirementsccccceveeene
11.7.5.3 Default and Reset Register ValUescoociiiiiiiiiiiiieiee e

11.8 INTERRUPT OPERATION SEQUENCE......ccciiiiiiiiiiiiiir e

11.8.1 Setting Up the Interrupt Controller ..ot

11.8.2 INterrupt SErvice ROULINEScooci ittt a e e e s e s e e

11.8.3 Interrupt Context SWILCHoooiiii e
11.8.3.1 Servicing an Interrupt from Executing Statecooovevviviiiiiiiiinien e,
11.8.3.2 Servicing an Interrupt from Interrupted Statecoooviiiiiiiiiiie

11.9 OPTIMIZING INTERRUPT PERFORMANCE ...ttt

11.9.1 INLErTUPL SEIVICE LALEINCY ...ooieieii ittt et aeeaeae s e e e e e anes

11.9.2 Features to Improve Interrupt Performanceccccceveeieniieniiieie e e
11.9.2.1 Vector Caching OPLIONuiuiueuei e e e s e s e s e s eneneee
11.9.2.2 Caching Interrupt Routines and Reserving Register Framesccco......
11.9.2.3 Caching the Interrupt Stack

11.9.3 Base Interrupt Latencyccccccceennn.

1194 Maximum INterrupt LAteNCYcooov oo
11.9.4.1 Avoiding Certain Destinations for MDU Operationsccccceevevnieeeiennnns
11.9.4.2 Masking Integer Overflow Faults for Syncf ...

CHAPTER 12
INITIALIZATION AND SYSTEM REQUIREMENTS

12.1 OVERVIEWcooeiiiiiiiiiieen,

12.2 INITIALIZATION
12.2.1 Reset State OPErationoooiiiiiiiiiiiiie e e e e ae s e e e e aenen
12.2.2 Self Test Function (STEST, FAIL)

12.2.2.1 THE STEST PN ettt ettt e e eas
12.2.2.2 External Bus Confidence Test
12.2.2.3 The Fail Pin (FATL) ...ovevieieeceieeceieiee ettt sttt sttt n v es v eva e

12.2.2.4 IMI Alignment Check and SyStem EITOrcccocviviviiiiiiiirieie e 12-8
12.2.2.5 FAIL COUE ..ottt ittt ettt et ettt et ettt st ettt ee et e b e v e 12-8

12.3 Architecturally Reserved MEemOry SPACEcccccuiiiiiiiiiiiiieie e ee e 12-9

12.3.1 Initial Memory Image (IMI) ..o e 12-10
12.3.1.1 Initialization Boot Record (IBR)ooovviiiiiiiiiiiiiiie e 12-13
12.3.1.2 Process Control BIOCK (PRCB) ...c.oiiviiiiiiiiiiii ittt innines 12-16

12.3.2 Process PRCB FIOWccoiiiiiiiiiiiiiiiiee ettt e
12.3.2.1 AC Initial Imageccccecevvveeeeenenn.
12.3.2.2 Fault Configuration Word
12.3.2.3 Instruction Cache Configuration Wordcccoovuiuiiiiiiiiin s 12-19
12.3.2.4 Register Cache Configuration Wordcoooiiiiiiiiiiiiiin e 12-19

12.3.3 CONLrOl TADIE ...ttt 12-20

12.4 DEVICE IDENTIFICATION ON RESET ...coiitttiiiiiiiitiee ettt et 12-22
12.4.1 Reinitializing and Relocating Data StruCtUresccccoevvviiii v e 12-22

12.5 Startup Code Example

Xii

intel

12.6 SYSTEM REQUIREMENTS

12.6.1 INPUE ClOCK (CLKIN) .ottt
12.6.2 Power and Ground Requirements (Vcc, Vgs)
12.6.3 Vs Pin REQUIFEMENES ..o
12.6.4 Power and Ground PIANESuviiiiiiiiiie ettt
12.6.5 Decoupling CapaCIlOrSuueuiiiiiiiiiiie e e aeae s e e e e enenenenes
12.6.6 I/O Pin Characteristics
12.6.6.1 Output Pins
12.6.6.2 INPULE PINS Lottt enene
12.6.7 High Frequency Design Considerations
12.6.8 Line TermMinationcoooouveeeiniiiiiie e
12.6.9 Latchup ...cccoeeveveennne
12.6.10 INTEITEIENCEeiiiiiiiiieiee ettt et ettt e st et reae e e
CHAPTER 13
MEMORY CONFIGURATION
13.1 MemMOry AHDULESooiieiiii 13-1
13.1.1 Physical Memory ALIHDULESuiuiiiiiiiiiieicii e ss s s enene e 13-1
13.1.2 Logical MemOory ALIHDULESuuuiiiiirieiieie e e s s s en e e e e 13-2
13.2 Differences With Previous 1960 PrOCESSOIScc.uvrieiiiiiiieiee e rieieee e 13-3
13.3 Programming the Physical Memory Attributes (PMCON Registers)cccoeeeveiennnen 13-4
13.3.1 BUS WA .o e e
13.4 Physical Memory Attributes at Initialization
13.4.1 Bus Control (BCON) REQISIEN ..uuiuiiiiiiiieieiis ittt e a e e s e s s inenenineae
13.5 Boundary Conditions for Physical Memory Regionscccccvvvviiiiiiiiieieieneee i 13-7
13.5.1 Internal MemOory LOCALIONSuuiuiiiriiiieieieiis e eee sttt e ee e e e e e s e s e s e eneneneneee 13-7
13.5.2 Bus Transactions Across Region BOUNAri€Scccccvviriviieeriiiininiiisiiviieiereiee s 13-7
13.5.3 Modifying the PMCON REQISIEIS ..cciviiiiiiiiiii ittt ettt e s e s enineneneaes 13-7
13.6 Programming the Logical Memory Attributes 13-8
13.6.1 Defining the Effective Range of a Logical Data Template 13-11
13.6.2 Selecting the Byte Order 13-12
13.6.3 Data Caching Enableccccccocveiiiiiiiiiinininnn, 13-12
13.6.4 Enabling the Logical Memory Template 13-12
13.6.5 INIGANZALION ..oeiiiiii e 13-13
13.6.6 Boundary Conditions for Logical Memory Templates 13-13
13.6.6.1 Internal Memory LOcationscccccvvvviriiiiienieieienenenn, 13-13
13.6.6.2 Overlapping Logical Data Template Rangescccccccccvieieiiniiiiiiisiiiiinieinens 13-13
13.6.6.3 Accesses ACrosS LMT BOUNGAINES ...c.cccvveeiriiiiiieeies et 13-14
13.6.7 Modifying the LMT REQISLEIS ...uiuiiiiiiiiiieieiii ittt ee e e s e e siiininenene 13-14
13.6.8 Dynamic Byte Order Changingcieieiiiiiiiiiiiiiiiieie et s 13-14
CHAPTER 14
EXTERNAL BUS
14.1 OVERVIEW ...ttt ettt ettt ettt ettt et ettt et e st sate e b ean 14-1

xiii

14.2 BUS OPERATIONoiiiiiiiiii s

1421
14.2.2
142.2.1
14.2.2.2
14.2.2.3
14.2.3
14.2.3.1
14.2.3.2
14.2.3.3
14.2.3.4
14.2.3.5
14.2.4
14.2.5
14.2.6
14.2.7
14.2.8
14.2.8.1
14.2.8.2

Basic Bus States
Bus Signal Types
Clock Signal
Address/Data Signal Definitions
Control/Status Signal Definitions
BUS ACCESSES ..ttt ettt ettt e e e e e e et e et te e e e e e e e
Bus Width ...
Basic Bus ACCESSESccceeeernne
Burst Transactionsccccoe...
WAL STALES ..eiiiititiee et ettt
RECOVEIY STALESeiiiiiitiii ettt et e st
Bus and Control Signals During Recovery and Idle States
(D= U= AN Lo 10 1 T=] o | PP PPPPPPTRTP N
Byte Ordering and BUS ACCESSESuuuuiiiiiiiiiiiiiieieeineenes s sssisinireereiee e aeaessananaen
ALOMIC BUS TraNSACHONSuviiiiieiiiiiiie ettt e s
BUS AIDItFAtION ...veviiiiiiiiiie it e aa e e e
HOLD/HOLDA PrOtOCOIcoviiiiiiiiiie ettt
BSTAT SIGNAI .ot

14.3 BUS APPLICATIONS ...t s

143.1
143.1.1
14.3.1.2

CHAPTER 15
TEST FEATURES

System BIOCK DIiagramsScuieiiiiiiiiiiiiii ittt e e n e e aeeae e s
MEMOIY SUDSYSIEIMS ...uviiiiiiiiiiiiitiie e ies e st e e e aeae s e s e s e e s e eeeneneees
1/O SUDSYSIEIMS ...ttt et bbb ee e e ae e e s e s e s e s s senenaeenree

151 ON-CIRCUIT EMULATION (ONCE).....ciioiiiiiiiiiiii e

151.1

Entering/EXiting ONCE MOUE ..ottt a e e e

15.2 BOUNDARY SCAN (JTAG)....ciiiiiiiiiiiiiie et s

15.2.1
15.2.1.1
15.2.1.2
15.2.1.3
15.2.1.4

Boundary Scan ArChitECtUIEccociiiiiieieieee e
TAP CONIOIET ..o
Instruction Registerccccvveene
Test Data Registerscc.eeeu.

TAP Elementscccccveveeriiinnnn.

15.3 TAP REGISTERS..................

15.3.1
15.3.2
15.3.2.1
15.3.2.2
15.3.2.3
15.3.2.4
15.3.3
1534
15.3.5
15.3.5.1
15.3.5.2

Xiv

Instruction Register (IR)
TAP Test Data REJISIEIS ...uuvuiiiiiiiiiiiiiiie et s s e s e baa e
Device Identification Register
BYPASS REQISIEI .ttt e
RUNBIST REGISIEN ..ottt ittt ettt sttt
Boundary-Scan REQISIErcciiviiiiiiiiiiiiiiie et et
Boundary Scan INSrUCHON Stcciuiiiiiiiiiiiiiiiieir e
IEEE Required INSITUCLIONSuviviiiiiiiieie et e e et aee e e e
TAP CONIOIET ettt ettt e e s sn e e nanaes
Test Logic Reset State
Run-Test/ldle Statec........

intel

15.3.5.3 Select-DR-Scan State

15.3.54 Capture-DR State

15.3.5.5 Shift-DR Stateccceeeeeen

15.3.5.6 EXItL-DR STAte ...ovviiiiiiii it e e e aaaas
15.3.5.7 PAUSE-DR STALE ..uviuiiiiiiii it e e a e
15.3.5.8 Exit2-DR State

15.3.5.9 UPAate-DR SEALEccoeiiiiiiii e
15.3.5.10 Select-IR Scan State

15.3.5.11 Capture-IR State
15.3.5.12 Shift-IR State
15.3.5.13 Exitl-IR State

15.3.5.14 PAUSE-TR STALE ...iiiiiiiiiiiiieitiie ettt
15.3.5.15 EXIT2-IR STALE ...vviiieiiiiiitieieit et ettt
15.3.5.16 UPAAte-IR STAE ...oiviiiiii i e

15.3.6 Boundary-SCan REQISIENuuuuiuiiiiiiiieieie et s e aneneees
15.3.6.1 EXAMPIE et

15.3.7 Boundary Scan Description Language Example

APPENDIX A
CONSIDERATIONS FOR WRITING PORTABLE CODE

Al CORE ARCHITECTURE ...ttt ettt ettt e it snie s

A.2 ADDRESS SPACE RESTRICTIONS
A.2.1 RESEIVEA MEIMOIY ..ttt et eteteeaaeeeasasas bt bt be e teeeeeeeas
A.2.2 Initialization BOOt RECOITccooiiiiiiii ettt e ee e
A.2.3 INternal Data RAM ...t
A.24 INSTFUCEION CACNE ...t e ee e ee e

A.3 Data and Data Structure AlIGNMENT.........coour i

A4 RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES

A5 INSTRUGCTION SET ..ttt ittt ettt ettt ettt ettt ettt e e et e e e te e saeeeesabeeeen
A5.1 INSTIUCTION TIMING ittt et et e te e e e e e e as e s st be bt breaeeeseeeeeas
A.5.2 Implementation-Specific INSIIUCLIONScoooiiiiiiie e

A.6 EXTENDED REGISTER SET.....coiiiiiiiiiieiitit ettt ettt sttt snnae e ateeeen

A7 INITIALIZATION ...ttt ettt ekttt et e bt es e et e e bt e e ean e e s aneeeens

A.8 MEMORY CONFIGURATIONciiiiitii ittt ettt ee ettt ettt et ettt snn e e s abeeeen

A.9 INTERRUPTS .ottt ettt ettt et ettt et h e s sttt e eane e s sbeeeennbeeeea

A.10 OTHER i960 Jx PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES.................. A-6
A.10.1 Data Control Peripheral UNitSccuuiiiiiiiiiiiiin et A-7
ALL0.2 THMEIS oieiiiiiie ettt ettt ettt ettt e e ae e ettt ettt e ekt e e bt e ea et e e eh b e e e bt e e sanee e nre e ean A-7
A.10.3 Fault IMPIEmMENTAtIONcooiiiiii i te e e e e e e s e s e A-7

A 1L BREAKPOINTS L.ttt ettt bttt ettt e ettt e bt e ettt e ettt enn e b bee e eae s enaes A-7

APPENDIX B
OPCODES AND EXECUTION TIMES

B.1 INSTRUCTION REFERENCE BY OPCODEc.coooiiiiiiiiiii i B-1

XV

APPENDIX C
MACHINE-LEVEL INSTRUCTION FORMATS
C.1 GENERAL INSTRUCTION FORMAT ..ottt ettt ettt et ae s anbee e C-1
C.2 REG FORMAT ...ttt ettt ettt ettt b et bt e e ettt e et e e ettt e etbe e snbeeennbbeeean C-2
C.3 COBR FORMAT ..ttt ettt ettt b et e ettt e et et e et bt ee ettt e esbeeesabbeeean C-3
C.4 CTRL FORMAT .ttt ettt et ettt e b e he e e ettt e et et e ettt eeetbeeenbneenabbeeean C-4
C.5 MEM FORMAT L.ttt ettt ettt et ekt b et h e ettt e et ee e ettt e e ettt e snbeeennnbeeean C-4
C.5.1 MEMA FOrmat AAAreSSING ...oceeeiiiiiie ettt s e bbb eeaeeaeae s e e e e anan C-5
C.5.2 MEMB FOrmat AAAreSSINGcoeeeiiiiis ittt ettt bee e aeeaeaeaea e e aan C-6
APPENDIX D
REGISTER AND DATA STRUCTURES
D.1 REGISTERS ...ttt ettt b e e sttt e s et e e ebe e e e te e e saeeeenbbeeennne D-3
GLOSSARY
INDEX

XVi

FIGURES

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 4-1.
Figure 5-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.

XVii

i960® Jx Microprocessor Functional Block Diagram
Data Types and RaANgESc..uuvuriiiiiiiiiiiinieeenesesissiinvnnenenes
Data Placement in Registers
i960® Jx Processor Programming Environment Elementscccoociivviieennnns 3-2
MEMOrY AQUArESS SPACE ...uvuvviriiiiiiiiititiaeeeeeees s ree e e e e e e e e es e s s s eneabeeaes
Arithmetic Controls (AC) REQISIEI........coviviiiiiii et
Process Controls (PC) REQISEI...c.uuiiiiiiiieieiii it inneee e
Internal Data RAM and Register Cacheccooiciiiiiiiiiiiiee e
Machine-Level INStruCtion FOrMALS..........cueviiiiiiieiiee e
dectl srecl and Sre/dSt FOIMALSccieiieiviee et
Store Data Cache to Memory Output FOrmat..........coeeeviviiiiiiiiiiiceee e
D-Cache Tag and Valid Bit FOrMatScooveiiiiiiiiiiiiiieier e

icctl src and Sre/dSt FOIMALSo.eeveeieeriiiee et

Store Instruction Cache to Memory Output Format
I-Cache Set Data, Tag and Valid Bit Formats

Srcl Operand Interpretationccoovcvvvvvnienen.
src/dst Interpretation for Breakpoint Resource Request
Procedure Stack Structure and Local RegiSters.........covvviviiiiiiiiiiieie e
Frame SPill.......ooooioii et
Frame Fill ...t
System Procedure Tablecoo i
Previous Frame Pointer Register (PFP) (r0)......cccociuiiiiiiiiiiiie e
Fault-Handling Data SrUCIUIESc.civiiiiieiiiii it e e ininneeeees
Fault Table and Fault Table ENres.
FAUIT RECOIT ...ttt
Storage of the Fault Record on the StacK.........ccccceiiiiiniiiiiiiiii e,
80960Jx Trace Controls (TC) Register
Breakpoint Control Register (BPCON).........cooiiiiiiiiiiiiiieir e
Data Address Breakpoint (DAB) Register FOrmatccccccvvvveiiiiiinniniininiiiiinns
Instruction Breakpoint (IPB) Register Format
Timer FuNctional DIagramcoooiiiiiiiiiiiiiiie et ae e
Timer Mode Register (TMRO, TMRL) ..o e
Timer Count Register (TCRO, TCRL).....cccoiviiiiiiiiiiiir e
Timer Reload Register (TRRO, TRRL).....cccviiuiiiiiiiiiiririee e ee e
Timer Unit State DIagramooooviiiiiiiiiiii et ae e ae e
Interrupt Handling Data StrUCIUIESooviiiiiiii it
INEErTUPL TADIE ..o e
Storage of an Interrupt Record on the Interrupt Stack
DediCated MOUE.ciiiiiiiie ettt

intel

Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 11-10.
Figure 11-11.
Figure 11-12.
Figure 11-13.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 12-13.
Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 14.1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 14-7.
Figure 14-8.
Figure 14-9.
Figure 14-10.
Figure 14-11.

EXPANAEA MOAE ...ovvviiiiiiiiii ettt aeae s
Implementation of Expanded Mode SOUICES.........uuuiiiiiviieieieeisisiscsiiiieieieins
INEEITUPE SAMPIING ©evviiiiie i e aeeaaaaaens
Interrupt Control (ICON) REQISLEIciciuviiiiiiiiieieee e
Interrupt Mapping (IMAPO-IMAP2) REQISIEISuuvviiiiiieieieieieee e eieiviieieieens
Interrupt Pending (IPND) REQISIEIcccuviiiiiiiiiiiiiie e
Interrupt Mask (IMSK) REQISIEIScciicviiiiiiiiieie et
Interrupt Controller...................

Interrupt Service Flowchart
Processor Initialization Flow

Cold Reset Waveform

FAIL SEQUENCE ...ttt e e e e e e ee e e e eas

Initial Memory Image (IMI) and Process Control Block (PRCB)

PMCONZ14_15 Register Bit Description in IBRccceviiiiiiiiiiiiiiiiiiiieieieiens
Process Control Block Configuration WoOrds..........cveveieeoniii s e
CONLIOl TADIE .. e a e e

IEEE 1149.1 Device Identification RegiSter..........cccvviiiviieiiiiiiniieiesisiieieinins

Vees Current-Limiting RESISION ...,
Reducing Characteristic IMpedanCe..........ccuuuviiiiiiiiiiie e e
SErieS TEIrMINALIONuuiiiiiiiiiiiie et bbb r e e e e eeae s e s e s s bt eerereeees

AC TeIMINALION ...eiiiiieieies et s s s e bbb bre e eaeaeaesaa e e s e anen

Avoid Closed-Loop Signal Paths.................

PMCON and LMCON EXaMPIEccooiiiiiiiiiiiieie e
PMCON Register Bit DESCIPLION......ccciciiiiiiiiieieieiee e

Bus Control Register (BCON)

Logical Memory Template Starting Address Registers (LMADRO-1) 13-8
Logical Memory Template Mask Registers (LMMRO-1)ccocciivimrrieienennnns 13-9
Default Logical Memory Configuration Register (DLMCON)cccccuvvveverennns 13-10
Bus States With Arbitrationooooiiiiiiiiiiiii e 14-3
Data Width and Byte ENCOAINGSccoiiiiiiiiiiiiiiiiieit e e ie e ssiieiere e aeree e 14-7
Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus...... 14-10
32-Bit Wide Data BUS BUISEScuiuiiiiiiiieieiie it nininines 14-12
16-Bit Wide Data BUS BUISEScccceiiiiiiiiiieiciir et 14-12
8-Bit Wide Data BUS BUISESciiiiiiiiieiiiii ittt inininenes 14-13
Unaligned Write TranSaCHiONccccieiiviiiiiiiiin e ee e s eraeeaeae e 14-14
Burst Read and Write Transactions w/o Wait States, 32-bit Bus..................... 14-15
Burst Read and Write Transactions w/o Wait States, 8-bit Bus...............cc..... 14-16
Burst Write Transactions With 2,1,1,1 Wait States, 32-bit BuS............ccccuvveuen. 14-18
Burst Read/Write Transactions with 1,0 Wait States - Extra Tr State

0N Read, 16-Bit BUScccviiiiiiiiiiieiie et ae e s e siennennee 14-20

xviii

Figure 14-12.

Figure 14-13.
Figure 14-14.
Figure 14-15.

Figure 14-16.
Figure 14-17.
Figure 14-18.
Figure 14-19.
Figure 14-20.
Figure 14-21.

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure C-1.
Figure D-1.
Figure D-2.
Figure D-3.
Figure D-4.
Figure D-5.
Figure D-6.
Figure D-7.
Figure D-8.
Figure D-9.
Figure D-10.
Figure D-11.
Figure D-12.
Figure D-13.
Figure D-14.
Figure D-15.
Figure D-16.
Figure D-17.
Figure D-18.
Figure D-19.
Figure D-20.
Figure D-21.
Figure D-22.

Xix

intel

Burst Read/Write Transactions with 1,0 Wait States, Extra Tr State

on Read, 16-Bit Bus 14-21
Summary of Aligned and Unaligned Accesses (32-Bit BUS)coocvcvivviennns 14-25
Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued) 14-26
Accesses Generated by Double Word Read Bus Request, Misaligned

One Byte From Quad Word Boundary, 32-Bit Bus, Little Endian 14-27
Multi-Word Access to Big-Endian Memory SPaceccccceveeeviviriieeeeeneneiennns 14-29
THE LOCK SIGNaL....cviviiieie e etieeeee ettt ettt e enereere e e ere e 14-31
Arbitration Timing Diagram for @ BuS Master.........ccccvuiviiiiiiiiininieienen i 14-33
Generalized 80960Jx System with 80960 Local BUS.............ccccvvviiiviniiieienennn. 14-35
Generalized 80960Jx System with 80960 Local Bus and Backplane Bus....... 14-35

80960Jx System with 80960 Local Bus, PCI Local Bus and Local Bus
for High End Microprocessor

Test Access Port BIOCK DIiagramoocciiiiiiiiiiiiiir e e
TAP Controller State DIagramcoooi i ee e
JTAG EXAMPIE. ..ttt e aeeaa e
Timing diagram illustrating the loading of Instruction Register
Timing diagram illustrating the loading of Data Registercocceevvvvvienenens
INSTFUCTION FOIMALSeiiiiiiiii ettt e
AC (Arithmetic Controls) Register..............ceee.
PC (Process ControlS) REGISIEN......uuiuiiiiiiiiiiiie it ineees
Procedure Stack Structure and Local RegISterS.........uuviuiiiiiiiiiiiiiiinireiisisiiiiniens
System Procedure Table ..o
PFP (Previous Frame Pointer) Register (r0).........ccovvviiiriiieieiieiiniee e ssinines
Fault Table and Fault Table ENrieS..........uovir i
FAUIT RECOIT ...t ettt e s
TC (Trace Controls) REQISTEr.....cuciiiii it
BPCON (Breakpoint Control) RegISIEr........ccouviiiiiiiiiiiieieee e
DAB (Data Address Breakpoint) Register Formatccccccvvviiiieiiinieiineniininnnne
IPB (Instruction Breakpoint) Register Format
TMRO-1 (Timer Mode Register)
TCRO-1 (Timer Count Register)
TRRO-1 (Timer Reload Register)
Interrupt Tableco oo

Storage of an Interrupt Record on the Interrupt Stack
ICON (Interrupt Control) REGISLENiuiiiiiiiiiie e
IMAPO-IMAP2 (Interrupt Mapping) ReQISIErSccoviiiviiiiiiiiiiiiieeee e

IMSK (Interrupt Mask) REQISIEIS......uiuiiiiiiiiiiiieeii i
Interrupt Pending (IPND) REQISIENcuiviiiiiiiiiie it

Initial Memory Image (IMI) and Process Control Block (PRCB)ccccceeene D-20
Process Control Block Configuration WOrds...........cccevvivviieieiininieeenieeen e D-21

intel

Figure D-23.
Figure D-24.
Figure D-25.
Figure D-26.
Figure D-27.
Figure D-28.
Figure D-29.

CONrOl TADBIE .. e e D-22
IEEE 1149.1 Device Identification RegISter.........ccuvvviiviiiiiiiii i D-23
PMCON Register Bit DESCHPLION......ccciciiiiiiiiiiieieiee e D-23
BCON (BUS CONtrol) REGISTEI ..o ittt D-24
DLMCON (Default Logical Memory Configuration) Registerccccccvvvevennnns D-24
LMADRO:1 Logical Memory Template Starting Address Registers.........ccccuu... D-25
LMMRO:1 (Logical Memory Mask REgIStErS).......uuuiuiuieieieiiieiiiiiisiiiiiiieieveiee s D-25

XX

intel

TABLES

Table 1-1.
Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 5-1.
Table 5-2.
Table 5-3.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.
Table 6-10.
Table 6-11.
Table 6-12.
Table 6-13.
Table 6-15.
Table 6-16.
Table 6.17.
Table 6-18.
Table 6-19.
Table 6-20.
Table 7-1.
Table 7-2.
Table 8-1.

Register Terminology CONVENLIONScuiiiiiiiiiiiiieieiee e ee e
Memory Contents for Little and Big Endian Example....
Byte Ordering for Little and Big Endian ACCESSES......ccccvevviiiiiiiiiiiiiiiiieieaeiee e
Memory AddresSing MOOEScooviiiiiiiie e
Registers and Literals Used as Instruction Operandscccovvcvivvvveeneneienenn.
Allowable Register OPerandscccoiviiiiiiiiieieie e ee e s s e e e
AACCESS TYPES ettt ettt et e e e e et e et ae e e e e e re e
Supervisor Space Family REgISErScooiiiiiiiiiiiiiiiiiiie e
User Space Family Registers and Tablesccccccvviviiiiiiiieieieiees
Data Structure DEeSCHPLIONSci ittt
Alignment of Data Structures in the Address Spaceccccccvvveeiiiieiiiennenenn,
Condition Codes for True or False CoNditioNnsccceveeeriiiiieieniiiiieies e
Condition Codes for Equality and Inequality Conditions
Condition Codes for Carry Out and OVerflowuveviiiiiiiiiiiniiiiiiiiiieieiee s
Instruction ENCOAING FOrMALSccoiiiiiiiieie e ae e
80960Jx Instruction Set...........ccveeveerrnennn.
Arthmetic OPEratioNScooi ittt ee e e e e e s s s enenee
Pseudo-Code Symbol DefinitioNSoooviuiiiiiiiiiiiiiiie e e
Faults Applicable to All INSTIUCLIONSuvviiiiiiiiieee e
Common Faulting ConditioNScooviiiiiiiiii e
Condition Code Mask DeSCIPLONScceviiiriiiiiiiiiiiiieie et
Condition Code Mask DeSCHPLONSccoveviiiiiiiiiiiiiiiir e e
Condition COOE SENGS . .uvuviriiiiitiii it er e e e s
Condition COOE SEIINGS . .uvuviriiititiie ittt er e e e e e e s ree e
Condition COOE SEINGS . .uvuviriiititiiiie i ies st er e e e e e e e s s
Condition Code Mask DeSCIPLONSccoviviviiiiiiiiiiiiiirir e
concmpo example: register ordering and CC
dectl Operand FIelds.. ...
DCCTL Status Values and D-Cache Parameters
Condition Code Mask Descriptions

ICCLl OPErand FIelUSuuuiiiiiiiiie e s s ss e rarae e
ICCTL Status Values and Instruction Cache Parameters............ccccevevviveeeennne. 6-60
Condition Code Mask DeSCIPLONSccoiviiiiiiiiiiiiiir e e 6-97
SYSCH Field DefiNItiONSuiiiiiieieiie e 6-114
Cache Mode Configurationcuueieiiiin e 6-115
Condition Code Mask DeSCHPLONScccoiviuiiiiiiiiiiiiir e 6-118
Encodings of Entry Type Field in System Procedure Tableccccovvvvivinnns 7-17
Encoding of Return Status Field...........ccccocvvveiiiininnnnnn.

i960® Jx Processor Fault Types and Subtypes

Table 8-2.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.
Table 10-6.
Table 10-7.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 11-7.
Table 11-8.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.
Table 13-1.
Table 13-2.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.

XXii

Fault Control Bits and MaskKS...........uieiiiiiiiiie e

R oo 3 Al =X g ToTe Lo [o o R PP PP USRS
Configuring the Data Address Breakpoint (DAB) RegiSters..........ccocvvvvvvvereveeenns
Programming the Data Address Breakpoint (DAB) MOdES.........ccccceeveieiiiiiiicinnnns
Instruction Breakpoint MOOEScuuiiiiiiiiiiiiiii it enaineaes
Tracing on EXPlCIE CaAllcoooviiiiiiiiiiiiiiiiie et
Tracing on IMPCIt Callcoooriiiiiiii e
Tracing on Return from Explicit Callcccocvviiiiiiiiii s

Tracing on Return from Fault.............oo oo
Tracing on Return from Interrupt

Timer Performance Ranges...........

TIMEI REQISTEIS .uuitiiiiiieiit ittt e e s e s e e st bre e aaeaeaeneas
Timer Input Clock (TCLOCK) Frequency SeleCtion.........ccccccvveverereiiiiiiiiniiininnnns
Timer Mode Register Control Bit SUMMANY ...
Timer Responses to Register Bit Settingscccuvvviiiiiiiiiieieen s
Timer Powerup Mode SEettiNgSuvuvieiiiiiiiiiiriiie e
Uncommon TMRX Control Bit SEttiNgScoovvviiiiviiiiiiiieieir e
Interrupt Control Registers Memory-Mapped AddresSses........vvvieveieieieieininnes
Location of Cached Vectors in Internal RAM ...

Base INterruPt LatenCYcoooo ittt
Worst-Case Interrupt Latency Controlled by divo to Destination r15...............
Worst-Case Interrupt Latency Controlled by divo to Destination r3........
Worst-Case Interrupt Latency Controlled by calls..........ccccocveeiiiiiiniiiiiiinn,
Worst-Case Interrupt Latency When Delivering a Software Interrupt

Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame..... 11-41
RESEE STAIES ...oeiieiii i 12-5
Register Values After RESELuuuiiiiiiiiiiiieeie e 12-5
Fail Codes FOr BIST (DIt 7 = 1) uuuiiiiiiiiiieiie et ieneee e 12-9
Remaining Fail Codes (DIt 7 = 0) .i.vuviiiiiiiiiiii e 12-9
Initialization BOOt RECOIcciiiiiiiie it e 12-13
PRCB CONfIQUIAtiONocuiiiiiiiiiiie e eeae e e s e s e s e s s aierneneees 12-16
INPUE PINS Lot re et e aeae s e s e s e an e et bnbnrae 12-37
PMCON AdAreSS MapPPINg ...eeeeeeeeeeeieieierenereisassiiiisisisiieeeeeeaeaesesesesssnsnsnsnssseseeees 13-4
DLMCON Values @t RESEL......cccoiiiiiiiieiiiiiie et 13-13
Summary of 1960 Jx Processor BUS SigNalS........ccccvvvviiiiiviiiiiiiiiiieieien e 14-5
8-Bit Bus Width Byte Enable Encodings............

16-Bit Bus Width Byte Enable Encodings
32-Bit Bus Width Byte Enable Encodings
Natural Boundaries for Load and Store Accesses
Summary of Byte Load and StOre ACCESSEScuvviviiiiiiiiriiiiisiiiiiiiririeeereenae e

intel

Table 14-7.
Table 14-8.
Table 14-9.
Table 14-10.
Table 14-11.
Table 15-1.
Table 15-2.
Table 15-3.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table B-10.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table C-7.
Table D-1.

Summary of Short Word Load and Store ACCESSESuvvvviiiiiiiiiiiiiiiiniiiinininns 14-23
Summary of n-Word Load and Store Accesses (N =1, 2, 3,4) ...ccccocciivininnnns 14-24
Byte Ordering on Bus Transfers, Word Data TYPe.....ccccccevveveiiiiiiiniviiiieieieiens 14-28
Byte Ordering on Bus Transfers, Short-Word Data Typecoccvevvvvnivvniennns 14-29
Byte Ordering on Bus Transfers, Byte Data TYPEcooevvveieriiiiiiiciiiiiiieieienens 14-29
TAP Controller Pin DefinitioNScooiiiiiiie e
Boundary Scan INStrUCtioN Set.........ccoiiiiiiiiiiiiiiiiir e
Boundary Scan Register Bit Order

Miscellaneous Instruction Encoding Bits

REG Format INStruction ENCOAINGSuvuvuiiiiiiiiiiiiieie e eeees s ae e

COBR Format Instruction Encodings
CTRL Format Instruction Encodings
Cycle Counts for SySCtl OPerationscocoviiiiiiiiiiiiiie e e
Cycle Counts for iCCtl OPEerationsooviciiiiiriiiiiiiie e
Cycle Counts for dCCtl OPerationNSooovviiiiiiiiiiiir e
Cycle Counts for iNtCtl OPEratioNSooev v v e
MEM Format INStruction ENCOAINGSuvuvuiiiiiiiiiiiiieie e ee e ee e
Addressing Mode PerformanCeuueueiiieiiieieieiinis i
Instruction Field DeSCHPLIONSocciiiiiie e e ae e
Encoding of src1 and src2in REG FOrMatoovvvviiiiniiiiiiiiiiiiiiiiiecee e C-3
Encoding of src/dstin REG FOIMAL..........uuiuiiiiiiiiiininiinini s siiieirien e e e ae e C-3
Encoding of src1in COBR Format
Encoding of src2in COBR Format
Addressing Modes for MEM Format INStructions............ccooovvviviieieienneneeeeeenee C-5
Encoding of Scale Field ...

Register and Data Structures

XXiii

intgl.

INTRODUCTION

intgl.

CHAPTER 1 |
INTRODUCTION

Thei960% Jx microprocessor provides a new set of essential enhancements for an emerging class

of high-performance embedded applications. Based on the i960 core architecture, it is
implemented in a proven 0.6 micron, three-layer metal process. Figure1-1 identifies the
processor’s most notable features, each of which is described in subsections that follow the figure.
These features include:

* instruction cache » data cache * bus controller unit
e on-chip data RAM * local register cache e interrupt controller
e timer units * memory-mapped control registers ¢ external bus
RaysicalEegion]| 0!
CLKIN PLL, Clocks, dcioadig) v ddtan o1
Power Mgmt Instruction Cache < Bus
80960JT: 16 Kbyte Control Unit
80960JF. JD: 4 Kbyte > Aadress/
80960JA: 2 Kbyte »| [Bus Re uestl
TAP Boundary Scan Two-way Set Associative 47;’@
@+’5 Controller ‘
Instruction Sequencer <> Two 32-Bit
> Timers
Constants Control "
l Interrupt
P Port,
< €| Programmable —L @
7-Set l J l —p | Interrupt Controller 9
Local Register Cache A
Execution Memory
Y Multiply and Interface <=p-| Memory Mapped
5 Divide Address Unit »| Register Interface
4128 Unit Generation >
v Unit
. 32-bit Addr =) 1 Kbyte
Global / Local effective | 32-bit Data ‘_: Data RAM
Register File - o - - e 4 —
00 00 n o
SRC1 SRC2 DEST % % g % % LéJ % g Direct Mapped
<4=) Data Cache
‘ 1 t l t ‘ 1 ‘ . JT: 4 Kbyte
JF, JD: 2 Kbyte
| Three Independent 32-Bit SRC1, SRC2, and DEST Buses |

< ’ JA: 1 Kbyte

Figure 1-1. i960% Jx Microprocessor Functional Block Diagram

1-3

INTRODUCTION Intel®

11 PRODUCT FEATURES

The 1960 Jx processor brings many enhancements to the i960 microprocessor family, including:
« Improvements to the core architecture

*« Low power mode

¢ New instructions

e Improved cache design

* Enhanced bus control unit

« Improved interrupt performance

e JTAG testability

1.1.1 Instruction Cache

The 1960 JT processor features a 16 Kbyte two-way set-associative instruction cache. The i960 JF
and JD processors employ a 4-Kbyte, two-way set-associative instruction cache. i960 JA processors
feature a 2-Kbyte instruction cache. A mechanism is provided that allows software to lock critical
code within each “way” of the cache. The cache can be disabled and is managed by usetbf the
andsysctl instructions, as describedsection 4.4, “INSTRUCTION CACHE” (pg. 4-4)

1.1.2 Data Cache

The 1960 JT processor features a 4 Kbyte direct-mapped data cache. The 960 JF and JD
processors feature a 2-Kbyte, direct-mapped data cache that is write-through and write-allocate.
1960 JA processors feature a 1-Kbyte direct-mapped data cache. These processors have a line size
of four words and implement a “natural” fill policy. Each line in the cache has a valid bit; to
reduce fetch latency on cache misses, each word within a line also has a valid sett®eed .5,

“DATA CACHE” (pg. 4-6) for detalils.

The data cache is managed throughditet| instruction; sesection 6.2.23, “dcctl” (pg. 6-40)

1.1.3 On-chip (Internal) Data RAM

The processor’'s 1 Kbyte internal data RAM is accessible to software with an access time of
1 cycle per word. This RAM is mapped to the physical address range of 0 to 3FFH. The first
64 bytes are reserved for the caching of dedicated-mode interrupt vectors; this reduces interrupt
latency for these interrupts. In addition, write-protection for the first 64 bytes is provided to guard
against the effects of using null pointers in ‘C’ and to protect the cached interrupt vectors.

1-4

Intel® INTRODUCTION

can allocate the most frequently used variables into this RAM. See Section 4.1, INTERNAL

The 1960 processor compilers can take advantage of the internal data RAM; profiling compilers -
1

DATA RAM (pg. 4-1) for more detail.

1.14 Local Register Cache

The processor provides fast storage of loca registers for call and return operations by using an
internal local register cache. This cache can store up to seven local register sets; additional register
sets must be saved in external memory.

The processor uses a 128-bit wide bus to store local register sets quickly to the register cache. To
reduce interrupt latency for high-priority interrupts, the number of sets that can be used by code
that is running at a lower priority or that is not interrupted can be restricted by programming the
register configuration word in the PRCB. This ensures that there are aways sets available for
high-priority interrupt code without needing to save sets in external memory first. See Section 4.2,
LOCAL REGISTER CACHE (pg. 4-2) for more details.

1.15 Interrupt Controller

The interrupt controller unit (ICU) provides aflexible, low-latency meansfor requesting interrupts.
It handles the posting of interrupts requested by hardware and software sources. Acting indepen-
dently from the core, the interrupt controller compares the priorities of posted interrupts with the
current process priority, off-loading this task from the core. The interrupt controller is compatible
with 1960 CA/CF processors.

Theinterrupt controller provides the following features for handling hardware-requested interrupts:

e Support of up to 240 external sources.

 Eight external interrupt pins, one non-maskable interrupt (Nbih for detection of
hardware-requested interrupts and two internal timer sources.

« Edge or level detection on external interrupt pins.

e Debounce option on external interrupt pins.

The application program interfaces to the interrupt controller with six memory-mapped control
registers. The interrupt control register (ICON) and interrupt map control registers
(IMAPO-IMAP2) provide configuration information. The interrupt pending (IPND) register posts

hardware-requested interrupts. The interrupt mask (IMSK) register selectively masks
hardware-requested interrupts.

The interrupt inputs can be configured to be triggered on level-low or falling-edge signals.
Sampling of the input pins can be either debounced sampling or fast sampling.

1-5

INTRODUCTION Intel®

The 1960 Jx processor has approximately 5 to 10 times faster interrupt servicing than the 1960 Kx
processor. Thisisaccomplished through a number of features:

« a hardware priority resolver removes the need to access the external interrupt table to resolve
interrupts

¢ caching of dedicated-mode interrupt vectors in the internal data RAM
« reserving frames in the local register cache for high-priority interrupts

« the ability to lock the code of interrupt service routines in the instruction-cache reduces the
fetch latency for starting up these routines

CHAPTER 11, INTERRUPTSliscusses this in more detalil.

1.1.6 Timer Support

The 1960 Jx processor provides two identical 32-bit timers. Access to the timers is through
memory-mapped registers. The timers have a single-shot mode and auto-reload capabilities for
continuous operation. Each timer has an independent interrupt request to the i960 Jx processor
interrupt controller. SeEHAPTER 10, TIMERSor a complete description.

1.1.7 Memory-Mapped Control Registers (MMR)

Control registers in the i960 Jx processor are memory-mapped to allow for visibility to application
software. This includes registers for memory configuration, internally cached PRCB data,
breakpoint registers, and interrupt control. These registers are mapped to the architecturally
reserved address space range of FFO0 0000H to FFFF FFFFH. The processor ensures that accesses
to the MMRs generate no external bus cycles.

Section 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3discusses this in more
detail.

1.1.8 External Bus

The 32-bit multiplexed external bus connects the 1960 Jx processor to memory and I/O. This high
bandwidth bus provides burst transfer capability allowing up to four successive 32-bit data word

transfers at a maximum rate of one word every clock cycle. In addition to the bus signals, the i960
Jx processor provides signals to allow external bus masters. Lastly, the processor provides
variable bus-width support (8-, 16-, and 32-bit).

1-6

Intel® INTRODUCTION

1.19 Complete Fault Handling and Debug Capabilities

To aid in program development, the 1960 Jx processor detects faults (exceptions). When afault is
detected, the processors make an implicit call to a fault handling routine. Information collected for
each fault allows a program developer to quickly correct faulting code. The processors aso alow
automatic recovery from most faults.

To support system debug, the i960 architecture provides a mechanism for monitoring processor
activities through a software tracing facility. This processor can be configured to detect as many as
seven different trace events, including breakpoints, branches, calls, supervisor cals, returns,
prereturns and the execution of each instruction (for single-stepping through a program). The
processors also provide four breakpoint registers that allow break decisionsto be made based upon
instruction or data addresses.

1.2 ABOUT THIS MANUAL

This 1960° Jx Microprocessor User's Manugrovides detailed programming and hardware
design information for the 1960 Jx microprocessors. It is written for programmers and hardware
designers who understand the basic operating principles of microprocessors and their systems.

This manual does not provide electrical specifications such as DC and AC parametrics, operating
conditions and packaging specifications. Such information isfound in the product’s data sheets:
e B80960JA/JF Embedded 32-bit Microprocessor Data Sheet (272504)

e 80960JD Embedded 32-bit Microprocessor Data Sheet (272596)

e B80L960JA/JF 3.3V Embedded 32-bit Microprocessor Data Sheet (272744)

e B80960JA/JF 3.3 V Embedded 32-bit Microprocessor Data Sheet (273146)

e 80960JD 3.3 V Embedded 32-bit Microprocessor Data Sheet (272971)

e 80960JT 3.3 V Embedded 32-bit Microprocessor Data Sheet (273109)

Each document has a corresponding Specification Update document. These contain the latest technical
information about the product and documentation, and are available from Intel's website. For information on

other 1960 processor family products or the architecture in general, refer to Jolaffenso60®
Development Tools Catalog (270791). It ligs dl current 1960 microprocessor family-related documents,
support components, boards, software development tools, debug toolsand more.

This manual is organized in three parts; each part comprises multiple chapters and/or appendices.
The following briefly describes each part:

e Part | - Programming the i960 Jx Microprocessor (chapters 2-10) details the programming
environment for the i960 Jx devices. Described here are the processor's registers, instruction set, data
types, addressing modes, interrupt mechanism, external interrupt interface and fault mechanism.

1-7

INTRODUCTION Intel®

e Partll - Syssem Implementation (chapters 11-17) identifies requirements for designing a system
around the 1960 Jx components, such as external bus interface and interrupt controller. Also
described are programming requirements for the bus controller and processor initialization.

e Part Il - Appendices includes quick references for hardware design and programming.
Appendices are also provided which describe the internal architecture, how to write
assembly-level code to exploit the parallelism of the processor and considerations for writing
software that is portable among all members of the i960 microprocessor family.

13 NOTATION AND TERMINOLOGY

This section defines terminology and textual conventions that are used throughout the manual.

1.3.1 Reserved and Preserved

Certain fields in registers and data structures are described as beingesétved or preserved:

« Arvreserved field is one that may be used by other i960 architecture implementations. Correct
treatment of reserved fields ensures software compatibility with other i960 processors. The
processor uses these fields for temporary storage; as a result, the fields sometimes contain
unusual values.

« Apreserved field is one that the processor does not use. Software may use preserved fields for
any function.

Reserved fields in certain data structures should be cleared (set to zero) when the data structure is
created. Clear the reserved fields when creating the Interrupt Table, Fault Table and System
Procedure Table. Software should not modify or rely on these reserved field values after a data
structure is created. When the processor creates the Interrupt or Fault Record data structure on the
stack, software should not depend on the value of the reserved fields within these data structures.

Some bits or fields in data structures and registers are shown as requiring specific encoding. These
fields should be treated as if they were reserved fields. They should be set to the specified value
when the data structure is created or when the register is initialized and software should not
modify or rely on the value after that.

Reserved bits in the Arithmetic Controls (AC) register can be cleared after initialization to ensure
compatibility with other i960 processor implementations. Reserved bits in the Process Controls
(PC) register and Trace Controls (TC) register should not be initialized. When the AC, PC and TC
registers are modified usimgodac, modpc or modtc instructions, the reserved locations in these
registers must be masked.

1-8

Intel® INTRODUCTION

Certain areas of memory may be referred to as reserved memory in this reference manual.

Reserved — when referring to memory locations — implies that an implementation of th
architecture may use this memory for some special purpose. For example, memory-riGGgGe
peripherals might be located in reserved memory areas on future implementations.

1.3.2 Specifying Bit and Signal Values

The termsset andclear in this manual refer to bit values in register and data structures. When a bit
is set, its value is 1; when the bit is clear, its value is 0. Likewise, setting a bit means giving it a
value of 1 and clearing a bit means giving it a value of 0.

The termsassert and deassert refer to the logically active or inactive value of a signal or bit,
respectively. A signal is specified as an active 0 signal by an overbar. For example, the input is
active low and is asserted by driving the signal to a logic 0 value.

1.3.3 Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text,
binary numbers are sometimes designated with a subscript 2 (for example, Wb&n it is
obvious from the context that a number is a binary number, the “2” subscript may be omitted.

Hexadecimal numbers are designated in text with the suffix H (for example, FFFF FF5AH). In
pseudo-code action statements in the instruction reference section and occasionally in text,
hexadecimal numbers are represented by adding the C-language convention “Ox” as a prefix. For
example “FF7AH” appears as “OxFF7A” in the pseudo-code.

134 Register Names

Memory-mapped registers and several of the global and local registers are referred to by their
generic register names, as well as descriptive names which describe their function. The global
register numbers are g0 through g15; local register numbers are rO through r15. However, when
programming the registers in user-generated code, make sure to usstrtlotion operand. i960
microprocessor compilers recognize only the instruction operands listedbia 1-1 Throughout

this manual, the registers’ descriptive hames, numbers, operands and acronyms are used inter-
changeably, as dictated by context.

Groups of bits and single bits in registers and control words are called @it)éllags or fields.
These terms have a distinct meaning in this manual:

bit Controls a processor function; programmed by the user.
flag Indicates status. Generally set by the processor; certain flags are user programmable.
field A grouping of bits (bit field) or flags (flag field).

1-9

INTRODUCTION Intel®

Table 1-1. Register Terminology Conventions

Register Descriptive Name Register Number Instruction Operand Acronym
Global Registers g0 - g15 g0-gl4
Frame Pointer g15 fp FP
Local Registers r0-rl5 r3-rl5
Previous Frame Pointer r0 pfp PFP
Stack Pointer rl sp SP
Return Instruction Pointer r2 rip RIP

Specific bits, flags and fields in registers and control words are usually referred to by a register
abbreviation (in upper case) followed by abit, flag or field name (in lower case). These items are
separated with a period. A position number designates individual bits in afield. For example, the

return type (rt) field in the previous frame pointer (PFP) register is designated as “PFP.rt". The
least significant bit of the return type field is then designated as “PFP.rt0".

14

RELATED DOCUMENTS

The following documents are useful when designing with and programming the i960 micropro-
cessor. Check the Intel website or contact your local sales representative for more information on
obtaining Intel documents, including Specification Updates.

1-10

80960JA/JF Embedded 32-hit Microprocessor Data Sheet (272504)
80960JD Embedded 32-bit Microprocessor Data Sheet (272596)
80L960JA/JF 3.3 V Embedded 32-bit Microprocessor Data Sheet (272744)
80960JA/JF 3.3 V Embedded 32-bit Microprocessor Data Sheet (273146)
80960JD 3.3 V Embedded 32-bit Microprocessor Data Sheet (272971)
80960JT 3.3 V Embedded 32-bit Microprocessor Data Sheet (273109)
Solutions960® Devel opment Tools Catalog (270791)

intel
2

DATA TYPES AND MEMORY
ADDRESSING MODES

intel
CHAPTER 2

DATA TYPES AND MEMORY ADDRESSING MODES

2.1 DATA TYPES

The instruction set references or produces several data lengths and formats. The i960% Jx
processor supports the following data types:

* Integer (signed 8, 16 and 32 bits) e Ordinal (unsigned integer 8, 16, 32 and 64 bits)

e Long-Word (64 bits) e Triple-Word (96 bits)
¢ Quad-Word (128 bits) « Bit Field
e Bit

Figure 2-1 illustrates the class, data type and length of each type supported by 1960 processors.

1 8
| Bit Field | Bits
T Bits | Short
LSB of _| 15 0
Bit Field 32
Bits Word |
31 0
64
Bits | Long |
63 0
Bs’)i?s | | Triple-Word |
95 0
128
Bits | | | Quad-Word |
127 0
Class Data Type Length Range
N) Byte Integer 8 Bits 27t027 -1
(I#trgggrc) Short Integer 16 Bits 2% 102151
Integer 32 Bits 28110231 1
Byte Ordinal 8 Bits 0to28-1
Numeric Short Ordinal 16 Bits 0to 2161
(Ordinal) Ordinal 32 Bits 0to2%2 -1
Long Ordinal 64 Bits 0to264-1
Bft . 1Bit N/A
Bit Field 1-32 Bits
Non-Numeric Long_v\/ord 64 Bits
Triple-Word 96 Bits
Quad-Word 128 Bits

Figure 2-1. Data Types and Ranges

2-1

int
DATA TYPES AND MEMORY ADDRESSING MODES I ‘é““

21.1 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement format by
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short integers
are referenced by the byte and short classes of the load, store and compare instructions only.

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory.

For instructionddib (load integer byte) antlis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign-extended and placed in the
32-bit register that is the destination for the load.

Idib
7AH is |l oaded into a register as 0000 007AH
FAH is | oaded into a register as FFFF FFFAH
Idis
05A5H is | oaded into a register as 0000 O5A5H
85A5H i s | oaded into a register as FFFF 85A5H

Example 2-1. Sign Extensions on Load Byte and Load Short

For instructionstib (store integer byte) arglis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short word. When register data is too large to
be stored as a byte or short word, the value is truncated and the integer overflow condition is
signalled. When an overflow occurs, either an AC register flag is set or the ARITH-
METIC.INTEGER_OVERFLOW fault is generated, depending on the Integer Overflow Mask bit
(AC.om) in the AC registelCHAPTER 8, FAULTSdescribes the integer overflow fault.

For instructionsd (load word) andt (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

2.1.2 Ordinals

Ordinals or unsigned integer data types are stored and treated as positive binaryialteg-1
shows the supported ordinal sizes.

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1 = TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordinal data
type. Only loadlfiob andidos), store §tob andstos), and compare ordinal instructions reference

the byte and short ordinal data types.

2-2

u I
I ‘d” DATA TYPES AND MEMORY ADDRESSING MODES

Sign and sign extension are not considered when ordina loads and stores are performed; the values
may, however, be zero-extended or truncated. A short word or byte load to a register causes the
value loaded to be zero-extended to 32 bits. A short word or byte store to memory truncates an
ordinal value in a register to fit the size of the destination memory. No overflow condition is
signaledinthis case.

2.1.3 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for abit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit
corresponds to bit 0 and the most significant bit corresponds to bit 31.

A bit field is any contiguous group of bits (up to 32 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving itslength in bits (1-32) and the bit number
of itslowest numbered bit (0-31).

Loading and storing bit and bit-field data is normally performed using the ordinal load (Ido) and
store (sto) instructions. When an Idi instruction loads a bit or bit field value into a 32-bit register,
the processor appends sign extension bits. A byte or short store can signal an integer overflow
condition.

214 Triple- and Quad-Words

Triple- and quad-words refer to consecutive words in memory or in registers. Triple- and
quad-word load, store and move instructions use these data types to accomplish block movements.
No data manipulation (sign extension, zero extension or truncation) is performed in these instruc-
tions.

Triple- and quad-word data types can be considered a superset of the other data types described.
The data in each word subset of a quad-word is likely to be the operand or result of an ordinal,
integer, bit or bit field instruction.

215 Register Data Alignment

Several of the processor’s instructions operate on multiple-word operands. For example, the
load-long instructionlI{l) loads two words from memory into two consecutive registers. The least
significant data word is loaded into the lower order register. The most significant data word is

loaded into the higher order register.

2-3

int
DATA TYPES AND MEMORY ADDRESSING MODES I ‘d“"

In cases where an instruction specifies a register number (and multiple, consecutive registers are
implied), the register number must be even when two registers are accessed (e.g., g0, g2) and an
integral multiple of four when three or four registers are accessed (e.g., g0, g4). When a register
reference for a source value is not properly aligned, the registers that the processor writes to are
undefined.

The 960 Jx processor does hot require data alignment in external memory; the processor hardware
handles unaligned memory accesses automatically. Optionally, user software can configure the
processor to generate a fault on unaligned memory accesses.

2.1.6 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literas are ordinal (unsigned) values that range from 0 to 31 (5 bits). When alitera is used
as an operand, the processor expands it to 32 bits by adding leading zeros. When the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size.
When a literal is used in an instruction that requires integer operands, the processor treats the
literal as a positive integer value.

2.2 BIT AND BYTE ORDERING IN MEMORY

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any dataitem occupying multiple bytesis stored as big endian or little endian. The
following sections further describe byte ordering.

221 Bit Ordering

Bits within bytes are numbered such that when the byte is viewed as a vaue, hit 0 is the least
significant bit and bit 7 is the most significant bit. For numeric values spanning several bytes, bit
numbers higher than 7 indicate successively higher bit numbers in bytes with higher addresses.
Unless otherwise noted, bits in illustrations in this manua are ordered such that the
higher-numbered bits are to the | eft.

222 Byte Ordering
The 1960 Jx processor can be programmed to use little or big endian byte ordering for memory
accesses. Byte ordering refers to how dataitems larger than one byte are assembled:

« For little endian byte order, the byte with the lowest address in a multi-byte data item has the
least significance.

* For big endian byte order, the byte with the lowest address in a multi-byte data item has the
most significance.

2-4

u I
I ‘é“ DATA TYPES AND MEMORY ADDRESSING MODES

For example, Table 2-1 shows eight bytes of data in memory. Table 2-2 shows the differences
between little and big endian accesses for byte, short, word and long-word data. Figure 2-2 shows

the resultant data placement in registers.
Once data is read into registers, byte order is no longer relevant. The lowest significant bit is -

aways bit 0. The most significant bit is always bit 31 for words, bit 15 for short words, and bit 7
for bytes.

Byte ordering affects the way the i960 Jx processor handles bus accesses. See section 13.6.2,
“Selecting the Byte Order” (pg. 13-18)r more information.

Table 2-1. Memory Contents for Little and Big Endian Example

ADDRESS DATA
1000H 12H
1001H 34H
1002H 56H
1003H 78H
1004H 9AH
1005H BCH
1006H DEH
1007H FOH

Table 2-2. Byte Ordering for Little and Big Endian Accesses

Access Example Register Contents Register Contents
P (Little Endian) (Big Endian)

Byte at 1000H | dob 0x1000, r3 12H 12H
Short at 1002H | dos 0x1002, r3 7856H 5678H
Word at 1000H Id 0x1000, r3 78563412H 12345678H

78563412H (r4) 12345678H (r4)
Long-Word at 1000H Idl - 0x1000, r4

FODEBCO9AH (r5) 9ABCDEFOH (r 5)

2-5

int
DATA TYPES AND MEMORY ADDRESSING MODES I ‘é““

31 24 23 16 15 87 0
Byte XX XX XX DDg

31 24 23 16 15 87 0
Short XX XX DD, DDg

31 24 23 16 15 87 0
Word DD4 DD, DD, DDg

NOTES:

D’s are data transferred to/from memory
X's are zeros for ordinal data

X'’s are sign bit extensions for integer data

Figure 2-2. Data Placement in Registers

2.3 MEMORY ADDRESSING MODES

The processor provides nine modes for addressing operandsin memory. Each addressing modeis used
to reference a byte location in the processor’s address 3Jdde.2-3shows the memory addressing
modes and a brief description of each mode’s address elements and assembly code syntax.

Table 2-3. Memory Addressing Modes

Mode Description Assembler Syntax _Irr;spte

Absolute offset | offset (smaller than 4096) exp MEMA
displacement| displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMB
with offset| abase + offset exp (reg) MEMA

with displacement| abase + displacement exp (reg) MEMB

with index| abase + (index*scale) (reg) [reg*scale] MEMB

with index and displacement :it;ert:aec;(r:r;iztex*scale) " Fr)ég *(srigfe] MEMB
Index with displacement (index*scale) + displacement exp [reg*scale] MEMB
Eig&‘i"geﬁﬁi”ter (IPywith 5 | displacement + 8 exp (IP) MEMB

NOTE: reg is register, exp is an expression or symbolic label, and IP is the Instruction Pointer.

2-6

u I
I ‘d” DATA TYPES AND MEMORY ADDRESSING MODES

See TableB-9 in APPENDIX B for more on addressing modes. For purposes of this memory
addressing modes description, MEMA format instructions require one word of memory and
MEMB usualy require two words and therefore consume twice the bus bandwidth to read.

Otherwise, both formats perform the same functions.

2.3.1 Absolute

Absolute addressing modes alow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

* For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to 4095.
The absolute offset addressing mode is encoded in the MEMA machine instruction format.

¢ For the absolute displacement addressing mode, the offset value ranges frofA-0. tohe
absolute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are describedCHAPTER 6,
INSTRUCTION SET REFERENCE

At the assembly language level, the two absolute addressing modes use the same syntax. Typically,
development tools allow absolute addresses to be specified through arithmetic expressions
(e.g., x + 44) or symbolic labels. After evaluating an address specified with the absolute addressing
mode, the assembler converts the address into an offset or displacement and selects the appropriate
instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calculation.
The register value is referred to as the address base (designated “abag#é in-3. Depending
on the addressing mode, an optional scaled index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element. An offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 16. The
register-indirect-with-index addressing mode is encoded in the MEMB format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

2-7

int
DATA TYPES AND MEMORY ADDRESSING MODES I ‘d““

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use register-indirect-with-
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode.

Regi ster-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement

A scaled index can aso be used with adisplacement alone. Theindex is contained in aregister and
multiplied by a scaling constant before displacement is added. This mode uses MEMB format.

234 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer
(IP) relative. IP-with-displacement addressing mode references the next instruction’s address plus
the displacement. This mode uses MEMB format.

2.35 Addressing Mode Examples

The following examples show how i960 processor addressing modes are encoded in assembly
language. Example 2-2 shows addressing mode mnemonidsxample 2-3 illustrates the
usefulness of scaled index and scaled index plus displacement addressing modes. In this example,
a procedure named array_op uses these addressing modes to fill two contiguous memory blocks
separated by a constant offset. A pointer to the top of the block is passed to the procedure in g0, the
block size is passed in g1 and the fill data in g2.

For more details on encoding formats, refer &PPENDIX C, MACHINE-LEVEL
INSTRUCTION FORMATS

2-8

u I
I ‘d” DATA TYPES AND MEMORY ADDRESSING MODES

st g4, xyz # Absolute; word fromg4 stored at nenory
location designated with |abel xyz.
ldob (r3),r4 # Register indirect; ordinal byte from
menory |l ocation given in r3 | oaded
into register r4 and zero extended.
st g6, xyz(g5) # Register indirect with displacenent;
double word from g6,g7 stored at nmenory
location xyz + gb.
I dq (r8)[r9*4],r4 # Register indirect with index; quad-word
beginning at menory | ocation r8 + (r9
scaled by 4) loaded into r4 through r7.
st g3, xyz(g4) [g5*2] # Register indirect with index and
di splacement; word in g3 stored to nmem
location g4 + xyz + (g5 scaled by 2).
ldis xyz[r12*2],r13 # Index with displacenent; |oad short
integer at menory | ocation xyz + rl12
into r13 and sign extended.
st rd, xyz(ip) # ip with displacenent; store word in r4
at nmenory location IP + xyz + 8.
Example 2-2. Addressing Mode Mnemonics
array_op:
nmv g0,r4 # Pointer to array is copied to r4.
subi 1,91, r3 # Calcul ate index for the last array
b . 133 # element to be filled
. 134
st g2, (r4)[r3*4] # Fill element at index
st g2,0x30(r4)[r3*4] # Fill element at index+constant offset
subi 1,r3,r3 # Decrenent index
. 133:
cnpible 0,r3,.134 # Store next array elenents if
ret # index is not O

Example 2-3. Scaled Index and Scaled Index Plus Displacement Addressing Modes

2-9

intel

PROGRAMMING
ENVIRONMENT

intel

CHAPTER 3
PROGRAMMING ENVIRONMENT

This chapter describes the i960% Jx processor’'s programming environment including global a

local registers, control registers, literals, processor-state registers and address space.

3.1 OVERVIEW

The 1960 architecture defines a programming environment for program execution, data storage and data
manipulationFigure 3-1shows the programming environment elements that include the following:

« 4 Gbyte (32 byte) flat address space « register cache

¢ instruction cache » set of literals

e data cache e control registers

¢ global and local general-purpose registers « set of processor state registers

The processor includes several architecturally-defined data structures located in memory as part of
the programming environment. These data structures handle procedure calls, interrupts and faults
and provide configuration information at initialization. These data structures are:

¢ interrupt stack e control table » system procedure table
¢ local stack « fault table e process control block

e supervisor stack * interrupt table initialization boot record
3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

With the exception of a few special instructions, the i960 Jx processor uses load and store instruc-
tions to access memory. All operations take place at the register level. The processor uses 16 global
registers, 16 local registers and 32 literals (constants 0-31) as instruction operands.

The global register numbers are g0 through g15; local register numbers are r0 through r15. Several
of these registers are used for dedicated functions. For example, register r0 is the previous frame
pointer, often referred to gép. The 1960 processor compilers and assemblers recognize only the
instruction operands listed ifable 3-1 Throughout this manual, the registers’ descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.

3-1

int
PROGRAMMING ENVIRONMENT I ‘é““

0000 0000H FFFF FFFFH
. 1
1
1
Address Space
Architecturally
Defined
Data Structures
|
Fetch
Instruction
Cache
Load Store
Instruction
Stream
Instruction
Execution
Processor State o o5)
i ixteen 32-Bi
Registers Global Registers g15
Instruction -
Pointer Register Cache
Arithmetic Sixteen 32-Bit r0
Controls Local Registers 15
Process
Controls
Trace
Controls

Figure 3-1. i960% Jx Processor Programming Environment Elements

3.2.1 Global Registers
Global registers are general-purpose 32-bit data registers that provide temporary storage for a

program’s computational operands. These registers retain their contents across procedure
boundaries. They provide a fast and efficient means of passing parameters between procedures.

3-2

intel

PROGRAMMING ENVIRONMENT

Table 3-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym
g0-9g14 global (g0-g14) general purpose
fp global (g15) frame pointer FP
pfp local (r0) previous frame pointer PFP
sp local (r1) stack pointer SP
rip local (r2) return instruction pointer | RIP
r3-rl5 local (r3-r15) general purpose
0-31 literals

The 1960 architecture supplies 16 global registers, designated g0 through g15. Register g15 is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame in memory. See CHAPTER 7, PROCEDURE CALLS for a
description of the FP and procedure stack.

After the processor is reset, register g0 contains device identification and stepping information
(DevicelD). Refer to Section 1.4, "Related Documents” (pg. 1-1Burther information on Device

IDs can be found in these documents. The information is retained in g0 until it is written over by
the user program. The device identification and stepping information is also stored in the
memory-mapped DEVICEID register located at FFO0 8710H.

3.2.2 Local Registers

The 1960 architecture provides a separate set of 32-bit local data registers (rO through r15) for each

active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure’s local registers. When the application returns from the procedure, the local registers are

released for the next procedure call. The processor performs local register management; a program
need not explicitly save and restore these registers.

Local registers r3 through r15 are general purpose registers; rO through r2 are reserved for special
functions; rO contains the Previous Frame Pointer (PFP); rl contains the Stack Pointer (SP); r2 contains
the Return Instruction Pointer (RIP). These are discussedAPTER 7, PROCEDURE CALLS

The processor does not always clear or initialize the set of local registers assigned to a new

procedure. Also, the processor does not initialize the local register save area in the newly created
stack frame for the procedure. User software should not rely on the initial values of local registers.

3-3

int
PROGRAMMING ENVIRONMENT I ‘é““

3.2.3 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing paralel execution units from
accessing registers for which there is an outstanding operation. When an instruction that targets a
destination register or group of registers executes, the processor sets a register-scoreboard bit to
indicate that this register or group of registersis being used in an operation. When the instructions
that follow do not require data from registers already in use, the processor can execute those
instructions before the prior instruction completes execution.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register score-
boarding prevents a subsequent instruction from executing. It also illustrates overlapping instruc-
tions that do not have register dependencies.

Example 3-1. Register Scoreboarding

muli r4,r5,r6 # r6 is scoreboarded
addi r6,r7,r8 # addi nust wait for the previous multiply
to conplete

muli r4,r5,r10 # r10 is scoreboarded
and r6,r7,r8 # and instruction is executed concurrently with multiply

3.24 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literas are ordinal (unsigned) values that range from 0 to 31 (5 bits). When alitera is used
as an operand, the processor expands it to 32 bits by adding leading zeros. When the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size.
When a literal is used in an instruction that requires integer operands, the processor treats the
literal as a positive integer value.

3.25 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(Idl) loads two words from memory into two consecutive registers. The register for the less
significant word is specified in the instruction. The more significant word is automatically loaded
into the next higher-numbered register.

3-4

intel

In cases where an instruction specifies a register number and multiple consecutive registers are
implied, the register number must be even when two registers are accessed (e.g., g0, g2) and an
integral multiple of 4, when 3 or 4 registers are accessed (e.g., g0, g4). When aregister reference
for a source value is not properly digned, the source vaue is undefined and an
OPERATION.INVALID_OPERAND fault is generated. When a register reference for a
destination valueis not properly aligned, the registers to which the processor writes and the values
written are undefined. The processor then generatesan OPERATION.INVALID_OPERAND fault.
The assembly language code in Example 3-2 shows an example of correct and incorrect register

PROGRAMMING ENVIRONMENT

alignment.
Example 3-2. Register Alignment
movl g3, g8 # Incorrect alignnent resul ting val ue
. # in registers g8 and g9 is
unpredictabl e (non-aligned source)
movl g4, g8 # Correct alignment

Global registers, local registers and literals are used directly asinstruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and the positions that can be filled

by each register or literal.

Table 3-2. Allowable Register Operands

Operand (1)

Instruction . . Global .
Encoding Operand Field Local Register Register Literal
srcl X X X
src2 X X X
REG src/dst (as src) X X
src/dst (as dst) X X
src/dst (as both) X X
src/dst X X
MEM abase X X
index X X
srcl X X X
COBR src2 X X
dst X (2 X (2)
NOTES:

1. 1.“X” denotes the register can be used as an operand in a particular instruction field.
2. The COBR destination operands apply only to TEST instructions.

int
PROGRAMMING ENVIRONMENT I ‘d““

3.3 MEMORY-MAPPED CONTROL REGISTERS

The 1960 Jx processor gives software the interface to easily read and modify interna control
registers. Each of these registers is accessed as a 32-bit memory-mapped register (MMR) with a
unigue memory address. The processor ensures that accesses to MMRs do not generate external
bus cycles.

3.3.1 Memory-Mapped Registers (MMR)

Portions of the 1960 Jx processor address space (addresses FFO0 0000H through FFFF FFFFH) are

reserved for memory-mapped registers (see section 12.3, “Architecturally Reserved Memory
Space” (pg. 12-9)These memory-mapped registers (MMRs) are accessed through word-operand
memory instructionsld andst instructions) and some register class instructiansdd, atadd
andsysctl). Accesses to the MMRs do not generate external bus cycles. The latency in accessing
each of these registers is one cycleldoandst and multiple cycles for others.

Each register has an associated access mode (user and supervisor modes) and access type (read
and write accessesJ.able 3-4and Table 3-5show all the memory-mapped registers and the
application modes of access.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FFOO0 0000H through FFOO 7FFFH are allocated to user space memory-mapped registers;
Addresses FF00 8000H to FFFF FFFFH are allocated to supervisor space registers.

3.3.1.1 Restrictions on Instructions that Access Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by bothdloand storegt) instruc-

tions. However some registers have restrictions on the types of access they allow. To ensure correct
operation, the access type restrictions for each register should be followed. The access type
columns ofTable 3-4andTable 3-5indicate the allowed access types for each register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction takes effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register, most notably IPND
and IMSK. Theatmod andatadd instructions provide a special mechanism to quickly modify the
IPND and IMSK registers in an atomic manner on the i960 Jx processor. Do not use these
instruction on any other memory-mapped registers.

Thesysctl instruction can also modify the contents of a memory-mapped regtsteically; in
addition,sysctl is the only method to read the breakpoint registers on the i960 Jx processor; the
breakpoints cannot be read usinig &nstruction.

3-6

u
Intdm PROGRAMMING ENVIRONMENT

At initiaization, the control table automatically loads into the on-chip control registers. This action
simplifies the user’s start-up code by providing a transparent setup of the processor’s peripherals.
SeeCHAPTER 12, INITIALIZATION AND SYSTEM REQUIREMENTS

3.3.1.2 Access Faults

Memory-mapped registers are meant to be accessed only as aligned, word-size regist
adherence to the appropriate access mode. Accessing these registers in any other way results In
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, the processor generates an
OPERATION.UNIMPLEMENTED fault.

2. When the access is a store in user mode to an implemented supervisor location, a
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location causes a fault.

3. When the access is neither of the above, the access is attempted. Note that an MMR may
generate faults based on conditions specific to that MMR. (Example: trying to write the
timer registers in user mode when they have been allocated to supervisor mode only.)

4. When a store access to an MMR faults, the processor ensures that the store does not take effect.
5. A load access of a reserved location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such a store can result in undefined operation
of the processor when the location is in supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
OPERATION.UNIMPLEMENTED fault.

3-7

int
PROGRAMMING ENVIRONMENT I ‘é““

Table 3-3. Access Types

Access Type Description

R Read Read (Id instruction) accesses are allowed.

RO Read iny Rgad (Id instruction)_ accesses are allowed. Write (st
Only instruction) accesses are ignored.

w Write Write (st instruction) accesses allowed.

R/W Read/Write | Id, st, and sysctl instructions are allowed access.

Writing or Modifying (through a st or sysctl instruction) the register
is only allowed when modification-rights to the register have been

Write granted. An OPERATION.UNIMPLEMENTED fault occurs when an
WwG when . . . -

Granted attempt is made to write the reglster_ before rights are grar_1ted. See
section 9.2.7.2, “Hardware Breakpoints” (pg. 9-5) for details about
getting modification rights to breakpoint registers.

The value of the register can only be read by executing a sysctl
sysctl instruction issued with the modify memory-mapped register
Sysct-RWG Read message type. Maodification rights to the register must be granted
when first or an OPERATION.UNIMPLEMENTED fault occurs when the

Granted sysctl is executed. A Id instruction to the register returns unpre-
dictable results.

Register can be updated quickly through the atmod instruction. The
atmod ensures correct operation by performing the update of the
atmod . . . : . A .
AtMod register in an atomic manner which provides synchronization with
update . . o
previous and subsequent operations. This is a faster update
mechanism than sysctl and is optimized for a few special registers.

3-8

intel

PROGRAMMING ENVIRONMENT

Table 3-4. Supervisor Space Family Registers (Sheet 1 of 2)

Register Name

Memory-Mapped

Access Type

Address

Reserved FFOO 8000H to .
FFOO0 80FFH

(RDeLgl\i/;iCr)N) Default Logical Memory Configuration FE00 8100H RIW

Reserved FFO0 8104H —

(LMADRO) Logical Memory Address Register 0 FFO0 8108H R/W

(LMMRO) Logical Memory Mask Register 0 FFOO 810CH R/W

(LMADR1) Logical Memory Address Register 1 FFO0 8110H R/W

(LMMR1) Logical Memory Mask Register 1 FFO00 8114H R/W

Reserved FFO0 8118H to o
FFOO 83FFH

(IPBO) Instruction Address Breakpoint Register O FFO0 8400H Sysctl- RwG/WwG

(IPB1) Instruction Address Breakpoint Register 1 FFO00 8404H Sysctl- RwG/WwG

Reserved FFOO 8408H to o
FFOO 841FH

(DABO) Data Address Breakpoint Register O FFO0 8420H R/W, WwG

(DAB1) Data Address Breakpoint Register 1 FFO0 8424H R/W, WwG

Reserved FFOO 8428H to o
FFOO 843FH

(BPCON) Breakpoint Control Register FFOO 8440H R/W, WwG

Reserved FFOO 8444H to o
FFOO 84FFH

(IPND) Interrupt Pending Register FFO00 8500H AtMod

(IMSK) Interrupt Mask Register FFO00 8504H AtMod

Reserved FFO0 8508H to o
FFO0 850FH

(ICON) Interrupt Control Word FFO00 8510H R/W

Reserved FFO0 8514H to o
FFO0 851FH

(IMAPO) Interrupt Map Register O FFO0 8520H R/W

(IMAP1) Interrupt Map Register 1 FFO00 8524H R/W

(IMAP2) Interrupt Map Register 2 FFO00 8528H R/W

Reserved FFO0 852CH to o
FFOO0 85FFH

3-9

PROGRAMMING ENVIRONMENT

intel

Table 3-4. Supervisor Space Family Registers (Sheet 2 of 2)

Register Name

Memory-Mapped

Access Type

Address
(PMCONO_1) Physical Memory Control Register O FFO0 8600H R/W
Reserved FFO0 8604H —
(PMCONZ2_3) Physical Memory Control Register 1 FFO0 8608H R/W
Reserved FFO0 860CH —
(PMCON4_5) Physical Memory Control Register 2 FFO0 8610H R/W
Reserved FFO0 8614H —
(PMCONG6_7) Physical Memory Control Register 3 FFO0 8618H R/W
Reserved FFO0 861CH —
(PMCONS8_9) Physical Memory Control Register 4 FFO00 8620H R/W
Reserved FFO0 8624H —
(PMCON10_11) Physical Memory Control Register 5 FFO0 8628H R/W
Reserved FFO0 862CH —
(PMCON12_13) Physical Memory Control Register 6 FFO0 8630H R/W
Reserved FFO0 8634H —
(PMCON14_15) Physical Memory Control Register 7 FFO0 8638H R/W
Reserved FFO0 863CH to o
FFO0 86F8H
(BCON) Bus Configuration Control Register FFO00 86FCH R/W
(PRCB) Processor Control Block Pointer FFO0 8700H RO
(ISP) Interrupt Stack Pointer FFO0 8704H R/W
(SSP) Supervisor Stack Pointer FFO0 8708H R/W
Reserved FFO0 870CH —
(DEVICEID) 1960 Jx processor Device ID FFOO 8710H RO
Reserved FF00 8714H to .
FFFF FFFFH

3-10

intel

Table 3-5. User Space Family Registers and Tables

PROGRAMMING ENVIRONMENT

Register Name Mem:c;)c/j-rl\élssped Access Type

Timers

Reserved FFOO 0000H to o
FFO0 02FFH

(TRRO) Timer Reload Register 0 FFOO0 0300H R/W

(TCRO) Timer Count Register 0 FFO0 0304H R/W

(TMRO) Timer Mode Register 0 FFOO0 0308H R/W

Reserved FFOO0 030CH —

(TRR1) Timer Reload Register 1 FFOO 0310H R/W

(TCR1) Timer Count Register 1 FFO0 0314H R/W

(TMR1) Timer Mode Register 1 FFO0 0318H R/W

Reserved FFO0 031CH to o
FFOO 7FFFH

34 ARCHITECTURALLY DEFINED DATA STRUCTURES

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-6 defines the data structures

and references other sections of this manual where detailed information can be found.

The 1960 Jx processor defines two initialization data structures. the Initialization Boot Record
(IBR) and the Process Control Block (PRCB). These structures provide initialization data and
pointers to other data structures in memory. When the processor is initialized, these pointers are

read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system

procedure table. User stack location is specified in the user’s startup code. Of these structures, only
the system procedure table, fault table, control table and initialization data structures may be in
ROM; the interrupt table and stacks must be in RAM. The interrupt table must be located in RAM

to allow posting of software interrupts.

3-11

PROGRAMMING ENVIRONMENT

intel

Table 3-6. Data Structure Descriptions

Structure (see also)

Description

User and Supervisor Stacks
section 7.6, “USER AND
SUPERVISOR STACKS”

(pg. 7-19)

The processor uses these stacks when executing application
code.

Interrupt Stack

section 11.5, “INTERRUPT
STACK AND INTERRUPT
RECORD” (pg. 11-7)

A separate interrupt stack is provided to ensure that interrupt
handling does not interfere with application programs.

System Procedure Table
section 3.8, “USER-SUPER-
VISOR PROTECTION MODEL"
(pg. 3-23)

section 7.5, “SYSTEM CALLS”
(pg. 7-15)

Contains pointers to system procedures. Application code uses
the system call instruction (calls) to access system procedures
through this table. A system supervisor call switches execution
mode from user mode to supervisor mode. When the
processor switches modes, it also switches to the supervisor
stack.

Interrupt Table

section 11.4, “INTERRUPT
TABLE” (pg. 11-4)

The interrupt table contains vectors (pointers) to interrupt
handling procedures. When an interrupt is serviced, a
particular interrupt table entry is specified.

Fault Table
section 8.3, “FAULT TABLE”
(pg. 8-4)

Contains pointers to fault handling procedures. When the
processor detects a fault, it selects a particular entry in the fault
table. The architecture does not require a separate fault
handling stack. Instead, a fault handling procedure uses the
supervisor stack, user stack or interrupt stack, depending on
the processor execution mode in which the fault occurred and
the type of call made to the fault handling procedure.

Control Table

section 12.3.3, “Control Table”
(pg. 12-20)

Contains on-chip control register values. Control table values
are moved to on-chip registers at initialization or with sysctl.

3-12

intel

3.5

PROGRAMMING ENVIRONMENT

MEMORY ADDRESS SPACE

The 1960 Jx processor's address space is byte-addressable with addresses running contiguously from
0to 22-1. Some memory space is reserved or assigned special functions as sRigureir3-2

0000
0000
0000
0000

0000
0000

FEFF
FEFF

FEFF
FEFF
FEFF

FFOO

FFFF

Address

0000H

NMI Vector

0004H
003FH

(Optional Interrupt Vectors)

0040H
03FFH

(Available For Data)

Internal
—Data RAM
1 Kbyte

0400H

<

FF2FH

Code/data
Architecturally Defined Data Structures
External Memory

FF30H

FFSFH

Initialization Boot Record (IBR)

FF60H
FFFFH

Reserved Memory

0000H

FFFFH<r

Memory-Mapped Register Space

D Shading indicates internal memory.

Figure 3-2. Memory Address Space

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped
I/0. The architecture does not define a dedicated, addressable 1/0 space. There are no subdivisions
of the address space such as segments. For memory management, an external memory
management unit (MMU) may subdivide memory into pages or restrict access to certain areas of

memory to protect a kernel’s code, data and stack. However, the processor views this address space
as linear.

3-13

int
PROGRAMMING ENVIRONMENT I ‘d““

An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short-word (2 bytes), word
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load and
store instruction descriptions in CHAPTER 6, INSTRUCTION SET REFERENCE for
multiple-byte addressing information.

35.1 Memory Requirements

The architecture requires that external memory have the following properties:
« Memory must be byte-addressable.

« Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

¢ Memory must guarantee indivisible access (read or write) for addresses that fall within
16-byte boundaries.

« Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilitiesndivisible andatomic access, are required only when multiple processors
or other external agents, such as DMA or graphics controllers, share a common memory.

indivisible access Guarantees that a processor, reading or writing a set of memory locations,
complete the operation before another processor or external agent can read
or write the same location. The processor requires indivisible access within
an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that once a processor begins a read-modify-write operation on an
aligned, 16-byte block of memory it is allowed to complete the operation
before another processor or external agent can access to the same location.
An atomic memory system can be implemented by using the Legial
to qualify hold requests from external bus agents. The processor asserts
LOCK for the duration of an atomic memory operation.

The upper 16 Mbytes of the address space (addresses FF0O0 0000H through FFFF FFFFH) are
reserved for implementation-specific functions. Programs written for the i960 Jx processor cannot
use this address space except for accesses to memory-mapped registers. As Bligawa 32

the initialization boot record is located just below the i960 Jx processor’s reserved memory.

The 1960 Jx processor requires some special consideration when using the lower 1 Kbyte of
address space (addresses 0000H to 03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed by the processor. See
section 4.1, “INTERNAL DATA RAM” (pg. 4-1) No external bus cycles are generated to this
address space.

3-14

u
Intdm PROGRAMMING ENVIRONMENT

3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturaly defined data structures can be placed anywhere in
non-reserved address space while adhering to these alignment requirements:

e Align instructions on word boundaries.

e Align all architecturally defined data structures on the boundaries specifiebla 3-7

e Align instruction operands for the atomic instructianadd, atmod) to word boundaries in memo

The 1960 Jx processor can perform unaligned load or store accesses. The processor handles a
non-aligned load or store request by:

« Automatically servicing a non-aligned memory access with microcode assistance as described
in section 13.5.2, “Bus Transactions Across Region Boundaries” (pg..13-7)

« After the access is completed, the processor can generate an OPERATION.UNALIGNED
fault, when directed to do so.

Unaligned fault handling is enabled at initialization based on the value of the Fault Configuration Word
in the Process Control Block. Seection 12.3.1.2, “Process Control Block (PRCB)” (pg. 12-16)

Table 3-7. Alignment of Data Structures in the Address Space

Data Structure Alignment Boundary
System Procedure Table 4 byte
Interrupt Table 4 byte
Fault Table 4 byte
Control Table 16 byte
User Stack 16 byte
Supervisor Stack 16 byte
Interrupt Stack 16 byte
Process Control Block 16 byte
Initialization Boot Record Fixed at FEFF FF30H
3.5.3 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers Id) and from registers memorgtf. Supported sizes for blocks are bytes, short-words,
words, double-words, triple-words and quad-words. For examplestore long) stores an 8-byte
(double-word) data block in memory.

3-15

int
PROGRAMMING ENVIRONMENT I ‘d““

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
increments, using quad-word instructionsldq and stq.

Normally when a data block is stored in memory, the block’s least significant byte is stored at a
base memory address and the more significant bytes are stored at successively higher byte
addresses. This method of ordering bytes in memory is referred to as “little endian” ordering.

The 1960 Jx processor also provides an option for ordering bytes in the opposite manner in
memory. The block’s most significant byte is stored at the base address and the less significant
bytes are stored at successively higher addresses. This byte-ordering scheme, referred to as “big
endian”, applies to data blocks which are short-words or words. For more about byte ordering, see
section 13.6.2, “Selecting the Byte Order” (pg. 13:12)

When loading a byte, short-word or word from memory to a register, the block’s least significant
bit is always loaded in register bit 0. When loading double-words, triple-words and quad-words,
the least significant word is stored in the base register. The more significant words are then stored
at successively higher-numbered registers. Individual bits can be addressed only in data that
resides in a register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

354 Internal Data RAM

Internal data RAM is mapped to the lower 1 Kbyte (0000H to 03FFH) of the address space. Loads
and stores, with target addresses in internal data RAM, operate directly on the internal data RAM,;
no external bus activity is generated. Data RAM allows time-critical data storage and retrieval
without dependence on external bus performance. The lower 1 Kbyte of memory is data memory
only. Instructions cannot be fetched from the internal data RAM. Instruction fetches directed to the
data RAM cause a OPERATION.UNIMPLEMENTED fault to occur. For more specific
information refer tdSection 4.1, "INTERNAL DATA RAM” (pg. 4-1)

355 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and loop functions in addition
to providing more bus bandwidth for data operations in external memory. The i960 JT processor
instruction cache is a 16 Kbyte two-way set-associative. The i960 JF and JD processor instruction
cache is a 4 Kbyte, two-way set-associative, organized in two sets of four-word lines. The 1960 JA
processors feature a 2 Kbyte instruction cache two-way set-associative.

3-16

u
Intdm PROGRAMMING ENVIRONMENT

3.5.6 Data Cache

The 960 JT processor features a4 Kbyte write-through direct-mapped data cache. The 1960 JF and
JD processors feature a 2 Kbyte write-through direct-mapped data cache. The i960 JA processor
features a 1 Kbyte write-through direct-mapped data cache. For more information, see

CHAPTER 4, CACHE AND ON-CHIP DATA RAM.

3.6 LOCAL REGISTER CACHE

The 960 Jx processor provides fast storage of local registersfor call and return operations by using
an interna local register cache (also known as a stack frame cache). Up to 7 local register sets can
be contained in the cache before sets must be saved in external memory. The register set is all the
local registers (i.e., r0 through r15).

3.7 PROCESSOR-STATE REGISTERS

The architecture defines four 32-bit registers that contain status and control information:

¢ Instruction Pointer (IP) register « Arithmetic Controls (AC) register
e Process Controls (PC) register e Trace Controls (TC) register
3.7.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bitslong; however, since instructions are required to be aligned on word boundariesin memory,
the IP’s two least-significant bits are always 0 (zero).

All 1960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode lets
software use the IP as an offset into the address space. This addressing mode can also be used with
thelda (load address) instruction to read the current IP value.

When a break occurs in the instruction stream due to an interrupt, procedure call or fault, the
processor stores the IP of the next instruction to be executed in local register r2, which is usually
referred to as the return IP or RIP register. RefeCHAPTER 7, PROCEDURE CALLSor

further discussion.

3-17

int
PROGRAMMING ENVIRONMENT I ‘é““

3.7.2 Arithmetic Controls (AC) Register

The AC register (Figure 3-3) contains condition code flags, integer overflow flag, mask bit and a
bit that controls faulting on imprecise faults. Unused AC register bits are reserved.

31 28 24 20 16 12 8 4 0
n cj|cj|c
I [?,1 ? cj|c|c
f 211(0

No-Imprecise-Faults Bit- AC.nif 4T

(0) Some Faults are Imprecise
(1) All Faults are Precise

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc

Reserved
(Initialize to 0)

3.7.2.1 Initializing and Modifying the AC Register

Figure 3-3. Arithmetic Controls (AC) Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. The user must set reserved bits to 0 in the AC Register Initial Image. Refer to
CHAPTER 12, INITIALIZATION AND SYSTEM REQUIREMENTS.

After initialization, software must not modify or depend on the AC register’s initial image in the
PRCB. Software can use the modify arithmetic contnolsd@c) instruction to examine and/or
modify any of the register bits. This instruction provides a mask operand that lets user software
limit access to the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.

3-18

u
Intdm PROGRAMMING ENVIRONMENT

3.7.2.2 Condition Code (AC.cc)

The processor sets the AC registedadition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch instruc-
tions, examine these flags and perform functions as dictated by the state of the condition code

flags. Once the processor sets the condition code flags, the flags remain unchanged until
instruction executes that modifies the field. 3

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as showabile 3-8 To show equality and
inequalities, the processor sets the condition code flags as shdahlan3-9

Table 3-8. Condition Codes for True or False Conditions

Condition Code Condition
010, true
000, false

Table 3-9. Condition Codes for Equality and Inequality Conditions

Condition Code Condition
000, unordered
001, greater than
010, equal
100, less than

The termunordered is used when comparing floating point numbers. The 1960 Jx processor does
not implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shown in
Table 3-10

Table 3-10. Condition Codes for Carry Out and Overflow

Condition Code Condition
01X, carry out
0X1, overflow

3-19

int
PROGRAMMING ENVIRONMENT I ‘d““

Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 011, to
determine if the condition code is set to either greater-than or equal. Conditiona instructions use
similar masks for the remaining conditions such as: greater-or-equal (011,), less-or-equal (110,)
and not-equal (101,). The mask is part of the instruction opcode; the instruction performs a
bitwise AND of the mask and condition code.

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the ARITHMETIC.INTEGER_OV ERFLOW fault. The mask bit disables fault
generation. When the fault is masked and integer overflow is encountered, the processor sets the
integer overflow flag instead of generating a fault. When the fault is not masked, the fault is
allowed to occur and the flag is not set.

Once the processor sets this flag, the flag remains set until the application software clearsit. Refer
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in CHAPTER 8, FAULTS
for more information about the integer overflow mask bit and flag.

The no imprecise faults (AC.nif) bit (bit 15) determines whether or not faults are allowed to be
imprecise. When set, al faults are required to be precise; when clear, certain faults can be
imprecise. See section 8.9, “PRECISE AND IMPRECISE FAULTS” (pg. 8-1fr more infor-
mation. When set, the AC.nif bit disables the parallel instruction execution feature of the
processor; therefore, no imprecise faults mode should be invoked only during debugging when
maximum processor performance is not necessary.

3-20

u
Intdm PROGRAMMING ENVIRONMENT

3.7.3 Process Controls (PC) Register

The PC register (Figure 3-4) is used to control processor activity and show the processor’s current

state. The PC registerecution mode flag (bit 1) indicates that the processor is operating in either

user mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call
when a switch from user mode to supervisor mode occurs and it clears the flag on a retu

supervisor mode. (User and supervisor modes are describectiion 3.8, “USER-SUPERVISO

PROTECTION MODEL” (pg. 3-23)

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending
(1) fault pending

State Flag - PC.s
(0) executing
(1) interrupted

Priority Field - PC.p
(0-31) process priority l

I
t
plefpfpfp t
als|2]|1]o0 s f ﬁwe
p
31 28 24 20 16 12 8 4 0

Reserved
(Do not modify)

Figure 3-4. Process Controls (PC) Register

PC registestate flag (bit 13) indicates the processor state: executing (0) or interrupted (1). When the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’s state is executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to the executing state on the return from the initial interrupt procedure.

The PC registepriority field (bits 16 through 20) indicates the processor’s current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the highest).
The priority field always reflects the current priority of the processor. Software can change this
priority by use of thenodpc instruction.

3-21

int
PROGRAMMING ENVIRONMENT I ‘d““

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of a requested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to 31,
the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process priority
field isautomatically changed to reflect interrupt priority. See CHAPTER 11, INTERRUPTS.

The PC regigter trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function.
The trace enable bit determines whether trace faults are globally enabled (1) or globally disabled (0).
The trace fault pending flag indicates that a trace event has been detected (1) or not detected (0). The
tracing functions are further described in CHAPTER 9, TRACING AND DEBUGGING.

3.7.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:
¢ Modify process controls instructiompdpc)
e Alter the saved process controls prior to a return from an interrupt handler or fault handler

Themodpc instruction reads and modifies the PC register directly. A TYPE.MISMATCH fault
results when software executemdpc in user mode with a non-zero mask. As witlodac,

modpc provides a mask operand that can be used to limit access to specific bits or groups of bits
in the register. In user mode, software canrusdpc to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: wherodpc is used to change the trace enable bit, the
processor may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

e priority = 31 e execution mode = supervisor
e trace enable = disabled e state = interrupted
e trace fault pending =0

When the processor is reinitialized witBysctl reinitialize message, the PC register returns to its
reset value. Setable 12-2 on page.5

Software should not useodpc to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code. Normally, execution mode is changed
through the call and return mechanism. Seetion 6.2.43, “modpc” (pg. 6-78r more details.

3-22

u
Intdm PROGRAMMING ENVIRONMENT

3.74 Trace Controls (TC) Register

The TC regigter, in conjunction with the PC register, controls processor tracing facilities. It containstrace
mode enable bits and trace event flags that are used to enable specific tracing modes and record trace
events, respectively. Trace controls are described in CHAPTER 9, TRACING AND DEBUGGING.

3
3.8 USER-SUPERVISOR PROTECTION MODEL -

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user-supervisor protection model. This mechanism allows code, data and stack
for akernel (or system executive) to reside in the same address space as code, data and stack for the
application. The mechanism restricts access to al or parts of the kernel by the application code.
This protection mechanism prevents application software from inadvertently atering the kernel.

3.8.1 Supervisor Mode Resources

Supervisor mode is a privileged mode that provides several additional capabilities over user mode.

¢ When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel's integrity. For example, it allows

access to system debugging software or a system monitor, even when an application’s program

destroys its own stack.

« In supervisor mode, the processor is allowed access to a set of supervisor-only functions and

instructions. For example, the processor uses supervisor mode to handle interrupts and trace

faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can be performed only in supervisor mode. These functions include modification
of control registers and internal data RAM that is dedicated to interrupt controllers. A fault is
generated when supervisor-only operations are attempted while the processor is in user mode.

The PC register execution mode flag specifies processor execution mode. The processor automati-

cally sets and clears this flag when it switches between the two execution modes.

¢ dcctl (data cache control) «inten (global interrupt enable)

modpc (modify process controls w/

e icctl (instruction cache control)
non-zero mask)
¢ intctl (global interrupt enable and disable) sysctl (system control)

¢ Protected internal data RAM or Supervisor
MMR space write

¢ halt (halt CPU) ¢ Protected timer unit registers

e intdis (global interrupt disable)

Note that all of these instructions return a TYPE.MISMATCH fault when executed in user mode.

3-23

int
PROGRAMMING ENVIRONMENT I ‘d“"

3.8.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction (calls). With calls, the IP for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executed. The instruction calls and the system procedure table
thus provide atightly controlled interface to procedures that can execute in supervisor mode. Once
the processor switches to supervisor mode, it remains in that mode until a return is performed to
the procedure that caused the original mode switch.

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine when a particular fault transitions the processor from user to supervisor mode.

When an application does not require a user-supervisor protection mechanism, the processor can
aways execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, aslong as no action istaken to change execution mode to user mode.
The processor does not need a user stack in this case.

3-24

intel
A

CACHE AND ON-CHIP DATA
RAM

intel

CHAPTER 4
CACHE AND ON-CHIP DATA RAM

This chapter describes the structure and user configuration of al forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 INTERNAL DATA RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. L oads and
stores with target addresses in internal data RAM operate directly on the internal data RAM; no
external bus activity is generated. Data RAM allowstime-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the interna data
RAM; instructions cannot be fetched from the internal data RAM. Instruction fetches directed to
the data RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses. However, the byte ordering of the internal
data RAM is controlled by the byte-endian control bit in the DLMCON register.

Some internal data RAM locations are reserved for functions other than general data storage. The
first 64 bytes of data RAM may be used to cache interrupt vectors, which reduces latency for these
interrupts. The word at location 0000H is always reserved for the cached NMI vector. With the
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data
storage when the alternate function is not used. All locations of the internal data RAM can be read
in both supervisor and user mode.

The first 64 bytes (O000H to 003FH) of interndd RAM are aways user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can be only
modified in supervisor mode. This area can aso be write-protected from supervisor mode writes by

setting the BCON.sirp hit. See section 13.4.1, “Bus Control (BCON) Register” (pg. 13-6)
Protecting this portion of the data RAM from user and supervisor writes preserves the interrupt

vectors that may be cached there. Sastion 11.9.2.1, “Vector Caching Option” (pg. 11-35)

4-1

int
CACHE AND ON-CHIP DATA RAM I ‘é““

0000 0000H
NMI

0000 0004H
Optional Interrupt Vectors

0000 0003FH

Available for Data

0000 03FFH

Figure 4-1. Internal Data RAM and Register Cache

The remainder of the internal data RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Control Register RAM protection bit (BCON.irp). Writes to internal data RAM locations
while they are protected generate a TY PEMISMATCH fault. See section 13.4.1, “Bus Control
(BCON) Register” (pg. 13-6Yor the format of the BCON register.

Some versions of 960 processor compilers can take advantage of internd data RAM. Profiling
compilers, such asthose offered by Intel, can alocate the most frequently used variablesinto thisRAM.

4.2 LOCAL REGISTER CACHE

The 1960 Jx processor provides fast storage of local registers for call and return operations by
using an internal local register cache (also known as a stack frame cache). Up to 7 local register
sets can be contained in the cache before sets must be saved in external memory. Theregister set is
al the local registers (i.e., rO through r15). The processor uses a 128-bit wide bus to store local
register sets quickly to the register cache. An integrated procedure call mechanism saves the
current local register set when a cal is executed. A loca register set is saved into a frame in the
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of
local registersis flushed to the procedure stack in external memory, which frees one frame.

Section 7.1.4, Caching Local Register Sets (pg. 7-7) and section 7.1.5, “Mapping Local Registers
to the Procedure Stack” (pg. 7-1flirther discuss the relationship between the internal register
cache and the external procedure stack.

4-2

u I
I ‘d” CACHE AND ON-CHIP DATA RAM

The branch-and-link (bal and balx) instructions do not cause the local registers to be stored.

The entire interna register cache contents can be copied to the external procedure stack through the

flushreg ingtruction. Section 6.2.30, flushreg (pg. 6-54) explains the indruction and section 7.2,

“MODIFYING THE PFP REGISTER” (pg. 7-119ffers a practical example whétnshreg must be
used.

To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal
The remaining frames in the cache can be used by all code, including high-priority inte
When a frame is reserved for high-priority interrupts, the local registers of the code interrup
a high-priority interrupt can be saved to the local register cache without causing a frame flush to
memory, providing the local register cache is not already full. Thus, the register allocation for the
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by
non-critical code to reduce the number of free frames below this value results in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed:

Example 4-1. Register Cache Operation

frames_for_non_critical = 7- RCW 10: 8];
if (interrupt_request)
set _interrupt _handl er _PC,
push_frarme;
nunber _of franmes = nunber _of franes + 1;
i f (number _of frames = 8) {
flush_register_frane(ol dest_frane);
nunber _of frames = nunber_of frames - 1; }
else if (nunmber_of frames = (frames_for_non_critical + 1) &&
(PC.priority <28 || PC state = interrupted)) {
flush_register_frane(ol dest_frane);
nunber _of frames = nunber_of frames - 1; }

The valid range for the number of reserved free frames is 0 to 7. Setting the value to O reserves no
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the register
cache to become disabled for non-critical code. When the number of reserved high-priority frames
exceeds the allocated size of the register cache, the entire cache is reserved for high-priority interrupts.
In that case, all low-priority interrupts and procedure calls cause frame spills to external memory.

4-3

int
CACHE AND ON-CHIP DATA RAM I ‘d““

4.3 BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA CACHE

The 1960 Jx processor supports big-endian accesses to the internal data RAM and data cache. The
default byte order for data accesses is programmed in DLMCON.be as either little or big-endian.
The DLMCON.be controls the default byte-order for al internal (i.e., on-chip data RAM and data
cache) and externa accesses. See section 13.6, “Programming the Logical Memory Attributes”
(pg. 13-8)for more details.

4.4 INSTRUCTION CACHE

The 1960 JT processor features a 16 Kbyte, 2-way set-associative instruction cache (I-cache). The
1960 JF and JD processors feature a 4-Kbyte, 2-way set-associative I-cache organized in lines of
four 32-bit words. The JA processor features a 2 Kbyte, 2-way set associative instruction cache.
The cache provides fast execution of cached code and loops of code and provides more bus
bandwidth for data operations in external memory. To optimize cache updates when branches or
interrupts are executed, each word in the line has a separate valid bit. When requested instructions
are found in the cache, the instruction fetch time is one cycle for up to four words. A mechanism to
load and lock critical code within a way of the cache is provided along with a mechanism to
disable the cache. The cache is managed throughdter sysctl instruction. Usingcctl is the
preferred and more versatile method for controlling the instruction cache on the i960 Jx processor.
Future 1960 processors may not suppgtctl instruction.

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the
location of the Instruction Pointer:

¢ When the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated.

¢ When the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated.

4.4.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB); Bepire 12-6 (pg. 12-17)When

bit 16 in the instruction cache configuration word is set, the instruction cache is disabled and all
instruction fetches are directed to external memory. Disabling the instruction cache is useful for
tracing execution in a software debug environment.

The instruction cache remains disabled until one of three operations is performed:

e icctl is issued with the enable instruction cache operation (preferred method)

e sysctl is issued with the configure-instruction-cache message type and cache configuration
mode other than disable cache (not the preferred method for i960 Jx processor).

e The processor is reinitialized with a new value in the instruction cache configuration word

4-4

u I
I ‘d” CACHE AND ON-CHIP DATA RAM

4.4.2 Operation While the Instruction Cache Is Disabled

Disabling the ingtruction cache does not disable the instruction buffering that may occur within the
ingtruction fetch unit. A four-word instruction buffer is always enabled, even when the cacheis disabled.

There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any “miss” within the buffer causes the following:

« All four words of the buffer are invalidated.
¢ A new tag value for the required instruction is loaded.
¢ The required instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instructions
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No
external instruction fetches are generated until a “miss” occurs within the buffer, even in the
presence of forward and backward branches.

4.4.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into one-way of the cache and then
lock out all normal updates to this one-way of the cache. This cache load-and-lock mechanism is
provided to minimize latency on program control transfers to key operations such as interrupt
service routines. The block size that can be loaded and locked on the 1960 Jx processor is one way
of the cache. Any code can be locked into the cache, not just interrupt routines.

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction.

4.4.4 Instruction Cache Visibility

Instruction cache status can be determined by issigicid with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by issuingl with the store cache operation.

4.4.5 Instruction Cache Coherency

The 1960 Jx processor does not snoop the bus to prevent instruction cache incoherency. The cache
does not detect modification to program memory by loads, stores or actions of other bus masters.
Several situations may require program memory modification, such as uploading code at initial-
ization or loading from a backplane bus or a disk drive.

4-5

int
CACHE AND ON-CHIP DATA RAM I ‘d““

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. The icctl instruction
invalidates the instruction cache for the 1960 Jx processor. Alternately, legacy software can use the
sysctl instruction.

4.5 DATA CACHE

The 1960 JT processor features a 4 Kbyte direct-mapped data cache. The 1960 JF and JD
processors feature a 2-Kbyte, direct-mapped cache that enhances performance by reducing the
number of dataload and store accesses to external memory. The i960 JA processors havea 1l Kbyte
direct-mapped data cache. The cache is write-through and write-allocate. It has a line size of
4 words and each line in the cache has a valid bit. To reduce fetch latency on cache misses, each
word within aline aso has avalid bit. Caches are managed through the dcctl instruction.

User settings in the memory region configuration registers LMCONO-1 and DLMCON determine
which data accesses are cacheable or non-cacheable based on memory region.

45.1 Enabling and Disabling the Data Cache
To cache data, two conditions must be met:

1 The data cache must be enabled. A dcctl instruction issued with an enable data cache
message enables the cache. On reset or initiaization, the data cache is always disabled and
al valid bits are cleared (set to zero).

2. Data caching for alocation must be enabled by the corresponding logical memory template,
or by the default logical memory template, when no other template applies. See
section 13.6, “Programming the Logical Memory Attributes” (pg. 188more details on
logical memory templates.

When the data cache is disabled, all data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cacheldssue a

with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined bycal issued with a data-cache status message.

4-6

u I
I ‘d” CACHE AND ON-CHIP DATA RAM

45.2 Multi-Word Data Accesses that Partially Hit the Data Cache
The following applies only when data caching is enabled for an access.

For amulti-word load access (Idl, Idt, Idq) in which none of the requested words hit the data cache,
an external bus transaction is started to acquire all the words of the access.

For amulti-word load access that partially hits the data cache, the processor may either:

« Load or reload all words of the access (even those that hit) from the external bus
¢ Load only missing words from the external bus and interleave them with words found in the dat————_

The multi-word alignment determines which of the above methods is used:

« Naturally aligned multi-word accesses cause all words to be reloaded
¢ An unaligned multi-word access causes only missing words to be loaded

When any words accessed bigh Idt, orldqg instruction miss the data cache, every word accessed
by that load instruction is updated in the cache.

Table 4.1.
Load Instruction Number of Updated Words
Idq 4 words
Idt 3 words
Idl 2 words

In each case, the external bus accesses used to acquire the data may consist of none, one, or several
burst accesses based on the alignment of the data and the bus-width of the memory region that
contains the data. S&HAPTER 14, EXTERNAL BUSor more details.

A multi-word load access that completely hits in the data cache does not cause external bus accesses.

For a multi-word store accesstl(stt, stq) an external bus transaction is started to write all words

of the access regardless when any or all words of the access hit the data cache. External bus
accesses used to write the data may consist of either one or several burst accesses based on data
alignment and the bus-width of the memory region that receives the dataCKR¢€TER 14,
EXTERNAL BUS for more details.) The cache is also updated accordingly as described earlier in

this chapter.

4-7

int
CACHE AND ON-CHIP DATA RAM I ‘d“"

45.3 Data Cache Fill Policy

The 1960 Jx processor always uses a “natural” fill policy for cacheable loads. The processor
fetches only the amount of data that is requested by a load (i.e., a word, long-word, etc.) on a data
cache miss. Exceptions are byte and short-word accesses, which are always promoted to words.
This allows a complete word to be brought into the cache and marked valid. When the data cache
is disabled and loads are done from a cacheable region, promotions from bytes and short-words
still take place.

454 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The 960 Jx processor
always uses a write-through policy. Stores are always seen on the external bus, thus maintaining
coherency between the data cache and external memory.

The i960 Jx processor always uses a write-allocate policy for data. For a cacheable location, data is
always written to the data cache regardless of whether the access is a hit or miss. The following
cases are relevant to consider:

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are
updated with the data.

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, when
needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of byte or short-word data that hits a valid word in the cache, both the word in
cache and external memory are updated with the data; the cache word remains valid.

4. In the case of byte or short-word data that falls within a valid line but misses because the
appropriate word is invalid, both the word and external memory are updated with the data;
however, the cache word remains invalid.

5. In the case of byte or short-word data that does not fall within a valid line, the external
memory is updated with the data. For data writes less than a word, the D-cache is not
updated; the tags and valid bits are not changed.

A byte or short-word is always invalid in the D-cache since valid bits only apply to words.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider a word store that misses as
an example. The tag is always updated and its valid bit is set. The appropriate valid bit for that
word is always set and the other three valid bits are always cleared. When the word store hits the
cache, the tag bits remain unchanged. The valid bit for the stored word is set; all other valid bits
are unchanged.

4-8

u I
I ‘d” CACHE AND ON-CHIP DATA RAM

Cacheable stores that are less than aword in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
thetag and valid bits. The processor writes the data into the cache and external memory asusual. A
byte or short-word store to an invalid word within a valid cache line leaves the word valid bit
cleared because the rest of theword is still invalid. In these two cases the processor simultaneously
writes the data into the cache and the external memory.

455 Data Cache Coherency and Non-Cacheable Accesses
The 1960 Jx processor ensures that the data cache is always kept coherent with accesses that it
initiates and performs. The most visible application of this requirement concerns non-cacheable
accesses discussed below. However, the processor does not provide data-cache coherency for

accesses on the external bus that it did not initiate. Software is responsible for maintaining
coherency in a multi-processor environment.

An accessis defined as non-cacheable when any of the following is true:

1. The access fallsinto an address range mapped by an enabled LMCON or DLMCON and the
data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The access is aread operation of the read-modify-write sequence performed by an atmod or
atadd instruction.

4, The accessisan implicit read access to the interrupt table to post or deliver a software interrupt.

When the memory location targeted by an atmod or atadd instruction is currently in the data
cache, it isinvalidated.

When the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache line
is marked invalid. This is because the word is not actually updated with the value of the store. This
behavior ensures that the data cache never contains stale data in a single-processor system. A
simple case illustrates the necessity of this behavior: a read of data previously stored by a
non-cacheable access must return the new value of the data, not the value in the cache. Because the
processor invalidates the appropriate word in the cache line on a store hit when the cache is
disabled, coherency can be maintained when the data cache is enabled and disabled dynamically.

Data loads or stores invalidate the corresponding lines of the cache even when data caching is
disabled. This behavior further ensures that the cache does not contain stale data.

4-9

int
CACHE AND ON-CHIP DATA RAM I ‘é““

45.6 External 1/0 and Bus Masters and Cache Coherency

The 960 Jx processor implements a single processor coherency mechanism. Thereis no hardware
mechanism, such as bus snooping, to support multiprocessing. When another bus master can
change shared memory, there is no guarantee that the data cache contains the most recent data. The
user must manage such data coherency issuesin software.

A suggested practice is to program the LMCONO-1 registers such that I/O regions are
non-cacheable. Partitioning the system in this fashion eliminates 1/0 as a source of coherency
problems. See section 13.6, “Programming the Logical Memory Attributes” (pg. 13e8)more
information on this subject.

457 Data Cache Visibility

The data cache status can be determined dyc# instruction issued with a data-cache status
message. Data cache contents, data, tags and valid bits can be written to memory as an aid for
debugging. This operation is accomplished bygcatl instruction issued with the dump cache
operand. Sesection 6.2.23, “dcctl” (pg. 6-40pr more information.

4-10

intel

INS]

'RUCTION SE

5

OVERVIEW

intel

CHAPTER 5
INSTRUCTION SET OVERVIEW

This chapter provides an overview of the i960% microprocessor family’s instruction set and i960 Jx
processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group’s instructions.

Chapter 6, INSTRUCTION SET REFERENGCdescribes each instruction, including assem
language syntax, and the action taken when the instruction executes and examples of ho

the instruction.

5.1 INSTRUCTION FORMATS

The 1960 Jx processor instructions may be described in two formats: assembly language and
instruction encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred tada. The Intel 80960 assembly language
syntax consists of the instruction mnemonic followed by zero to three operands, separated by
commas. In the following assembly language statement, ordinal operands in global registers g5 and
g9 are added together, and the result is stored in g7:

addo g5, g9, g7 # 97 = g9 + g5

In the assembly language listings in this chapter, the following symbols are used:

g global register
r local register
precedes a comment

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a “Ox” prefix (e.g., Oxffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are giseation 2.3.5,
“Addressing Mode Examples” (pg. 2-8)

subi r3, r5, ré6 #r6 =r5 - r3

setbit 13, g4, g5 #g95 = g4 with bit 13 set

| da Oxfab3, ri12 #r12 = Oxfab3

Id (rd4), g3 #93 = the value at menory location that r4 points to

st 910, (r6)[r7*2] #the value at nmenory | ocation that r6+2*r7 points to = gl10

5-1

INSTRUCTION SET OVERVIEW

intel

5.1.2 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — also known as an
opword — which must be word aligned in memory. An opword’s most significant eight bits
contain the opcode field. The opcode field determines the instruction to be performed and how the
remainder of the machine language instruction is interpreted. Instructions are encoded in opwords
in one of four formats (se&igure 5-). For more information on instruction formats, see

APPENDIX C, MACHINE-LEVEL INSTRUCTION FORMATS

Table 5-1. Instruction Encoding Formats

Instruction Type

Format

Description

register

REG

Most instructions are encoded in this format. Used primarily
for instructions which perform register-to-register operations.

compare and branch

COBR

An encoding optimization which combines compare and
branch operations into one opword. Other compare and
branch operations are also provided as REG and CTRL
format instructions.

control

CTRL

Used for branches and calls that do not depend on registers
for address calculation.

memory

MEM

Used for referencing an operand which is a memory address.
Load and store instructions — and some branch and call
instructions — use this format. MEM format has two
encodings: MEMA or MEMB. Usage depends upon the
addressing mode selected. Some MEMB-formatted
addressing modes use the word in memory immediately
following the instruction opword as a 32-bit constant. MEMA
format uses one word and MEMB uses one or two words.

5-2

u I
I ‘d” INSTRUCTION SET OVERVIEW

31 0
OPCODE src/dst src2 OPCODE srcl REG
31 0
OPCODE srcl src2 displacement COBR
31 0
OPCODE displacement CTRL
31 0
OPCODE sre/dst Address Offset MEMA
Base
31 0
OPCODE src/dst Address Scale Index MEMB
ase
32-Bit displacement

Figure 5-1. Machine-Level Instruction Formats

5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Format Operand(s) Description

REG srcl, src2, src/dst srcl and src2 can be global registers, local registers or
literals. src/dst is either aglobal or aloca register.

CTRL displacement CTRL format is used for branch and call instructions.
displacement value indicates the target instruction of the
branch or call.

COBR srcl, src2, displacement srcl, src2 indicate values to be compared; displacement
indicates branch target. srcl can specify aglobal register, loca
register or aliteral. src2 can specify aglobal or local register.

MEM src/dst, efa Specifies source or destination register and an effective address
(efa) formed by using the processor’'s addressing modes as
described in section 2.3, “MEMORY ADDRESSING
MODES” (pg. 2-6) Registers specified in a MEM format
instruction must be either a global or local register.

5-3

INSTRUCTION SET OVERVIEW

intel

Thefollowing sections provide an overview of theinstructionsin each group. For detailed information
about each instruction, refer to CHAPTER 6, INSTRUCTION SET REFERENCE. The i960
processor instruction set can be categorized into functional groups shown in Table 5-2. The actud
number of ingtructions is greater than those shown in this list because, for some operations, severa

5.2 INSTRUCTION GROUPS

unique ingructions are provided to handle various operand sizes, data types or branch conditions.

Table 5-2. 80960Jx Instruction Set

. . . Bit, Bit Field
Data Movement Arithmetic Logical and Byte
Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
*Conditional Select Divide Or Alter Bit
Load Address Remainder Exclusive Or Scan For Bit
Modulo Not Or Span Over Bit
Shift Or Not Extract
Extended Shift Nor Modify
Extended Multiply Exclusive Nor Scan Byte for Equal
Extended Divide Not *Byte Swap
Add with Carry Nand
Subtract with Carry
*Conditional Add
*Conditional Subtract
Rotate
Comparison Branch Call/Return Fault
Compare Unconditional Branch Call Conditional Fault
Conditional Compare Conditional Branch Call Extended Synchronize Faults
Compare and Increment | Compare and Branch Call System
Compare and Decrement | Branch Extended Return
Test Condition Code Branch and Link
Check Bit Branch and Link
Extended
Debug Processor Management Atomic
Modify Trace Controls Flush Local Registers Atomic Add
Mark Modify Arithmetic Controls | Atomic Modify
Force Mark Modify Process Controls
*Halt
System Control
*Cache Control
*Interrupt Control

* Denotes new instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.

5-4

u I
I ‘d” INSTRUCTION SET OVERVIEW

521 Data Movement

These instructions are used to:

¢« move data from memory to global and local registers
« from global and local registers to memory

¢ between local and global registers

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. Seetion 3.5, “MEMORY ADDRESS SPACE” (pg. 3-1®)r

alignment requirements for code portability across implementations.

5.2.1.1 Load and Store Instructions

Load instructions copy data from memory to local or global registers. Each load instruction has a
corresponding store instruction to memory. All load and store instructions use the MEM format.

Id load word st store word

Idob load ordinal byte stob store ordinal byte

Idos load ordinal short stos store ordinal short
Idib load integer byte stib store integer byte

Idis load integer short stis store integer short
Idl load long stl store long

Idt load triple stt store triple

Idq load quad stq store quad

Id copies 4 bytes from memory into a registdt;copies 8 bytes into 2 successive registets;
copies 12 bytes into 3 successive registeks,copies 16 bytes into 4 successive registers.

st copies 4 bytes from a register into memany;copies 8 bytes from 2 successive registstis;
copies 12 bytes from 3 successive registaxgcopies 16 bytes from 4 successive registers.

For Id, Idob, Idos, Idib andldis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

5-5

int
INSTRUCTION SET OVERVIEW I ‘d““

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the

register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register’s 32-bit value for the shorter memory locaticstid-andstis, this
reformatting can cause integer overflow when the register value is too large for the shorter
memory location. When integer overflow occurs, either an integer-overflow fault is generated or
the integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit
setting in the AC register.

For stob andstos, the processor truncates the register value and does not create a fault when
truncation resulted in the loss of significant bits.

5212 Move

Move instructions copy data from a local or global register or group of registers to another register
or group of registers. These instructions use the REG format.

mov move word

movl move long word
movt move triple word
movq move quad word

5.2.1.3 Load Address

The Load Address instructioihd@) computes an effective address in the address space from an
operand presented in one of the addressing matieis commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

5.2.2 Select Conditional

Given the proper condition code bit settings in the Arithmetic Controls register, these instructions
move one of two pieces of data from its source to the specified destination.

selno Select Based on Unordered

selg Select Based on Greater

sele Select Based on Equal

selge Select Based on Greater or Equal
sell Select Based on Less

selne Select Based on Not Equal

selle Select Based on Less or Equal
selo Select Based on Ordered

5-6

u I
I ‘é“ INSTRUCTION SET OVERVIEW

5.2.3 Arithmetic

Table 5-3 lists arithmetic operations and data types for which the 1960 Jx processor provides
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. All arithmetic operations are carried out on operands in registers
or literals. Refer t®ection 5.2.11, “Atomic Instructions” (pg. 5-18)r instructions which handle
specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

S
Table 5-3. Arithmetic Operations -

Data Types

Arithmetic Operations

Integer Ordinal
Add X
Add with Carry
Conditional Add
Subtract

Subtract with Carry

X

Conditional Subtract

X | X[X|X]| X]| X

Multiply

Extended Multiply
Divide

Extended Divide
Remainder
Modulo

Shift Left

Shift Right
Extended Shift Right X
Shift Right Dividing Integer X

X

XXX | X| X| X[X|X]|X]|X

XX | X]| X
X | X

5-7

int
INSTRUCTION SET OVERVIEW I ‘d““

5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

addi Add Integer

addo Add Ordinal

ADD <cc> conditional add
subi Subtract Integer
subo Subtract Ordina
SUB<cc> Conditiona Subtract
muli Multiply Integer
mulo Multiply Ordinal
divi Divide Integer

divo Divide Ordinal

addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the
result is too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when
the divisor is zero.

5.2.3.2 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

remi remainder integer
remo remainder ordinal
modi modulo integer

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
asthe divisor.

5-8

u I
I ‘d“’ INSTRUCTION SET OVERVIEW

5.2.3.3 Shift, Rotate and Extended Shift

These shift instructions shift an operand a specified number of bitsleft or right:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate left

eshro extended shift right ordinal

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zerosin from the least significant bit. When the shift operation resultsin an overflow, an
integer-overflow fault is generated (when enabled). The destination register is written with the
source shifted as much as possible without overflow and an integer-overflow fault is signal ed.

shri performs a conventional arithmetic shift right operation by extending the sign bit. However,
when thisinstruction is used to divide a negative integer operand by the power of 2, it may produce
an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result toward
negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the
result when the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the power of
2, respectively, except in cases where an overflow error occurs.

rotate rotates operand hits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond the register’s left boundary (bit 31) appear at the right boundary (bit 0).

Theeshro instruction performs an ordinal right shift of a source register pair (64 bits) by as much

as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is also the
equivalent of a 64-bit extract of 32 bits.

5-9

int
INSTRUCTION SET OVERVIEW I ‘d““

5.2.34 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands
greater than one word in length:

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

addc adds two word operands (literals or contained in registers) plus the AC Register condition

code bit 1 (used here as acarry bit). When the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction’s descriptionGHAPTER 6, INSTRUCTION SET
REFERENCHgives an example of how this instruction can be used to add two long-word (64-bit)
operands together.

subc is similar toaddc, except it is used to subtract extended-precision values. Althadigd
andsubc treat their operands as ordinals, the instructions also set bit 0 of the condition codes
when the operation would have resulted in an integer overflow condition. This facilitates a
software implementation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers)ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).

5.24 Logical

These instructions perform bitwise Boolean operations on the specified operands:

and src2 AND srcl
notand (NOT src2) AND srcl
andnot src2 AND (NOT srcl)

xor src2 XOR srcl

or src2 ORsrcl

nor NOT (src2 ORsrcl)
xnor src2 XNOR srcl
not NOT srcl

notor (NOT src2) orsrcl

ornot src2 or (NOT srel)
nand NOT (src2 AND srcl)

All logical instructions use the REG format and can operate on literals or local or global registers.

5-10

u I
I ‘d” INSTRUCTION SET OVERVIEW

5.2.5 Bit, Bit Field and Byte Operations

These instructions perform operations on a specified bit or bit field in an ordina operand. All Bit, Bit
Field and Byte instructions use the REG format and can operate on literals or local or globd registers.

5.25.1 Bit Operations

These instructions operate on a specified bit:
setbit set bit

clrbit clear bit
notoit invert bit
alterbit alter bit

scanbit scan for bit
spanbit span over bit

e setbit, clrbit andnotbit set, clear or complement (toggle) a specified bit in an ordinal.

« alterbit alters the state of a specified bit in an ordinal according to the condition code. When
the condition code is 030the bit is set; when the condition code is £)@be bit is cleared.

e chkbit, described irsection 5.2.6, “Comparison” (pg. 5-12an be used to check the value of
an individual bit in an ordinal.

e scanbit andspanbit find the most significant set bit or clear bit, respectively, in an ordinal.

5.2.5.2 Bit Field Operations

The two bit field instructions arextract andmodify.

e extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In
essence, this instruction shifts right a bit field in a register and fills in the bits to the left of the
bit field with zeros. €shro also provides the equivalent of a 64-bit extract of 32 bits).

« modify copies bits from one register into another register. Only masked bits in the destination
register are modifiednodify is equivalent to a bit field move.

5.25.3 Byte Operations

e scanbyte performs a byte-by-byte comparison of two ordinals to determine when any two
corresponding bytes are equal. The condition code is set based on the results of the
comparisonscanbyte uses the REG format and can specify literals or local or global registers
as arguments.

* bswap alters the order of bytes in a word, reversing its “endianess.” For more information on
this subject, segection 13.6.2, “Selecting the Byte Order” (pg. 13-12)

5-11

int
INSTRUCTION SET OVERVIEW I ‘d““

5.2.6 Comparison

The processor provides severa types of instructions for comparing two operands, as described in
the following subsections.

5.2.6.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal

concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal
chkbit Check Bit

These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal to, or greater than the other
operand. See section 3.7.2, “Arithmetic Controls (AC) Register” (pg. 3-18) a description of the
condition codes for conditional operations.

cmpi andcmpo simply compare the two operands and set the condition code bits accordingly.
concmpi andconcmpo first check the status of condition code bit 2:

*« When not set, the operands are compared ascwifh andcmpo.
¢« When set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check when A is between B and C (i.&. AB< C). Here, a compare instruction
(cmpi or cmpo) checks one side of the range (e.gz R) and a conditional compare instruction
(concmpi or concmpo) checks the other side (e.g.,sAC) according to the result of the first
comparison. The condition codes following the conditional comparison directly reflect the results
of both comparison operations. Therefore, only one conditional branch instruction is required to
act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to §ihen the bit is set and 0906therwise.

5-12

u I
I ‘d“’ INSTRUCTION SET OVERVIEW

5.2.6.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the compare
results, then increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer

cmpdeco compare and decrement ordinal

These all usethe REG format and can specify literals or local or global registers. They are an archi-

tectural performance optimization which allows two register operations (e.g., compare and add) to
execute in asingle cycle. The intended use of these instructionsis at the end of iterative loops.

5.2.6.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal
testg test for greater

testge test for greater or equal
testo test for ordered

testno test for unordered

When the condition code matches the instruction-specified condition, a TRUE (0000 0001H) is
stored in a destination register; otherwise, a FALSE (0000 0000H) is stored. All use the COBR
format and can operate on local and global registers.

5-13

int
INSTRUCTION SET OVERVIEW I ‘d““

5.2.7 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.

The processor provides three branch instruction types:

e unconditional branch

e conditional branch

e compare and branch

Most branch instructions specify the target IP by specifying a sidiispldicement to be added to

the current IP. Other branch instructions specify the target IP’s memory address, using one of the

processor’'s addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

5.2.7.1 Unconditional Branch

These instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

b andbal use the CTRL formabx andbalx use the MEM format and can specify local or global
registers as operandsandbx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of & instruction is specified at link time as a relatiligolacement from the current

IP. The target IP of thiex instruction is the absolute address resulting from the instruction’s use of
a memory-addressing mode during execution.

bal andbalx store the next instruction’s address in a specified register, then jump to the specified
target IP. (Fombal, the RIP is automatically stored in register g14;Halx, the RIP location is
specified with an instruction operand.) As describedsaation 7.9, “BRANCH-AND-LINK”

(pg. 7-21) branch and link instructions provide a method of performing procedure calls that do not
use the processor’s integrated call/return mechanism. Here, the saved instruction address is used as
areturn IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx andbalx can make use of any memory-addressing mode.

5-14

u I
I ‘d” INSTRUCTION SET OVERVIEW

5.2.7.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checksthe AC register condition
code flags. When these flags match the val ue specified with the instruction, the processor jumps to
the target IP. These instructions use the displacement-plus-ip method of specifying the target I P:

be branch if equal/true

bne branch if not equal

bl branch if less

ble branch if less or equal

bg branch if greater 5

bge branch if greater or equal -
bo branch if ordered

bno branch if unordered/false

All use the CTRL format. bo and bno are used with real numbers. bno can also be used with the
result of a chkbit or scanbit instruction. Refer to section 3.7.2.2, “Condition Code (AC.cc)”
(pg. 3-19)for a discussion of the condition code for conditional operations.

5.2.7.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordinal and branch if equal

cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear

5-15

int
INSTRUCTION SET OVERVIEW I ‘d““

All use the COBR machine instruction format and can specify literals, local or global registers as
operands. With compare ordina and branch (compob*) and compare integer and branch
(compib*) instructions, two operands are compared and the condition code bits are set as
described in section 5.2.6, “Comparison” (pg. 5-12 conditional branch is then executed as with
the conditional branclBRANCH IF) instructions.

With check bit and branch instructiorishé, bbc), one operand specifies a bit to be checked in the
second operand. The condition code flags are set according to the state of the specified bit: 010
(true) when the bit is set and Q0(False) when the bit is clear. A conditional branch is then
executed according to condition code bit settings.

These instructions can be used to optimize execution performance time. When it is not possible to
separate adjacent compare and branch instructions from other unrelated instructions, replacing two
instructions with a single compare and branch instruction increases performance.

5.2.8 Call/Return

The 1960 Jx processor offers an on-chip call/return mechanism for making procedure calls. Refer
to section 7.1, “CALL AND RETURN MECHANISM” (pg. 7-2) The following instructions
support this mechanism:

call call

callx call extended
calls call system
ret return

call andret use the CTRL machine-instruction formeidlix uses the MEM format and can specify
local or global registersalls uses the REG format and can specify local or global registers.

call andcallx make local calls to procedures. A local call is a call that does not require a switch to
another stackecall andcallx differ only in the method of specifying the target procedure’s address.
The target procedure of a call is determined at link time and is encoded in the opword as a signed
displacement relative to the call IPcallx specifies the target procedure as an absolute 32-bit
address calculated at run time using any one of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or
system-executive service. This instruction operates similadglt@ndcallx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

5-16

u I
I ‘d” INSTRUCTION SET OVERVIEW

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor cal or a system-local call to be executed. A system-supervisor call isa
call to a system procedure that switches the processor to supervisor mode and switches to the
supervisor stack. A system-local call is a call to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described throughout CHAPTER 7,
PROCEDURE CALLS.

ret performs areturn from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return 1P) from linkage information that was saved for the calling
procedure. ret is used to return from all calls — including local and supervisor calls — and from

implicit calls to interrupt and fault handlers.

5.2.9 Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format.

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered

faultno fault if unordered

Thesyncf instruction ensures that any faults that occur during the execution of prior instructions
occur before the instruction that follows thgncf. syncf uses the REG format and requires no
operands.

5-17

int
INSTRUCTION SET OVERVIEW I ‘d““

5.2.10 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modtc modify trace controls
mark mark
fmark force mark

These al use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to CHAPTER 9, TRACING AND DEBUGGING.

modtc permits trace controls to be modified. mark causes a breakpoint trace event to be generated
when breakpoint trace mode is enabled. fmark generates a breakpoint trace independent of the
state of the breakpoint trace mode bits.

Other instructions that are helpful in debugging include modpc and sysctl. The modpc
instruction can enable/disable trace fault generation. The sysctl instruction also provides control
over breakpoint trace event generation. This instruction is used, in part, to load and control the
1960 Jx processor’s breakpoint registers.

5.2.11 Atomic Instructions

Atomic instructions perform an atomic read-modify-write operation on operands in memory. An
atomic operation is one in which other memory operations are forced to occur before or after, but
not during, the accesses that comprise the atomic operation. These instructions are required to
enable synchronization between interrupt handlers and background tasks in any system. They are
also particularly useful in systems where several agents — processors, coprocessors or external
logic — have access to the same system memory for communication.

The atomic instructions are atomic addafid) and atomic modify g¢mod). atadd causes an
operand to be added to the value in the specified memory locatiand causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the REG
format and can specify literals or local or global registers as operands. These instructions assert the
LOCK signal.

5-18

u I
I ‘d“’ INSTRUCTION SET OVERVIEW

5.2.12 Processor Management

These instructions control processor-related functions:

modpc Modify the Process Controls register

flushreg Flush cached local register sets to memory

modac Modify the Arithmetic Controls register

sysctl Perform system control function

halt Halt processor

inten Global interrupt enable

intdis Global interrupt disable
intctl Global interrupt enable and disable

icctl instruction cache control

dcctl data cache control

All use the REG format and can specify literals or loca or global registers.

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush locd registers instruction (flushreg) to save the contents of the

cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets — except the current set — in the register save area of their
associated stack frames.

The modify arithmetic controls instructiomédac) allows the AC register contents to be copied to

a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it is implicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitiatigation.
may be executed only by programs operating in supervisor mode.

halt puts the processor in low-power Halt modectl, inten andintdis are used to enable and
disable interrupts and to determine current interrupt enable status.

icctl anddcctl provide cache control functions including: enabling, disabling, loading and locking
(instruction cache only), invalidating, getting status and storing cache information out to memory.

5-19

int
INSTRUCTION SET OVERVIEW I ‘d“"

5.3 PERFORMANCE OPTIMIZATION

Performance optimization are categorized into two sections: instructions optimizations and
miscellaneous optimizations.

5.3.1 Instruction Optimizations

The instruction optimizations are broken down by the instruction classification.

5.3.1.1 Load / Store Execution Model

Because the 1960 Jx processor has a 32-bit external data bus, multiple word accesses require
multiple cycles. The processor uses microcode to sequence the multi-word accesses. Because the
microcode can ensure that aligned multi-words are bursted together on the external bus, software
should not substitute multiple single-word instructions for one multi-word instruction for data that
isnot likely to bein cache. For example aldq provides better bus performance than four Id instruc-
tions.

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that when the load misses the data cache, the processor does
not stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

Software should avoid following aload with an instruction that depends on the result of the load.
For aload that hits the data cache, there is a one-cycle stall when the instruction immediately after
the load requires the data. When the load fails to hit the data cache, the instruction depending on
the load stalls until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes
full.

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.

5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word
compare instruction.

5-20

u I
I ‘d“’ INSTRUCTION SET OVERVIEW

5.3.1.3 Microcoded Instructions

While the majority of instructions on the i960 Jx processor are single cycle and are executed
directly by processor hardware, some require microcode emulation. Entry into amicrocode routine
requires two cycles. Exit from microcode typically requires two cycles. For some routines, one
cycle of the exit process can execute in paralel with another instruction, thus saving one cycle of
execution time.

53.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) of the i960 Jx processor performs a number of multi-cycle
arithmetic operations. These can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a
32-bitx32-bit mulo, to 30+ cyclesfor an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycle Register Operations

A few register operations can also take multiple cycles. The following instructions are all
performed in microcode:

¢ bswap e extract e eshro e modify e movl e movt
* movq e shrdi e scanbit * spanbit * testno testo
* testl « testle * teste * testne * testg * testge

On the 1960 Jx processor, test<cc> dst is microcoded and takes many more cycles than SEL<cc>
0,1,dst, which is executed in one cycle directly by processor hardware.

Multi-register move operation execution time can be decreased at the expense of cache utilization
and code density by using mov the appropriate number of times instead of movl, movt and movq
instructions.

5-21

int
INSTRUCTION SET OVERVIEW I ‘d““

5.3.1.6 Simple Control Transfer

There is no branch lookahead or branch prediction mechanism on the i960 Jx processor. Simple
branch instructions take one cycle to execute, and one more cycle is needed to fetch the target
instruction when the branch is actually taken.

b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), isalso asimple branch and takes one
cycle to execute and one cycle to fetch the target.

As aresult, abal (g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the 1960 Jx processor. They require 2
cycles to execute, and one more cycle to fetch the target instruction when the branch is actually
taken. The instructions are:

e cmpobno ¢ cmpobo e cmpobl e cmpoble ¢ cmpobe ¢ cmpobne
¢ cmpobg e« cmpobge ¢ cmpibno * cmpibo e cmpibl « cmpible
e cmpibe e cmpibg e cmpibne * cmpibge e bbc ¢ bbs
5.3.1.7 Memory Instructions

The 1960 Jx processor provides efficient support for naturally aligned byte, short, and word
accesses that use one of 6 optimized addressing modes. These accesses require only 1 to 2 cycles
to execute; additional cycles are needed for aload to return its data.

The byte, short and word memory instructions are:
Idob, Idib, Idos, Idis, Id, Ida stob, stib, stos, stis, st

The remainder of accesses require multiple cyclesto execute. These include:

¢ Unaligned short, and word accesses
« Byte, short, and word accesses that do not use one of the 6 optimized addressing modes
e Multi-word accesses

The multi-word accesses are:

Idl, Idt, Idq, stl, stt, stq

5-22

u I
I ‘d“’ INSTRUCTION SET OVERVIEW

5.3.1.8 Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and merges the data as needed. As aresult, these accesses are not as efficient
as aligned accesses. In addition, no bursting on the external bus is performed for these accesses.
Whenever possible, unaligned accesses should be avoided.

5.3.2 Miscellaneous Optimizations

5.3.2.1 Masking of Integer Overflow

The 1960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, when necessary. The syncf
can require a number of cycles to complete when a multi-cycle integer-multiply (muli) or
integer-divide (divi) instruction was issued previously and integer-overflow faults are unmasked
(allowed to occur). Cal performance and interrupt latency can be improved by masking
integer-overflow faults (AC.om = 1), which alows the implicit syncf to complete more quickly.

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation stalls until previous instructions return their
results to these registers. In most cases, thisis not a problem; however, in the case of multi-cycle
instructions (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for many
cycles waiting for the result and unable to proceed to the next step of call processing or interrupt
delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for aMDU instruction. Generally, registers pfp, sp, and rip should be avoided they are
used for procedure linking.

5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationae as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-g14) as the destination for multi-cycle MDU
instructions. This is because there is no dependency between g0-g14 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).

5-23

int
INSTRUCTION SET OVERVIEW I ‘d““

5.3.24 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor does not issue a new instruction until the previous
one has completed. This ensures that a fault from the previous instruction is delivered before the
next instruction can begin execution. Imprecise fault mode allows new instructions to be issued
before previous ones have completed, thus increasing the instruction issue rate. Many applications
can tolerate the imprecise fault reporting for the performance gain. When necessary, asyncf can
be used in imprecise fault mode to isolate faults at desired points of execution.

5-24

intel

INS]

'RUCTION SE

&

REFERENCE

intel

CHAPTER 6
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction available to the i960° Jx
processor. Instructions are listed aphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in section 6.1, “NOTATION” (pg. 6-1)

Information in this chapter is oriented toward programmers who write assembly language code for
the 1960 Jx processor. Information provided for each instruction includes:

¢ Alphabetic listing of all instructions ¢ Faults that can occur during execution
¢ Assembly language mnemonic, name and ¢ Action (or algorithm) and other side effec_

format of executing an instruction

¢ Description of the instruction’s operation * Assembly language example
¢ Opcode and instruction encoding format + Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

¢ CHAPTER 5, INSTRUCTION SET OVERVIEW Summarizes the instruction set by group
and describes the assembly language instruction format.

e APPENDIX B, OPCODES AND EXECUTION TIMES A quick-reference listing of
instruction encodings assists debugging with a logic analyzer.

¢ APPENDIX C, MACHINE-LEVEL INSTRUCTION FORMATS Describes instruction set
opword encodings.

* 1960 Jx PROCESSOR INSTRUCTION SET QUICK REFERENCE (order number 272597)
A pocket-sized quick reference to all instructions.

6.1 NOTATION
In general, notation in this chapter is consistent with usage throughout the manual; however, there

are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter.

6-1

int
INSTRUCTION SET REFERENCE I ‘d“"

6.1.1 Alphabetic Reference

Instructions are listed alphabeticaly by assembly language mnemonic. When several instructions
are related and fall together al phabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at the top of the page (e.qg.,
subc). Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the
name of the instruction group is shown in capital letters @RANCH<cc> or FAULT<cc>).

The 1960 Jx processor-specific extensions to the i960 microprocessor instruction set are indicated
in the header text for each such instruction. This type of notation is also used to indicate new core
architecture instructions. Sections describing new core instructions provide notes as to which
i960-series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementations.
Further, new core instructions are not typically portable to earlier i960 processor family imple-
mentations such as the i960 Kx microprocessors.

6.1.2 Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

This mnemonic is the actual assembly language instruction name recognized by assemblers.

6.1.3 Format

TheFormat section gives the instruction’s assembly language format and allowable operand types.
Format is given in two or three lines. The following is a two-line format example:

sub* srcl src2 dst

reg/lit reg/lit reg

The first line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An
* (asterisk) at the end of the mnemonic indicates a variable: in the above exsumbples either

subi or subo. Capital letters indicate an instruction class. For exanfid®<cc> refers to the

class of conditional add instructions (ealdio, addig, addoo, addog).

Operand names are designed to describe operand functiosr @ .kgn, mask).

The second line shows allowable entries for each operand. Notation is as follows:

6-2

u I
I ‘d“’ INSTRUCTION SET REFERENCE

reg Globa (g0 ... g15) or local (r0 ... r15) register
lit Litera of therangeO ... 31
disp Signed displacement of range (-2%2 ... 222 - 1)
mem Address defined with the full range of addressing modes
In some cases, a third line is added to show register or memory location contents. For example, it

may be useful to know that a register isto contain an address. The notation used in this lineis as
follows:

addr Address
efa Effective Address

6.1.4 Description _

The Description section is a narrative description of the instruction’s function and operands. It also
gives programming hints when appropriate.

6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruction’s
net effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. The following is an example of the action algorithm for the
alterbit instruction:

if((AC.cc & 010,)==0)

dst = src2 & ~(2**(src1%32));
else

dst = src2 | 2**(src1%32);

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. The
pseudo-code has been written to comply as closely as possible with standard C programming
language notation.

6-3

INSTRUCTION SET REFERENCE

intel

Table 6-1. Pseudo-Code Symbol Definitions

Assignment

Comparison: equal, not equal

<, > less than, greater than
<=, >= less than or equal to, greater than or equal to
<<, >> Logical Shift
** Exponentiation
&, && Bitwise AND, logical AND
I |l Bitwise OR, logical OR
n Bitwise XOR
~ One’s Complement
% Modulo
+, - Addition, Subtraction
* Multiplication (Integer or Ordinal)
/ Division (Integer or Ordinal)
Comment delimiter
Table 6-2. Faults Applicable to All Instructions
Fault Type Subtype Description
A Mark Trace Event is signaled after completion of an
instruction for which there is a hardware breakpoint
condition match. A Trace fault is generated when TC.mk is
TRACE set.

INSTRUCTION

An Instruction Trace Event is signaled after instruction
completion. A Trace fault is generated when both PC.te
and TC.i=1.

6-4

u I
I ‘d” INSTRUCTION SET REFERENCE

Table 6-3. Common Faulting Conditions

Fault Type Subtype Description

Any instruction that causes an unaligned memory access
causes an operation aligned fault when unaligned faults are
not masked in the fault configuration word in the Processor
Control Block (PRCB).

This fault is generated when the processor attempts to
INVALID_OPCODE | execute an instruction containing an undefined opcode or
addressing mode.

UNALIGNED

OPERATION This fault is caused by a non-defined operand in a
INVALID OPERAND supervisor mode onl_y instruction or by an operand_

- reference to an unaligned long-, triple- or quad-register
group.

This fault can occur due to an attempt to perform a
non-word or unaligned access to a memory-mapped region
or when trying to fetch instructions from MMR space or
internal data RAM.

UNIMPLEMENTED

Any instruction that attempts to write to supervisor
protected internal data RAM or a memory-mapped register
in supervisor space while not in supervisor mode causes a
TYPE.MISMATCH fault.

TYPE MISMATCH

6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.
Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and
could directly result from any instruction. These fault types are not included in the instruction
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the
instruction set. When an instruction can generate a fault, it is noted in that instruEol's
section. In these sections, “Standard” refers to the faults showabie 6-2andTable 6-3

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction.

6-5

int
INSTRUCTION SET REFERENCE I ‘é““

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subi 593H REG
The opcode is given in hexadecimal format. The format is one of four possible formats: REG,

COBR, CTRL and MEM. Refer to APPENDIX C, MACHINE-LEVEL INSTRUCTION
FORMATS for moreinformation on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also aphabetically
listed in this chapter.

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the
Arithmetic Controls.

6.1.11 Notes

This section provides additional information about an instruction such as whether it is
implemented in other 1960 processor families.

6.2 INSTRUCTIONS

The processor’s instructions are arranged alphabetically by instruction or instruction group.

6-6

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.1 ADD<cc>

Mnemonic: addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equal
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less

addone Add Ordinal if Not Equal
addole Add Ordinal if Lessor Equal

addoo Add Ordinal if Ordered

addino Add Integer if Unordered

addig Add Integer if Greater

addie Add Integer if Equal

addige Add Integer if Greater or Equal

addil Add Integer if Less

addine Add Integer if Not Equal

addile Add Integer if Less or Equal

addio Add Integer if Ordered
Format: add* srcl, src2, dst

reg/lit reg/lit reg

Description: Conditionally adds src2 and srcl values and stores the result in dst based on

the AC register condition code. When for Unordered the condition code is 0,
or when for al other cases the logical AND of the condition code and the
mask part of the opcode is not O, then the values are added and placed in the
destination. Otherwise the destination is left unchanged. Table 6-4 shows the
condition code mask for each instruction. The mask is in opcode bits 4-6.

Table 6-4. Condition Code Mask Descriptions

Instruction Mask Condition
addono
- 000, Unordered
addino
addog
- 001, Greater
addig
addoe
- 010, Equal
addie
addoge
- 011, Greater or equal
addige
addol
- 100, Less
addil

6-7

int
INSTRUCTION SET REFERENCE I ‘é““

Action:

Faults:

Example:

6-8

Table 6-4. Condition Code Mask Descriptions

Instruction Mask Condition
addone
- 101, Not equal
addine
addole
- 110, Less or equal
addile
addoo
- 111, Ordered
addio
addo<cc>:

if((mask & AC.cc) || (mask == AC.cc))
dst = (srcl + src2)[31:0];

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))
{
{ true_result = (srcl + src2);
dst = true_result[31:0];
}
if((true_result > (2**31) - 1) || (true_result < -2**31))
Check for overflow
{ if(AC.om==1)
AC.of = 1;
ese
generate fault(ARITHMETIC.OVERFLOW);

}

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.OVERFLOW Occurs only witladdi<cc>.

Assume (AC.cc AND 001,) # O.
addig r4, r8, rlo0 #r10 =r8 + r4

Assume (AC.cc AND 101,) = 0.
addone r4, r8, rl10 # r10 is not changed.

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Opcode: addono 780H REG
addog 790H REG
addoe 7A0H REG
addoge 7BOH REG
addol 7COH REG
addone 7DOH REG
addole 7EOH REG
addoo 7FOH REG
addino 781H REG
addig 791H REG
addie 7TA1H REG
addige 7B1H REG
addil 7C1H REG
addine 7D1H REG _
addile 7E1H REG
addio 7F1H REG
See Also: addc, SUB<cc>, addi, addo
Notes: This class of core instructions is not implemented on 80960Cx, Kx and Sx
jprocessors.

6-9

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.2 addc
Mnemonic: addc Add Ordinal With Carry
Format: addc srcl, src2, dst
reg/lit reg/lit reg
Description: Adds src2 and srcl values and condition code bit 1 (used here as a carry-in)

and stores the result in dst. When ordinal addition results in a carry out,
condition code bit 1 is set; otherwise, bit 1 is cleared. When integer addition
results in an overflow, condition code bit O is set; otherwise, bit O is cleared.
Regardless of addition results, condition code bit 2 is always set to 0.

addc can be used for ordina or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor eval uates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

Action: dst = (srcl + src2 + AC.cc[1])[31:0];
AC.cc[2:0] = 000,;
if((src2[31] == srcl[31]) & & (src2[31] !=dst[31]))

AC.cc[0] =1, # Set overflow bit.
AC.cc[1] = (src2 + srcl + AC.cc[1])[32]; # Carry out.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: # Exanpl e of doubl e-precision arithnetic.

Assune 64-bit source operands
in g0,g1 and g2,93

cnpo 1, O # Clears Bit 1 (carry bit) of
the AC. cc.
addc g0, g2, g0 # Add | ow order 32 bits:
90 = g2 + g0 + carry bit
addc g1, g3, 91 # Add high-order 32 bits:
9l =9g3 + gl + carry bit
64-bit result is in g0, gl.
Opcode: addc 5BOH REG
See Also: ADD<cc>, SUB<cc>, subc, addi, addo
Side Effects: Sets the condition code in the arithmetic controls.

6-10

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.3 addi, addo
Mnemonic: addo Add Ordinal
addi Add Integer
Format: add* srcl, src2, dst
reg/lit reg/lit reg
Description: Adds src2 and srcl values and stores the result in dst. The binary results from

thesetwo instructions are identical. The only differenceisthat addi can signal
an integer overflow.

Action: addo:
dst = (src2 +srcl)[31:0];
addi:

true_result = (srcl + src2); _

dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(ACom==1)

AC.of = 1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.OVERFLOW Occurs only withaddi.
Example: addi r4, g5, r9 #r9 =g5 +r4
Opcode: addo 590H REG
addi 591H REG
See Also: addc, subi, subo, subc, ADD<cc>

6-11

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.4 alterbit
Mnemonic: alterbit Alter Bit
Format: alterbit bitpos, src, dst
reg/lit reg/lit reg
Description: Copies src value to dst with one bit altered. bitpos operand specifies bit to be

changed; condition code determines the value to which the bit is set. When
condition code is X1X,, bit 1 = 1, the selected bit is set; otherwise, it is
cleared. Typically this instruction is used to set the bitpos bit in the targ
register when the result of a compare instruction is the equal condition code

(010y).
Action: if((AC.cc & 010,)==0)
dst = src & ~(2** (bitpos%32));
else
dst = src | 2** (bitpos%32);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: # Assume AC.cc = 010,
alterbit 24, 94,99 # g9 = g4, with bit 24 set.
Opcode: alterbit 58FH REG
See Also: chkbit, clrbit, notbit, setbit

6-12

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.5 and, andnot
Mnemonic: and And
andnot And Not
Format: and srcl, src2, dst
reg/lit reg/lit reg
andnot srcl, srez, dst
reg/lit reg/lit reg
Description: Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and

srcl values and stores result in dst. Note in the action expressions below, src2
operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (srcl)}
{srcl and not (src2)}.
Action: and:
dst =src2 & srcl;

andnot:

dst =src2 & ~srcl;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: and 0x7, g8, g2 # Put lower 3 bits of g8 in g2.

andnot Ox7, rl12, r9# Copy rl1l2 to r9 with | ower
three bits cleared.

Opcode: and 581H REG
andnot 582H REG
See Also: nand, nor, not, notand, notor, or, ornot, xnor, xor

6-13

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.6 atadd
Mnemonic: atadd Atomic Add
Format: atadd addr, src, dst
reg reg/lit reg
Description: Adds src value (full word) to value in the memory location specified with
addr operand. This read-modify-write operation is performed on the actual
data in memory and never on a cached value on chip. Initial value from
memory is stored in dst.
Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes). See section 3.5.1, “Memory
Requirements” (pg. 3-14)r more information on atomic accesses.
Memory location inaddr is the word’s first byte (LSB) address. Address is
automatically aligned to a word boundary. (Note @dr operand maps to
srcl operand of the REG format.)
Action: implicit_syncf();
tempa = addr & OXFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;
Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
Example: atadd r8, r3, r1l1 # r8 contains the address of
menory | ocation.
#rl1ll = (r8)
(r8) =rll + r3.
Opcode: atadd 612H REG
See Also: atmod

6-14

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.7 atmod
Mnemonic: atmod Atomic Modify
Format: atmod addr, mask, src/dst
reg reg/lit reg
Description: Copies the selected bits of src/dst value into memory location specified in

addr. The read-modify-write operation is performed on the actual data in
memory and never on a cached value on chip. Bits set in mask operand sel ect
bits to be modified in memory. Initial value from memory is stored in src/dst.
See section 3.5.1, “Memory Requirements” (pg. 3-1at) more information
on atomic accesses.

Memory read and write are done atomically (i.e., other bus masters m
prevented from accessing the word of memory containing the word spe

with thesrc/dst operand until operation completes).

Memory location inaddr is the modified word’s first byte (LSB) address.
Address is automatically aligned to a word boundary.

Action: implicit_syncf();
tempa = addr & OXFFFFFFFC;
tempb = atomic_read(tempa);
temp = (tempb &~ mask) | (src_dst & mask);
atomic_write(tempa, temp);
src_dst = tempb;

Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)

Example: atnmod g5, g7, gl0 # tenpb = (g5)
tenp = (tenmpb and not g7) or
(gl0 and g7)
(g5) = tenp
g10 = tenpb
Opcode: atmod 610H REG

See Also: atadd

6-15

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.8

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-16

b, bx

b Branch
bx Branch Extended
b targ
disp
bx targ
mem

Branches to the specified target.

With the b instruction, 1P specified with targ operand can be no farther than

-2%3 to (2% 4) bytes from current IP. When using the Intel 960 processor
assembler, targ operand must be a label which specifies target instruction’s
IP.

bx performs the same operation msexcept the target instruction can be
farther than -23 to (223- 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction’s IP. The “IP + displacement” addressing
mode allows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in a register then using a register-indirect
addressing mode.

Refer tosection 2.3, “MEMORY ADDRESSING MODES” (pg. 2-@pr
information on this subject.

b:

temp[31:2] = sign_extension(targ[23:2]);

IP[31:2] = IP[31:2] + temp[31:2];

IP[1:0] = 0;

bx:

IP[31:2] = effective_address(targ[31:2]);

IP[1:0] = O;

STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
b xyz # 1P = xyz;

bx 1332 (ip) # 1P =1P + 8 + 1332;

this exanple uses |IP-relative addressing

b 08H CTRL

bx 84H MEM

bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.9 bal, balx
Mnemonic: bal Branch and Link
balx Branch and Link Extended
Format: bal targ
disp
balx targ, dst
mem reg
Description: Stores address of instruction following bal or balx in aregister then branches

to the instruction specified with the targ operand.

Thebal and balx instructions are used to call leaf procedures (procedures that
do not call other procedures). The IP saved in the register provides areturn |P
that the leaf procedure can branch to (using a bx instruction) to perform a _
return from the procedure. Note that these instructions do not use the

processor’s call-and-return mechanism, so the calling procedure shares its
local-register set with the called (leaf) procedure.

With bal, address of next instruction is stored in register ¢drd) operand
value can be no farther tharf22o (23 4) bytes from current IP. When using
the Intel 1960 processor assemblirg must be a label which specifies the
target instruction’s IP.

balx performs same operation lasl except next instruction address is stored

in dst (allowing the return IP to be stored in any available register). bdlth

the full address space can be accessed. Here, the target operand is an effective
address, which allows full range of addressing modes to be used to specify
target IP. “IP + displacement” addressing mode allows instruction to be
IP-relative. Indirect branching can be performed by placing target address in a
register and then using a register-indirect addressing mode.

See section 2.3, “MEMORY ADDRESSING MODES” (pg.2-6jor a
complete discussion of addressing modes available with memory-type

operands.
Action: bal:
gl4 = IP + 4;

temp[31:2] = sign_extension(targ[23:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

balx:

dst = IP + instruction_length;

Instruction_length = 4 or 8 depending on the addressing mode used.
IP[31:2] = effective_address(targ[31:2]); # Resume execution at new IP.
IP[1:0] = 0;

6-17

int
INSTRUCTION SET REFERENCE I ‘é““

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: bal xyz # 914 = IP + 4
1P = xyz
bal x (92), g4 # 94 = 1P + 4
1P = (92
Opcode: bal 0BH CTRL
balx 85H MEM
See Also: b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs

6-18

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.10 bbc, bbs

Mnemonic: bbc Check Bit and Branch If Clear
bbs Check Bit and Branch If Set
Format: bb* bitpos, src, targ
reg/lit reg disp
Description: Checks hit (designated by bitpos) in src and sets AC register condition code

according to src value. The processor then performs conditiona branch to
instruction specified with targ, based on condition code state.

For bbc, when selected bit in srcis clear, the processor sets condition code to
000, and branches to instruction specified by targ; otherwise, it sets condition
code to 010, and goesto next instruction.

For bbs, when selected bit is set, the processor sets condition code to 010,
and branches to targ; otherwise, it sets condition code to 000, and goes to
next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be alabel which specifiestarget
instruction’s IP.

Action: bbs:
if((src & 2**(bitpos%32)) == 1)
{ AC.cc=010;
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];

IP[1:0] = 0;
}
else

AC.cc = 00g;
bbc:

if((src & 2**(bitpos%32)) == 0)
{ AC.cc=000;
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;
}
else
AC.cc = 01g;

Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)

6-19

int
INSTRUCTION SET REFERENCE I ‘é““

Example: # Assune bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked
and found clear:
AC.cc = 000

1P = xyz;
Opcode: bbc 30H COBR
bbs 37H COBR
See Also: chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.

6-20

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.11 BRANCH<cc>

Mnemonic: be Branch If Equal

bne Branch If Not Equal

bl Branch If Less

ble Branch If Less Or Equal

bg Branch If Greater

bge Branch If Greater Or Equal

bo Branch If Ordered

bno Branch If Unordered
Format: b* targ

disp

Description: Branches to instruction specified with targ operand according to AC register
condition code state.

For al branch<cc> instructions except bno, the processor branches to
instruction specified with targ, when the logical AND of condition code and
mask part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ when the
condition code is zero. Otherwise, it goesto next instruction.

For instance, bno (unordered) can be used as a branch when false instruction
when coupled with chkbit. For bno, branch is taken when condition code
equals 000,. be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask isin opcode bits 0-2.

Table 6-5. Condition Code Mask Descriptions

Instruction Mask Condition
bno 000, Unordered

bg 001, Greater

be 010, Equal

bge 011, Greater or equal
bl 100, Less
bne 101, Not equal
ble 110, Less or equal
bo 111, Ordered

6-21

int
INSTRUCTION SET REFERENCE I ‘é““

Action: if((mask & AC.cc) || (mask == AC.cc))
{ temp[31:2] = sign_extension(targ[23:2]);
IP[31:2] = IP[31:2] + temp[31:2];

IP[1:0] =0;

}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: # Assume (AC. cc AND 100,) # O

bl xyz # 1P = xyz;
Opcode: be 12H CTRL

bne 15H CTRL

bl 14H CTRL

ble 16H CTRL

bg 11H CTRL

bge 13H CTRL

bo 17H CTRL

bno 10H CTRL
See Also: b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx

6-22

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.12 bswap

Mnemonic: bswap Byte Swap
Format: bswap sre, dst
reg/lit reg
Description: Alters the order of bytes in a word, reversing its “endianess.”

Copies bytes 3:0 ofrc to dst reversing order of the bytes. Byte 0 @t
becomes byte 3 afst, byte 1 ofsrc becomes byte 2 afst, etc.

Action: dst = (rotate_left(src 8) & OXOOFFOOFF)
+(rotate_left(src 24) & OXxFFOOFFQO);
Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5) _
Example: # g8 = O0x89ABCDEF
bswap g8, gl10 # Reverse byte order.
910 = OxEFCDAB89
Opcode: bswap 5ADH REG
See Also: scanbyte, rotate
Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.

6-23

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.13 call
Mnemonic: call Call

Format: call targ
disp
Description: Calls a new procedure. targ operand specifies the IP of called procedure’s

first instruction. When using the Intel i960 processor assentatgrmust be
a label.

In executing this instruction, the processor performs a local call operation as
described insection 7.1.3.1, “Call Operation” (pg. 7-:6As part of this
operation, the processor saves the set of local registers associated with the
calling procedure and allocates a new set of local registers and a new stack
frame for the called procedure. Processor then goes to the instruction
specified withtarg and begins execution.

targ can be no farther than®2to (222 - 4) bytes from current IP.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=1 on i960 Jx processors.
RIP=1P;
if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save register set in memory at its FP.
allocate_new_frame();
}
Local register references now refer to new frame.
temp[31:2] = sign_extension(targ[23:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;
PFP = FP;
FP = temp;
SP =temp + 64,

Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
Example: call xyz # 1P = xyz
Opcode: call 09H CTRL

See Also: bal, calls, callx

6-24

intel

6.2.14 calls
Mnemonic:

Format:

Description:

Action:

INSTRUCTION SET REFERENCE

calls Cdl System
calls targ
reg/lit

Calls a system procedure. The targ operand gives the number of the
procedure being called. For calls, the processor performs system call
operation described in section 7.5, “SYSTEM CALLS” (pg. 7-15)targ
provides an index to a system procedure table entry from which the processor
gets the called procedure’s IP.

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. When it is a supervisor procedur
processor switches to supervisor mode (when not already in this mode).

As part of this operation, the processor also allocates a new set of
registers and a new stack frame for the called procedure. When the processor
switches to supervisor mode, the new stack frame is created on the supervisor
stack.

Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259)
generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
sptbase is address of supervisor procedure table.

if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save aframe in memory at its FP.
allocate_new_frame();
Local register references now refer to new frame.
}
RIP = IP;
IP[31:2] = effective_address(temp[31:2]);
IP[1:0] = 0O;
if ((temp.type == local) || (PC.em == supervisor))
{ # Local call or supervisor call from supervisor mode.
tempa = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=1 on i960 Jx processors.
temp.RRR = 009
}

else # Supervisor call from user mode.

6-25

int
INSTRUCTION SET REFERENCE I ‘é““

Faults:

Example:

Opcode:

See Also:

6-26

{ tempa=SSP; # Get Supervisor Stack pointer.
temp.RRR = 010, | PC.te;
PC.em = supervisor;

PC.te = temp.te;
}

PFP = FP;

PFP.rrr = temp.RRR;

FP = tempa;

SP = tempa + 64;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)

PROTECTION.LENGTH Specifies a procedure number greater than

259.

calls ri12 # | P = val ue obtai ned from
procedure table for procedure
nunber given in rl2.

calls 3 # Call procedure 3.

calls 660H REG

bal, call, callx, ret

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.15 callx

Mnemonic: callx Cdl Extended
Format: callx targ
mem
Description: Calls new procedure. targ specifies IP of called procedure’s first instruction.

In executingcallx, the processor performs a local call as described in
section 7.1.3.1, “Call Operation” (pg. 7-6As part of this operation, the
processor allocates a new set of local registers and a new stack frame for the
called procedure. Processor then goes to the instruction specifiedargth

and begins execution of new procedure.

callx performs the same operation as call except the target instruction ¢
farther than -2 to (222 - 4) bytes from current IP.

Thetarg operand is a memory type, which allows the full range of addressing
modes to be used to specify the IP of the target instruction. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.

Indirect calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to CHAPTER 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

Action: # Wait for any uncompleted instructions to finish;
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=1 on i960 Jx processors.
RIP=1P;
if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save register set in memory at its FP;
allocate_new_frame();
}
Local register references now refer to new frame.
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0O;
PFP = FP;
FP = temp;
SP =temp + 64,

Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)

6-27

int
INSTRUCTION SET REFERENCE I ‘é““

Example: call x (g5) # IP = (g5), where the address in g5
is the address of the new

procedure.
Opcode: callx 86H MEM
See Also: bal, call, calls, ret

6-28

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.16 chkbit

Mnemonic: chkbit Check Bit
Format: chkbit bitpos, src2
reg/lit reg/lit
Description: Checks bit in src2 designated by bitpos and sets condition code according to

value found. When bit is set, condition code is set to 010,; when bit is clear,
condition code is set to 000,.

Action: if (((src2 & 2**(bitpos % 32)) == 0)

AC.cc =000,

else

AC.cc =010,
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5) _
Example: chkbit 13, g8 # Checks bit 13 in g8 and sets

AC.cc according to the result.

Opcode: chkbit 5AEH REG
See Also: alterbit, clIrbit, notbit, setbit, cmpi, cmpo
Side Effects: Sets the condition code in the arithmetic controls.

6-29

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.17 clrbit

Mnemonic: clrbit Clear Bit
Format: clrbit bitpos, src, dst
reg/lit reg/lit reg
Description: Copies src vaueto dst with one bit cleared. bitpos operand specifies bit to be
cleared.
Action: dst = src & ~(2** (bitpos%32));
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: clrbit 23, g3, g6 # g6 = g3 with bit 23 cl eared.
Opcode: clrbit 58CH REG
See Also: alterbit, chkbit, notbit, setbit

6-30

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.18 cmpdeci, cmpdeco

Mnemonic: cmpdeci Compare and Decrement Integer
cmpdeco Compare and Decrement Ordinal
Format: cmpdec* srcl, src2, dst
reg/lit reg/lit reg
Description: Compares src2 and srcl vaues and sets the condition code according to

comparison results. src2 is then decremented by one and result is stored in
dst. The following table shows condition code setting for the three possible
results of the comparison.

Table 6-6. Condition Code Settings

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values.

Action: if(srcl < src2)
AC.cc =100,
elseif(srcl == src2)
AC.cc =010,
else
AC.cc =001,
dst =src2-1; # Overflow suppressed for cmpdeci.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: cnpdeci 12, g7, gl # Conpares g7 with 12 and sets
AC.cc to indicate the result
9l = g7 - 1.
Opcode: cmpdeci 5A7H REG
cmpdeco 5A6H REG
See Also: cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.

6-31

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.19 cmpinci, cmpinco
Mnemonic: cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal
Format: cmpinc* srcl, src2, dst
reg/lit reg/lit reg
Description: Compares src2 and srcl values and sets the condition code according to

comparison results. src2 is then incremented by one and result is stored in
dst. The following table shows condition code settings for the three possible
comparison results.

Table 6-7. Condition Code Settings

Condition Code Comparison
100, srcl<src2
010, srcl = src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpinci, integer overflow is ignored to alow looping up through the
maximum integer values.

Action: if (srcl<src2)
AC.cc =100,
elseif (srcl == src2)
AC.cc =010,
else
AC.cc =001,

dst=src2+1; #Overflow suppressed for cmpinci.

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)

Example: cnpinco r8, g2, g9 # Conpares the values in g2
and r8 and sets AC.cc to
indicate the result:
#9099 = g2 + 1

Opcode: cmpinci 5A5H REG

cmpinco 5A4H REG
See Also: cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.

6-32

intel

6.2.20 COMPARE

INSTRUCTION SET REFERENCE

Mnemonic: cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short
Format: cmp* srcl, src2
reg/lit reg/lit
Description: Compares src2 and srcl values and sets condition code according to

comparison results. The following table shows condition code settings for the

three possible comparison results.
Table 6-8. Condition Cod

e Settings

Condition Code

Comparison

100, srcl<src2
010, srcl = src2
001, srcl> src2

cmpi* followed by a branch-if instruction
compare-integer-and-branch instruction. The latter method of comparing and
branching produces more compact code; however, the former method can
execute byte and short compares without masking. The same is true for
cmpo* and the compare-ordinal-and-branch instructions.

Action: # For cmpo, cmpi, N = 31.
For cmpos, cmpis, N = 15,
For cmpob, cmpib, N = 7.

if (src1[N:0] < src2[N:0])
AC.cc =100,

elseif (src1[N:0] == src2[N:Q])
AC.cc =010,

elseif (src1[N:0] > src2[N:0])
AC.cc =001,

Faults: STANDARD

is equivdent to a

Refer to section 6.1.6, “Faults” (pg. 6-5)

6-33

int
INSTRUCTION SET REFERENCE I ‘é““

Example:

Opcode:

See Also:

Side Effects:

Notes:

6-34

cnpo r9, 0x10 # Conmpares the value in r9 with 0x10
and sets AC.cc to indicate the

result.

bg xyz # Branches to xyz if the value of r9
was greater than 0x10.

cmpi 5A1H REG

cmpib 595H REG

cmpis 597H REG

cmpo 5A0H REG

cmpob 594H REG

cmpos 596H REG

COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco,
concmpi, concmpo

Sets the condition code in the arithmetic controls.

The core instructions cmpib, cmpis, compob and compos are not imple-
mented on 80960Cx, Kx and Sx processors.

intel

6.2.21

Mnemonic:

Format:

Description:

INSTRUCTION SET REFERENCE

COMPARE AND BRANCH<cc>

cmpibe Compare Integer and Branch If Equal
cmpibne Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater
cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered
cmpobe Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal
cmpobg Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal
cmpib* srcl, src2, targ

reg/lit reg disp
cmpob* srcl, src2, targ

reg/lit reg disp

Compares src2 and srcl values and sets AC register condition code according
to comparison results. When logical AND of condition code and mask part of
opcode is not zero, the processor branches to instruction specified with targ;
otherwise, the processor goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be alabel which specifiestarget
instruction’s IP.

Functions these instructions perform can be duplicated withpa or cmpo
followed by a branch-if instruction, as described s$ection 6.2.20,
“COMPARE” (pg. 6-33)

6-35

int
INSTRUCTION SET REFERENCE I ‘é““

Action:

Faults:

Example:

6-36

The following table shows the condition code mask for each instruction. The
mask isin bits 0-2 of the opcode.

Table 6-9. Condition Code Mask Descriptions

Instruction Mask Cg:fzjr;tcign
cmpibno 000, No Condition
cmpibg 001, srcl > src2
cmpibe 010, srcl = src2
cmpibge 011, srcl 2 src2
cmpibl 100, srcl < src2
cmpibne 101, srcl # src2
cmpible 110, srcl < src2
cmpibo 111, Any Condition
cmpobg 001, srcl > src2
cmpobe 010, srcl = src2
cmpobge 011, srcl 2 src2
cmpobl 100, srcl < src2
cmpobne 101, srcl # src2
cmpoble 110, srcl < src2
cmpibo aways branches, cmpibno never branches.

if(srcl < src2)
AC.cc =100,

elseif(srcl == src2)
AC.cc =010,

else
AC.cc =001,

if((mask && AC.cc) !=000,)

{ temp[31:2] =sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] =0;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)

Assunme g3 < g9

cnpi bl g3, g9, xyz # g9 is conpared with g3;
1P = xyz.

assume 19 = r7

cnpobge 19, r7, xyz# 19 is conpared with r7;
1P = xyz.

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Opcode: cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR

See Also: BRANCH<cc>, cmpi, cmpo, bal, balx

Side Effects: Sets the condition code in the arithmetic controls.

6-37

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.22 concmpi, concmpo
Mnemonic: concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal
Format: concmp* srcl, src2
reg/lit reg/lit
Description: Compares src2 and srcl values when condition code bit 2 is not set. When

comparison is performed, condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generaly used after a compare instruction to test whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3 value is
between g5 and g6 values, where g5 is assumed to be less than g6. First a
comparison (cmpo) of g3 and g6 is performed. When g3 islessthan or equal
to g6 (i.e., condition code is either 010, or 001,), a conditional comparison
(concmpo) of g3 and g5 is then performed. When g3 is greater than or equal
to g5 (indicating that g3 is within the bounds of g5 and g6), condition code is
set to 010,; otherwise, it is set to 001,.

Action: if (AC.cc!=1XX,)
{ if(srcl <=src2)
AC.cc = 010y;
else
AC.cc =001,
}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: cnpo g6, g3 # Conpares g6 and g3
and sets AC. cc.
concnpo g5, @3 # 1f AC.cc < 100, (g6 = g3)

g5 is conpared with g3.

At this point, depending on the register ordering, the condition code is one of
those listed offabl e 6- 10.

6-38

u I
I ‘d” INSTRUCTION SET REFERENCE

Table 6-10. concmpo example: register ordering and CC

Order CcC
05<g6<g3 100,
05<9g6 =903 010,
g5<9g3<g6 010,
g5=9g3<g6 010,
g3<g5<g6 001,
Opcode: concmpi 5A3H REG
concmpo 5A2H REG
See Also: cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND _
BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.

6-39

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.23 dcctl

Mnemonic: dcctl Data-cache Control
Format: srcl, src2, src/dst
reg/lit reg/lit reg
Description: Performs management and control of the data cache including disabling,

enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of srcl. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

Table 6-11. dcctl Operand Fields

Function srcl src2 src/dst
Disable D-cache 0 NA NA
Enable D-cache 1 NA NA
Global invalidate 2 NA NA
D-cache
Ensure cacihe 3 NA NA
coherency
src: NA
Get D-cache 4 NA dst: Receives
status D-cache status
(see Figure 6-1).
Reserved 5 NA NA
Store D-cache to Destination src. D-cache set
memo 6 address for #'s to be stored
Y cache sets (see Figure 6-1).
Reserved 7 NA NA
Quick invalidate 8 1 NA
Reserved 9 NA NA

1. Invalidates data cache on 80960Jx.

6-40

u I
I ‘d” INSTRUCTION SET REFERENCE

srcl Format

31 8

Function Type

src/dst Format for Data Cache Status
31 28 27 16 15 12 11 8 7 4 3 0

of Ways-1 2 2

log2 (# of Sets)—T)J T

log2 (Atoms/Line Enabled = 1
log2 (Bytes/Atom Disabled = 0

src/dst Format for Store Data Cache Sets to Memory
31 16 15 0

Ending Set # Starting Set #

Reserved,
(Initialize to 0)

Figure 6-1. dcctl src1 and src/dst Formats

6-41

INSTRUCTION SET REFERENCE

intel

Table 6-12. DCCTL Status Values and D-Cache Parameters

6-42

Value on 'Value on Value on
value i960JA CPU 1960JDAF i960JT CPU
CPU
bytes per atom 4 4
atoms per line 4 4
number of sets 64 128 (full) 256
number of ways 1 (Direct) 1 (Direct) 1 (Direct)
cache size 1-Kbytes 2-Kbytes(full) 4-Kbytes
Status[0] (enable / disable) Oorl Oorl Oorl
Status[1:3] (reserved) 0 0 0
Status[7:4] (log,(bytes per atom)) 2 2 2
Status[11:8] (log,(atoms per line)) 2 2 2
?;?;;1)5[15:12] (logz(number of 6 7 (full) 8 (full)
Status[27:16] (number of ways -1) | O 0 0
Destination
0 Address
(DA)
Tag (Starting set) DA + 4H
Valid Bits (Starting set) DA + 8H
(@) Word 0 DA + CH
=) word 1 DA + 10H
; Word 2 DA + 14H
Word 3 DA + 18H
0 DA + 1CH
o Tag (Starting set + 1) DA + 20H
§ Valid Bits (Starting set + 1) DA + 24H

Figure 6-2. Store Data Cache to Memory Output Format

u I
I ‘d” INSTRUCTION SET REFERENCE

80960JT Cache Tag Format (4 Kbyte Cache)

31 20 19 0

80960JT Actual Address Bits 31:12

80960JF/JD Cache Tag Format (2 Kbyte Cache)

31 2120 0

80960JF/JD Actual Address Bits 31:11

80960JA Cache Tag Format (1 Kbyte Cache)

31 2221 0

80960JA Actual Address Bits 31:10

Valid Bits Values

Valid Bit for Word 3 of current Set and Way 4T
Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 1 of current Set and Way
Valid Bit for Word 0 of current Set and Way
Tag Valid Bit for current Set and Way

Figure 6-3. D-Cache Tag and Valid Bit Formats

6-43

INSTRUCTION SET REFERENCE

Action:

6-44

intel

if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);
order_wrt(previous_operations);
switch (srcl[7:0]) {

caseO:

case 1.

case 2.

case 3.

case 4.

Disable data cache.

disable Dcache();

break;

Enable data cache.

enable_Dcache();

break;

Global invalidate data cache.

invalidate_Dcache();

break;

Ensure coherency of data cache with memory.

Causes data cache to be invaidated on this processor.
ensure_Dcache_coherency();

break;

Get data cache status into src_dst.

if (Dcache_enabled) src_dst[0] = 1,

elsesrc_dst[0] =0;

Atom is 4 bytes.

src_dst[7:4] = log2(bytes per atom);

4 atoms per line.

src_dst[11:8] = log2(atoms per line);

src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; # in lines per set
cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break;

u I
I ‘d” INSTRUCTION SET REFERENCE

case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number.
end =src_dst[31:16] # Ending set number.

(zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets- 1;
if (start > end) generate fault
(OPERATION.INVALID_OPERAND);
memadr = src2; # Must beword-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){
Set_Dataisdescribed at end of this code flow.
memory[memadr] = Set_Date[set];
memadr += 4;
for (way = 0; way < numb_ways, way++)
{ memory[memadr] = tags[set][way];
memadr += 4;
memory[memadr] = valid_bitg[set][way];
memadr += 4;
for (word = 0; word < words_in_line; word++)
{memory[memadr] =
Dcache_line[set][way][word];

memadr += 4;
}
}
}
break;
case 8: # invalidate the lines that came from LM Ts that had DCIIR set

at the time the line was allocated.

#NOTE : for compatibility with future products that have

several independent regions, the value of src2 should be one.
invalidate DCIIR_lines_in_DCache;
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;
}

order_wrt(subsequent_operations)

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.
OPERATION.INVALID_OPERAND

6-45

int
INSTRUCTION SET REFERENCE I ‘d““

Example:

Opcode:
See Also:

Notes:

6-46

g0 = 6, gl = 0x10000000,
g2 = 0x001F0001
dcctl g0, 91, g2 # Store the status of D cache

sets 1-0x1F to nenory starting
at 0x10000000.

dcctl 65CH REG
sysctl

DCCTL function 6 stores data-cache sets to a target range in external mem-
ory. For any memory location that is cached and a so within the target range
for function 6, the corresponding word-valid bit is cleared after function 6
completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In al
cases, even when the cache sets to store to external memory overlap the cache
sets that map the target range in external memory, DCCTL function 6 dways
returns the state of the cache asit existed when the DCCTL was issued.

Thisinstruction isimplemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
CESSOors.

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.24 divi, divo

Mnemonic: divi Divide Integer
divo Divide Ordinal
Format: div* srcl, src2, dst
reg/lit reg/lit reg
Description: Divides src2 value by srcl vaue and stores result in dst. Remainder is discarded.

For divi, an integer-overflow fault can be signaled.

Action: divo:
if (srcl==0)
{ dst =undefined_vaue;

generate fault (ARITHMETIC.ZERO_DIVIDE);
else
dst = src2/srcl;

divi:
if (srcl==0)
{ dst=undefined_vaue;
generate fault (ARITHMETIC.ZERO_DIVIDE);}
elseif ((src2==-2**31) && (srcl ==-1))
{ dst =-2**31

if AC.om==1)
AC.of =1,
else
generate fault (ARITHMETIC.OVERFLOW);
}
else
dst =src2/ srcl;

Faults: STANDARD Refer to Section 6.1.6 on page 6-5.
ARITHMETIC.ZERO_DIVIDE The srcl operand is 0.
ARITHMETIC.OVERFLOW Result too large for destination register (divi

only). When overflow occurs and AC.om=1,
fault is suppressed and AC.of is set to 1.
Result’s least significant 32 bits are stored in

dst.
Example: divor3, r8, ril3 # r1l3 =r8/r3
Opcode: divi 74BH REG
divo 70BH REG

See Also: ediv, mulo, muli, emul

6-47

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.25 ediv
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

6-48

ediv Extended Divide
ediv srcl, src2, dst
reg/lit reg/lit reg

Divides src2 by srcl and stores result in dst. The src2 valueis along ordinal
(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significantsti&smust
be an even numbered register (i.e., g0, g2, ... or r4, r6, r&cl)value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designatedshyquotient is stored in the
next highest numbered registdst must be an even numbered register (i.e.,
g0, g2, ... 14, 16, 18, ...).

This instruction performs ordinal arithmetic.

When this operation overflows (quotient or remainder do not fit in 32 bits),
no fault is raised and the result is undefined.

if((reg_number(src2)%2 != 0) || (reg_number(dst)%2 != 0))
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);
}
else if(srcl == 0)
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);
}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];
#Remainder
dst[0] = (src2 + reg_value(src2[1]) * 2**32
- ((src2 + reg_value(src2[1]) * 2**32 / srcl) * srcl);

}
STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.ZERO_DIVIDE Thesrcl operand is 0.
ediv g3, g4, gl0 # 910 = remai nder of g4, g5/g3

g1l = quotient of g4, 95/g3
ediv 671H REG

emul, divi, divo

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.26 emul

Mnemonic: emul Extended Multiply
Format: emul srcl, src2, dst
reg/lit reg/lit reg
Description: Multiplies src2 by srcl and storesthe result in dst. Result isalong ordinal (64

bits) stored in two adjacent registers. dst specifies lower numbered register,
which receives the result's least significant bitlst must be an even
numbered register (i.e., g0, g2, ... r4, r6, 18, ...).

This instruction performs ordinal arithmetic.

Action: if(reg_number(dst)%2 != 0)
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);
}
else

{ dst[0] = (srcl * src2)[31:0];
dst[1] = (srcl * src2)[63:32];

}
Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
Example: emul r4, r5, g2 # 92,093 =r4 * r5,
Opcode: emul 670H REG
See Also: ediv, muli, mulo

6-49

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.27
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Notes:

6-50

eshro Extended Shift Right Ordinal
eshro srcl, sre2, dst
reg/lit reg/lit reg

Shifts src2 right by (srcl mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 valueis along ordina (i.e., 64 bits) contained in two adjacent registers.

src2 operand specifies the lower numbered register, which contains operand’s
least significant bitssrc2 operand must be an even numbered register (i.e.,
r4, r6, r8, ... or go, g2).

srcl operand is a single 32-bit register or literal where the lower 5 bits
specify the number of places that #ne2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stordsl.in

if(reg_number(src2)%2 != 0)

{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];
STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)

eshro g3, g4, gll # g1l = g4,95 shifted right by
(g3 MOD 32).

eshro 5D8H REG
SHIFT, extract

This core instruction is not implemented on the Kx and Sx 80960 processors.

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.28 extract
Mnemonic: extract Extract
Format: extract bitpos len src/dst
reg/lit reg/lit reg
Description: Shifts aspecified bit field in src/dst right and zero fillsbitsto | eft of shifted bit

field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

Action: src_dst = (src_dst >> min(bitpos, 32))
& ~ (OXFFFFFFFF << len);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: extract 5, 12, g4 # g4 = g4 with bits 5 through _
16 shifted right.
Opcode: extract 651H REG
See Also: modify

6-51

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.29

Mnemonic:

Format:

Description:

Action:

6-52

FAULT<cc>

faulte Fault If Equal

faultne Fault If Not Equal

faultl Fault If Less

faultle Fault If Less Or Equal
faultg Fault If Greater

faultge Fault If Greater Or Equal
faulto Fault If Ordered

faultno Fault If Not Ordered
fault*

Raises a constraint-range fault when the logical AND of the condition code
and opcode’s mask part is not zero. Famitno (unordered), fault is raised
when condition code is equal to G00

faulto andfaultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault)
operations involving real numbers.

The following table shows the condition code mask for each instruction. The
mask is opcode bits 0-2.

Table 6-13. Condition Code Mask Descriptions

Instruction Mask Condition
faultno 000, |Unordered
faultg 001, |Greater
faulte 010, |Equal
faultge 011, Greater or equal
faultl 100, |Less
faultne 101, Not equal
faultle 110, |Lessor equal
faulto 111, |Ordered

For all except faultno:
if(mask && AC.cc != 00Q)
generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc == 00Q)
generate_fault(CONSTRAINT.RANGE);

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)

CONSTRAINT.RANGE When condition being tested is true.
Example: # Assume (AC.cc AND 110,) #000,

faultle # Generat e CONSTRAI NT_RANGE faul t
Opcode: faulte 1AH CTRL

faultne 1DH CTRL

faultl 1CH CTRL

faultle 1EH CTRL

faultg 19H CTRL

faultge 1BH CTRL

faulto 1FH CTRL

faultno 18H CTRL
See Also: BRANCH<cc>, TEST<cc>

6-53

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.30

Mnemonic:

Format:

Description:

Action:

Faults:
Example:

Opcode:

6-54

flushreg

flushreg Flush Local Registers
flushreg

Copies the contents of every cached register set, except the current set, to its
associated stack frame in memory. The entire register cacheis then marked as
purged (or invaid). On areturn to a stack frame for which the local registers
are not cached, the processor reloads one set of the locals from memory.

flushreg is provided to alow a debugger or application program to
circumvent the processor’'s normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack
frames may be cachedflashreg must be executed prior to modifying the
PFP to return to a frame other than the one directly below the current frame.

To reduce interrupt latencylushreg is abortable. When an interrupt of
higher priority than the current process is detected whilehreg is
executingflushreg flushes at least one frame and aborts. After executing the
interrupt handler, the processor returns to thehreg instruction and
re-executes itlushreg does not reflush any frames that were flushed before
the interrupt occurredfilushreg is not aborted by high priority interrupts
when tracing is enabled in the PC or when any faults are pending at the time
of the interrupt.

Each local cached register set except the current one is flushed to its

associated stack frame in memory and marked as purged, meaning that they
are reloaded from memory if and when they become the current local register

set.

STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
flushreg
flushreg 66DH REG

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.31 fmark

Mnemonic: fmark Force Mark
Format: fmark
Description: Generates a mark trace event. Causes a mark trace event to be generated,

regardless of mark trace mode flag setting, providing the trace enable bit, bit O
in the Process Controls, is set.

For more information on trace fault generation, refer to CHAPTER 9,
TRACING AND DEBUGGING.

Action: A mak trace event is generated, independent of the setting of the
mark-trace-mode flag.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
TRACE.MARK A TRACE.MARK fault is generated if
PC.te=1.
Example: # Assune PC.te =1
f mar k

Mark trace event is generated at this point in the
instruction stream

Opcode: fmark 66CH REG

See Also: mark

6-55

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.32 halt

Mnemonic: halt Halt CPU
Format: halt srcl
reg/lit
Description: Causes the processor to enter HALT mode, which is described in. Entry into

Halt mode allowstheinterrupt enable state to be conditionally changed based
on the value of srcl.

Table 6.14. Condition Changes

srcl Operation
0 Disable interrupts and halt
1 Enable interrupts and halt

Use current interrupt enable

2 state and halt

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes a the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

Action: implicit_syncf;
if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);
switch(srcl) {

case 0 # Disableinterrupts. set ICON.gie.

globa _interrupt_enable = true; break;
case 1. # Enableinterrupts. clear ICON.gie.

globa _interrupt_enable = falseg; break;
case 2. # Use the current interrupt enabl e state.

break;
default:

generate fault(OPERATION.INVALID_OPERAND);
break;

}

ensure_bus is_quiescient;
enter_ HALT_mode;

6-56

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.
Example: #10ON.gie =1, g0 =1, Interrupts disabl ed.
halt g0 # Enable interrupts and halt.
Opcode: halt 65DH REG
Notes: This instruction is implemented on the 80960Rx and 80960Jx processor fam-

ilies only, and may or may not be implemented on future i960 processors.

6-57

intel

INSTRUCTION SET REFERENCE

6.2.33 icctl
Mnemonic: icctl Instruction-cache Control
Format: icctl srcl, sre2, src/dst
reg/lit reg/lit reg
Description: Performs management and control of the instruction cache including

disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of srcl.
Some operations also use src2 and src/dst. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior. For specific function setup, see the
following tables and diagrams:

Table 6-15. icctl Operand Fields

6-58

Function srcl src2 src/dst
Disable I-cache 0 NA NA
Enable I-cache 1 NA NA
Invalidate I-cache 2 NA NA
Load and lock src: Starting Number of ways
3 address of code
I-cache to lock.
to lock.
dst: Receives
Stgtlj_scaChe 4 NA status (see
Figure 6-4).
Get I-cache dst: Receives
locking status 5 NA status (see
g Figure 6-4)
Store I-cache Destination src. I-cache set
sets to memo 6 address for cache | #'s to be stored
Y sets (see Figure 6-4).

intel

INSTRUCTION SET REFERENCE

srcl Format

31 8 7 0
Function Type
src/dst Format for I-cache Status
31 28 27 16 15 12 11 8 7 4 3 0
of Ways-1

log, (# of Sets) —T J T
log, (Atoms/Line) Enabled = 1
log, (Bytes/Atom) Disabled =0

src/dst Format for I-cache Locking Status
31 24 23 8 7 0
of ways that Way Size in Words # of ways that Lock
are currently locked (OFFFH) (04H)
| |
Constants

31

src/dst Format for Store I-cache Sets to Memory

16 15

Ending Set #

Starting Set #

Reserved,
(Initialize to 0)

Figure 6-4.

icctl src1 and src/dst Formats

6-59

INSTRUCTION SET REFERENCE

6-60

intel

Table 6-16. ICCTL Status Values and Instruction Cache Parameters

Value on Value on Value on
value i960JA CPU 1960JDIF | 196037A CPU
CPU

bytes per atom 4 4
atoms per line 4 4
number of sets 64 128 512
number of ways 2 2 2
cache size 2-Kbytes 4-Kbytes 16-Kbytes
Stas[0] (enable / Oor1l Oor1l Oorl
disable)
Status[1:3] (reserved) 0 0 0
Status[7:4] (log2(bytes

2 2 2
per atom))
Status[11:8] _ 2 2 2
(log2(atoms per line))
Status[15:12] 6 7 9
(log2(number of sets))
Status[27:16] (number

1 1 1
of ways - 1)
Lock Status[7:0]
(number of blocks that 1 1 1
lock)
L_ock_Status[23:8] (block 256 512 2048
size in words)
Lock Status[31:24]
(number of blocks that Oorl Oorl Oorl

are locked)

u I
I ‘d” INSTRUCTION SET REFERENCE

Destination
Set_Data [Starting Set] Address
(DA)
Tag (Starting set) DA + 4H
Valid Bits (Starting set) DA + 8H
o Word 0 DA + CH
=) word 1 DA + 10H
; Word 2 DA + 14H
Word 3 DA + 18H
Tag (Starting set) DA + 1CH
Valid Bits (Starting set) DA + 20H
;' Word 0 DA + 24H
g Word 1 DA + 28H
Word 2 DA + 2CH
Word 3 DA + 30H
Set_Data [Starting Set + 1] DA + 34H
o Tag (Starting set + 1) DA + 38H
§ Valid Bits (Starting set + 1) DA + 3CH

Figure 6-5. Store Instruction Cache to Memory Output Format

6-61

INSTRUCTION SET REFERENCE

intel.

Set Data I-Cache Values

|I-Cache Set Data Value —T

0 =Way 0 is least recently used
1 =Way 1 is least recently used

80960JT Cache Tag Format (16 Kbyte Cache)

1918 0
80960JF/JD Cache Tag Format (4 Kbyte Cache)
2120 0
80960JA Cache Tag Format (2 Kbyte Cache)
31 2221 0
80960JA Actual Address Bits 31:10
Valid Bits Values
0

Valid Bit for Word 3 of current Set and Way 4
Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 1of current Set and Way
Valid Bit for Word 0 of current Set and Way

Tag Valid bit for current Set and Way

6-62

Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Action: if (PC.em != supervisor)
generate fault(TYPE.MISMATCH);
switch (src1[7:0]) {

case O: # Disableinstruction cache.
disable_instruction_cache();
break;

case 1: # Enable instruction cache.
enable_instruction_cache();
break;

case 2. # Globally invalidate instruction cache.

Includes|ocked lines also.
invalidate_instruction_cache();
unlock_icache();
o
case 3: #Load & Lock code into Instruction-Cache
src_dst has number of contiguous blocks to lock.
src2 has starting address of code to lock.
On thei960 Jx, src2 is aligned to a quad word boundary
aligned_addr = src2 & OXFFFFFFFQ;
invalidate(l-cache); unlock(l-cache);
for =0;j <src_dst; j++)
{ way =way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)
{ set=set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =
memory[i];
update tag n valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
case 4 # Get instruction cache statusinto src_dst.
if (Icache_enabled) src_dst[0] = 1,
elsesrc_dst[0] =0;
Atom is 4 bytes.
src_dst[7:4] = log2(bytes per atom);
4 atoms per line.
src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; #in lines per set
cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12])
break;

6-63

int
INSTRUCTION SET REFERENCE I ‘d““

caseb: # Get instruction cache locking status into dst.
src_dst[7:0] = number_of _blocks that_lock;
src_dst[23:8] = block_size_in_words;
src_dst[31:24] = number_of blocks that_are locked,;

break;
case 6: # Store instr cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number

end =src_dst[31:16] # Ending set number
(zero-origin).
if (end >= Icache_max_sets)
end = lcache_max_sets - 1,

if (start > end)
generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.

if(0x3 & memadr !=0)
generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){
Set_Dataisdescribed at end of this code flow.
memory[memadr] = Set_Data|set];
memadr += 4;
for (way = 0; way < numb_ways; way++)
{memory[memadr] = tagq set][way];

memadr += 4;
memory[memadr] = valid_bits[set][way];
memadr += 4;
for (word = 0; word < words _in_line;
word++)
{ memory[memadr] =
Icache_line[set][way][word];
memadr += 4,
}
} } break;

default: # Reserved.
generate fault(OPERATION.INVALID_OPERAND);
break;}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

6-64

u I
I ‘d” INSTRUCTION SET REFERENCE

Example: # g0 = 3, g1=0x10000000, g2=1
icctl 90,491,092 # Load and lock 1 block of cache
(one way) with
location of code at starting
0x10000000.

Opcode: icctl 65BH REG

See Also: sysctl

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
CESSors.

6-65

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.34 intctl
Mnemonic: intctl Global Enable and Disable of Interrupts

Format: intctl srcl dst
reg/lit reg

Description: Globally enables, disables or returns the current status of interrupts
depending on the value of srcl. Returns the previous interrupt enable state (1
for enabled or O for disabled) in dst. When the state of the globa interrupt
enable is changed, the processor ensures that the new state is in full effect
before the instruction completes. (This instruction isimplemented by manip-
ulating ICON.gie.)

srclValue Operation

0 Disables interrupts

1 Enables interrupts

Returns current interrupt enable

2 status

Action: if (PC.em != supervisor)
generate fault(TYPE.MISMATCH);
old_interrupt_enable = global_interrupt_enable;
switch(srcl) {
case 0: # Disable. Set ICON.gie to one.
globaly_disable_interrupts;
globa _interrupt_enable = falseg;
order_wrt(subsequent_instructions);
break;
case 1. # Enable. Clear ICON.gieto zero.
globaly_enable interrupts;
globa_interrupt_enable = true;
order_wrt(subsequent_instructions);

break;
case 2. # Return status. Return ICON.gie
break;
default:
generate fault(OPERATION.INVALID_OPERAND);
break;
}
if(old_interrupt_enable)
dst=1;
else
dst =0;

6-66

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

Example: # ICON.gie = 0, interrupts enabl ed

intctl 0, g4 # Disable interrupts (ICON.gie = 1)
#9094 =1

Opcode: intctl 658H REG

See Also: intdis, inten

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-

cessor families only, and may or may not be implemented on future i960 pro-

o _

6-67

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.35 intdis

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Notes:

6-68

intdis Global Interrupt Disable
intdis
Globally disables interrupts and ensures that the change takes effect before

the instruction completes. This operation is implemented by setting
ICON.gieto one.

if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);
Implemented by setting ICON.gie to one.
globally_disable_interrupts;
global_interrupt_enable = fase;
order_wrt(subsequent_instructions);

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

ICON.gie = 0, interrupts enabl ed

intdis # Disable interrupts.
ICON.gie =1

intdis 5B4H REG

intctl, inten

This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.36 inten

Mnemonic: inten globa interrupt enable

Format: inten

Description: Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation isimplemented by clearing ICON.gie to
zero.

Action: if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);
Implemented by clearing ICON.gie to zero.
globally_enable interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5) _

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

Example: # ICON.gie = 1, interrupts disabled.

i nten # Enable interrupts.
ICON.gie =0

Opcode: inten 5B5H REG

See Also: intctl, intdis

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
Cessors.

6-69

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.37 LOAD

Mnemonic: Id Load
Idob Load Ordinal Byte
Idos Load Ordinal Short
Idib Load Integer Byte
Idis Load Integer Short
Idl Load Long
Idt Load Triple
Idg Load Quad
Format: Id* src, dst
mem reg
Description: Copies byte or byte string from memory into aregister or group of successive
registers.

The src operand specifiesthe address of first byte to be loaded. The full range
of addressing modes may be used in specifying src. Refer to CHAPTER 2,
DATA TYPES AND MEMORY ADDRESSING MODES for more infor-
mation.

dst specifies a register or the first (lowest numbered) register of successive
registers.

Idob and Idib load abyte and Idos and Idis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

Id, Idl, Idt and Idq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For Idl, dst must specify an even numbered register (i.e., g0, g2...). For Idt
and Idg, dst must specify aregister number that is a multiple of four (i.e., g0,
04, g8, 912, r4, r8, r12). Results are unpredictable when registers are not
aligned on the required boundary or when data extends beyond register g15
or r15for Idl, Idt or Idq.

Action: Id:
dst = read_memory(effective_address)[31:0];
if((effective_address[1:0] != 00,) && unaligned _fault_enabled)
generate fault(OPERATION.UNALIGNED);

ldob:

dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;

6-70

u I
I ‘d” INSTRUCTION SET REFERENCE

Idib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)
dst[31:8] = 0x000000;
else
dst[31:8] = OxFFFFFF;

ldos:
dst = read_memory(effective_address)[15:0];
Order depends on endianism. See
section 2.2.2, “Byte Ordering” (pg. 2-4)
dst[31:16] = 0x0000;
if((effective_address[0] !=4) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

Idis:
dst[15:0] = read_memory(effective_address)[15:0];
Order depends on endianism. See
section 2.2.2, “Byte Ordering” (pg. 2-4)
if(dst[15] == Q)
dst[31:16] = 0x0000;
else
dst[31:16] = OXFFFF;
if((effective_address[0] !=4) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

Idl:

if((reg_number(dst) % 2) = 0)
generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

else

{ dst=read_memory(effective_address)[31:0];
dst_+ 1 =read_memory(effective_address_+_ 4)[31:0];
if((effective_address[2:0] = 0QD && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

}

Idt:

if((reg_number(dst) % 4) = 0)
generate_faultf(OPERATION.INVALID_OPERAND);
dst not modified.

else

{ dst=read_memory(effective_adddress)[31:0];
dst_+ 1 =read_memory(effective_adddress_+ 4)[31:0];

6-71

int
INSTRUCTION SET REFERENCE I ‘é““

Faults:

Example:

Opcode:

See Also:

6-72

dst_+ 2 =read memory(effective_adddress + 8)[31:0];
if((effective_address[3:0] != 0000,) & & unaligned fault_enabled)
generate fault(OPERATION.UNALIGNED);
}

ldqg:
if((reg_number(dst) % 4) !=0)
generate fault(OPERATION.INVALID_OPERAND);
dst not modified.
else
{ dst=read_memory(effective adddress)[31:0];
Order depends on endianism.
See section 2.2.2, “Byte Ordering” (pg. 2-4)
dst_+ 1 =read_memory(effective_adddress_+ 4)[31:0];
dst_+ 2 =read_memory(effective_adddress_+_ 8)[31:0];
dst_+ 3 =read_memory(effective_adddress_+_ 12)[31.:0];
if((effective_address[3:0] = 00@P&& unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

}

STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
OPERATION.UNALIGNED
OPERATION.INVALID_OPERAND

[dl 2450 (r3), r10 # r10, r11 =r3 + 2450 in

menory
Id 90H MEM
Idob 80H MEM
Idos 88H MEM
Idib COH MEM
Idis C8H MEM
Idl 98H MEM
Idt AOH MEM
Idg BOH MEM

MOVE, STORE

intel

6.2.38 Ida
Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

INSTRUCTION SET REFERENCE

Ida Load Address

Ida Src, dst
mem reg
efa

Compuites the effective address specified with src and storesit in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of thisinstruction isto load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with alitera asthe src operand.)

dst = effective_address;

STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
lda 58 (g9), g1 # gl = g9+58

| da 0x749, r8 # r8 = 0x749

Ida 8CH MEM

6-73

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.39 mark

Mnemonic: mark Mark
Format: mark
Description: Generates mark trace fault when mark trace mode is enabled. Mark trace

mode is enabled when the PC register trace enable hit (bit 0) and the TC
register mark trace mode bit (bit 7) are set.

When mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to CHAPTER 9,
TRACING AND DEBUGGING.

Action: if(PC.te && TC.mkK)
generate fault(TRACE.MARK)
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
TRACE.MARK Trace fault is generated if PC.te=1 and
TC.mk=1.
Example: # Assune that the mark trace
node is enabl ed.
ld xyz, r4
addi r4, r5, r6
mar k
Mark trace event is generated
at this point in the
instruction stream
Opcode: mark 66BH REG
See Also: fmark, modpc, modtc

6-74

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.40 modac

Mnemonic: modac Modify AC
Format: modac mask, src, dst
reg/lit reg/lit reg
Description: Reads and modifies the AC register. src contains the value to be placed in the

AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, itsinitial state is copied into
dst.

Action: temp = AC;
AC = (src & mask) | (AC & ~mask);

dst = temp;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5) _

Example: nodac gl, g9, gl2 # AC = g9, masked by gl.
gl2 = initial value of AC

Opcode: modac 645H REG
See Also: modpc, modtc
Side Effects: Sets the condition code in the arithmetic controls.

6-75

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.41 modi

Mnemonic: modi Modulo Integer
Format: modi srcl, src2, dst
reg/lit reg/lit reg
Description: Divides src2 by srcl, where both are integers and stores the modulo
remainder of the result in dst. When the result is nonzero, dst has the same
sign assrcl.
Action: if(srcl==0)

{ dst=undefined value;
generate fault(ARITHMETIC.ZERO_DIVIDE);
}
dst = src2 - (src2/srcl) * srcl,;
if((src2*srcl<0) && (dst!'=0))

dst = dst + srcl;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.ZERO_DIVIDE Thesrcl operand is zero.
Example: nmodi r9, r2, r5 # r5 = nodulo (r2/r9)
Opcode: modi 749H REG
See Also: divi, divo, remi, remo
Notes: modi generates the correct result (0) when computiﬁb Akd -1, although

the corresponding 32-bit division does overflow, it does not generate a fault.

6-76

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.42 modify

Mnemonic: modify Modify
Format: modify mask, src, src/dst
reg/lit reg/lit reg
Description: Modifies selected bitsin src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
src/dst.
Action: src_dst = (src & mask) | (src_dst & ~mask);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: nodi fy g8, g10, r4 # r4 = g10 masked by @8.
Opcode: modify 650H REG
See Also: alterbit, extract

6-77

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.43 modpc

Mnemonic: modpc Modify Process Controls
Format: modpc sre, mask, src/dst
reg/lit reg/lit reg
Description: Reads and modifies the PC register as specified with mask and src/dst. src/dst

operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, its initial value is copied into src/dst. The
src operand is a dummy operand that should specify the same register as the
src/dst operand.

The processor must be in supervisor mode to use this instruction with a
non-zero mask value. When mask=0, this instruction can be used to read the
process controls, without the processor being in supervisor mode.

When the action of this instruction lowers the processor priority, the
processor checksthe interrupt table for pending interrupts.

When process controls are changed, the processor recognizes the changes
immediately except in one situation: when modpc is used to change the trace
enable bit, the processor may not recognize the change before the next four
non-branch instructions are executed. For more information seesection 3.7.3,
“Process Controls (PC) Register” (pg. 3-21)

Action: if(mask != 0)
{ if(PC.em I= supervisor)
generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) | (PC & ~mask);
src_dst = temp;
if(temp.priority > PC.priority)
check_pending_interrupts;
}
else
src_dst = PC;

Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
TYPE.MISMATCH

Example: nodpc g9, g9, g8 # process controls = g8
masked by g9.

Opcode: modpc 655H REG

6-78

u I
I ‘d” INSTRUCTION SET REFERENCE

See Also: modac, modtc

Notes: Since modpc does not switch stacks, it should not be used to switch the mode
of execution from supervisor to user (the supervisor stack can get corrupted in
this case). The call and return mechanism should be used instead.

6-79

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.44 modtc

Mnemonic: modtc Modify Trace Controls
Format: modtc mask, src2, dst
reg/lit reg/lit reg
Description: Reads and modifies TC register as specified with mask and src2. The src2

operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, itsinitia state is copied into dst.

The changed trace controls may take effect immediately or may be delayed.
When delayed, the changed trace controls may not take effect until after the
first non-branching instruction is fetched from memory or after four
non-branching instructions are executed.

For more information on the trace controls, refer to CHAPTER 8, FAULTS
and CHAPTER 9, TRACING AND DEBUGGING.

Action: mode_bits = 0xO00000FE;
event_flags = 0X0F000000
temp=TC,

tempa = (event_flags & TC & mask) | (mode_bits & mask);
TC = (tempa & src2) | (TC & ~tempa);

dst = temp;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: nodtc gl2, g10, g2 # trace controls = gl10 nasked
by gl2; previous trace
controls stored in g2.
Opcode: modtc 654H REG
See Also: modac, modpc

6-80

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.45 MOVE

Mnemonic: mov Move
movl Move Long
movt Move Triple
movq Move Quad
Format: mov* srcl, dst
reg/lit reg
Description: Copies the contents of one or more source registers (specified with src) to one

or more destination registers (specified with dst).

For movl, movt and movq, srcl and dst specify the first (lowest numbered)
register of several successive registers. srcl and dst registers must be even
numbered (e.g., g0, g2, ... or r4, r6, ...) for movl and an integral multiple of _

four (e.g., g0, g4, ... or r4, r8, ...) for movt and movgq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

Action: mov:
if(is_reg(srcl))
dst = srcl;
else
{ dst[4:0] =srcl; #srclisab-bit literal.
dst[31:5] = 0;
}
movl:
if((reg_num(srcl)%z2 !'= 0) || (reg_num(dst)%2 != 0))
{ dst =undefined_vaue;
dst_+ 1 =undefined vaue;
generate fault(OPERATION.INVALID_OPERAND);

}

elseif(is_reg(srcl))

{ dst=srcl;
dst_ + 1=srcl_+_1;

}

else

{ dst[4:0] =srcl; #srclisab-bit literal.
dst[31:5] = 0;
dst_+ 1]31:0] =0;

}

6-81

int
INSTRUCTION SET REFERENCE I ‘é““

Faults:

Example:

6-82

movt:

if((reg_num(srcl)%4 !'= 0) || (reg_num(dst)%4 != 0))

{ dst =undefined_vaue;
dst_+ 1 =undefined vaue;
dst_+ 2 =undefined vaue;
generate_fault(OPERATION.INVALID_OPERAND);

}

elseif(is_reg(srcl))

{ dst=srcl;
dst_ + 1=srcl_+_1;
dst_+ 2=srcl_+_2;

}

else

{ dst[4:0] =srcl; #srclisab-bit literal.
dst[31:5] = 0;
dst_ + 1]31:0] =0;
dst_+ 2[31:0] =0;

}

movq:

if((reg_num(src1)%4 !'= 0) || (reg_num(dst)%4 != 0))
{ dst=undefined_vaue;
dst_+ 1 =undefined vaue;
dst_+ 2 =undefined vaue;
dst_+ 3 =undefined vaue;
generate_fault(OPERATION.INVALID_OPERAND);

}
elseif(is_reg(srcl))
{ dst=srcl,;
dst_ + 1=srcl_+_1;
dst_ + 2=srcl_+_2;
dst_+ 3=srcl_+_3;
}
else
{ dst[4:0] =srcl; #srclisab bitliteral.
dst[31:5] = 0;
dst_+ 1]31:0] =0;
dst_+ 2[31:0] =0;
dst_+ 3[31:.0] =0;
}
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
movt g8, r4 #r4, r5 r6 =98, g9, glo

intel

Opcode:

See Also:

mov 5CCH
movl 5DCH
movt 5ECH
movq 5FCH

LOAD, STORE, Ida

REG
REG
REG
REG

INSTRUCTION SET REFERENCE

6-83

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.46 muli, mulo
Mnemonic: muli Multiply Integer
mulo Multiply Ordinal
Format: mul* srcl, src2, dst
reg/lit reg/lit reg
Description: Multiplies the src2 value by the srcl value and stores the result in dst. The

binary results from these two instructions are identical. The only differenceis
that muli can signal an integer overflow.

Action: mulo:
dst = (src2 * srcl)[31:0];

muli:

true_result = (srcl * src2);

dst = true_result[31:0];

if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(ACom==1)

AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);
}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)

ARITHMETIC.OVERFLOW Result is too large for destination register
(muli only). When a condition of overflow
occurs, the least significant 32 bits of the
result are stored in the destination register.

Example: muli r3, r4, r9 #r9 =r4 * r3
Opcode: muli 741H REG

mulo 701H REG
See Also: emul, ediv, divi, divo

6-84

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.47 nand

Mnemonic: nand Nand
Format: nand srcl, src2, dst
reg/lit reg/lit reg
Description: Performs a bitwise NAND operation on src2 and srcl values and stores the
result in dst.
Action: dst = ~src2 | ~srcl,;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: nand g5, r3, r7 # r7 = r3 NAND g5
Opcode: nand 58EH REG

See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor _

6-85

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.48 nor
Mnemonic: nor Nor
Format: nor srcl, src2, dst
reg/lit reg/lit reg
Description: Performs a bitwise NOR operation on the src2 and srcl values and storesthe
result in dst.
Action: dst = ~src2 & ~srcl;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: nor g8, 28, r5 #r5 = 28 NOR g8
Opcode: nor 588H REG
See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor

6-86

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.49 not, notand
Mnemonic: not Not
notand Not And
Format: not srcl, dst
reg/lit reg
notand srcl, src2, dst
reg/lit reg/lit reg
Description: Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)

operation on the src2 and srcl values and stores the result in dst.

Action: not:

dst = ~srcl;
notand: _

dst = ~src2 & srcl;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: not g2, g4 # g4 = NOT g2
notand r5, r6, r7 # r7 =NOT r6 AND r5
Opcode: not 58AH REG
notand 584H REG
See Also: and, andnot, nand, nor, notor, or, ornot, xnor, xor

6-87

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.50 notbit

Mnemonic: notbit Not Bit
Format: notbit bitpos, srez, dst
reg/lit reg/lit reg

Description: Copies the src2 value to dst with one hit toggled. The bitpos operand

specifies the bit to be toggled.
Action: dst = src2 » 2**(src1%32);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: notbit r3, rl2, r7 # r7 =rl1l2 with the bit

specified in r3 toggled.

Opcode: notbit 580H REG
See Also: alterbit, chkbit, clrbit, setbit

6-88

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.51 notor

Mnemonic: notor Not Or
Format: notor srcl, src2, dst
reg/lit reg/lit reg
Description: Performs a bitwise NOTOR operation on src2 and srcl values and stores
result in dst.
Action: dst = ~src2 | srcl,;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: notor gl2, g3, g6 # g6 = NOT g3 OR gl12
Opcode: notor 58DH REG

See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor _

6-89

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.52 or, ornot
Mnemonic: or Or
ornot Or Not
Format: or srcl, src2, dst
reg/lit reg/lit reg
ornot srcl, srez, dst
reg/lit reg/lit reg
Description: Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and srcl values and stores the result in dst.
Action: or:
dst = src2 | srcl;
ornot:
dst = src2 | ~srcl;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: or 14, g9, g3 # 093 = g9 OR 14
ornot r3, r8, r1l # r11 =r8 OR NOT r3
Opcode: or 587H REG
ornot 58BH REG
See Also: and, andnot, nand, nor, not, notand, notor, xnor, xor

6-90

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.53 remi, remo
Mnemonic: remi Remainder Integer
remo Remainder Ordinal
Format: rem* srcl, src2, dst
reg/lit reg/lit reg
Description: Divides src2 by srcl and stores the remainder in dst. The sign of the result
(when nonzero) is the same as the sign of src2.
Action: remi, remo:
if(srcl==0)

generate_fault(ARITHMETIC.ZERO_DIVIDE);

dst = src2 - (src2/srcl)*srcl;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5) _

ARITHMETIC.ZERO_DIVIDE Thesrcl operand is 0

Example: reno r4, r5, r6 #r6 =r5remr4

Opcode: remi 748H REG
remo 708H REG

See Also: modi

Notes: remi produces the correct result (0) even when computi?i'geﬁqi -1, which
would cause the corresponding division to overflow, although no fault is gen-
erated.

6-91

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.54 ret

Mnemonic:

Format:

Description:

Action:

6-92

ret Return

ret

Returns program control to the calling procedure. The current stack frame

(i.e., that of the called procedure) is deallocated and the FP is changed to

point to the calling procedure’s stack frame. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure’s
stack frame, which is the instruction immediately following the call
instruction.

As shown in the action statement below, the return-status field and

prereturn-trace flag determine the action that the processor takes on the
return. These fields are contained in bits O through 3 of register r0 of the

called procedure’s local registers.

SeeCHAPTER 7, PROCEDURE CALL$Tr more orret.

implicit_syncf();

if(pfp.p && PC.te && TC.p)

{ pfpp=0;
generate_fault(TRACE.PRERETURN);

}
switch(return_status_field)
{
case 008 #local return
get_FP_and_IP();
break;
case 00% #fault return

tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();

AC = tempb;
if(execution_mode == supervisor)
PC =tempa;
break;
case 01 #supervisor return, trace on return disabled

if(execution_mode != supervisor)
get FP_and_IP();

else

{ PC.te=0;
execution_mode = user;
get FP_and_IP();

}

break;

u I
I ‘d“’ INSTRUCTION SET REFERENCE

case 011,: # supervisor return, trace on return enabled
if(execution_mode ! = supervisor)
get FP_and_IP();
else
{ PCte=1,
execution_mode = user;
get FP_and_IP();
}
break;
case 100,: #reserved - unpredictable behavior
break;
case 101,: #reserved - unpredictable behavior
break;
case 110,: #reserved - unpredictable behavior
break;
case 111,: #interrupt return

tempa = memory(FP-16);
tempb = memory(FP-12);
get_ FP_and_IP();

AC =tempb;
if(execution_mode == supervisor)
PC = tempa;
check_pending_interrupts();
break;
}
get_FP_and_IP()
{ FP=PFP;
free(current_register_set);
if(not_allocated(FP))
retrieve_from_memory(FP);
IP=RIP,
}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: ret # Program control returns to
context of calling procedure.
Opcode: ret O0AH CTRL
See Also: call, calls, callx

6-93

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.55 rotate

Mnemonic: rotate Rotate
Format: rotate len, src2, dst
reg/lit reg/lit reg
Description: Copies src2 to dst and rotates the bits in the resulting dst operand to the left

(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand isrotated.

Thisinstruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result
used as the len operand.

Action: src2 isrotated by len mod 32. Thisvalueisstored in dst.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: rotate 13, r8, rl1l2 # r12 =r8 with bits rotated
13 bits to left.
Opcode: rotate 59DH REG
See Also: SHIFT, eshro

6-94

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.56 scanbit

Mnemonic: scanbit Scan For Bit
Format: scanbit srcl, dst
reg/lit reg
Description: Searches srcl for a set bit (1 bit). When a set bit is found, the bit number of

the most significant set bit is stored in the dst and the condition codeis set to
010,. When src value is zero, all 1's are storeddst and condition code is set
to 000,

Action: dst = OXFFFFFFFF;
AC.cc = 00G;
for(i=31;i>=0;i-)

{ if((srcl & 2**i) 1= 0) _
{ dst = i;

AC.cc = 016;
break;
}
}
Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
Example: # assune g8 is nonzero

scanbit g8, g10 # 910 = bit nunber of nost-
significant set bit in g8;
AC.cc = 010,.

Opcode: scanbit 641H REG
See Also: spanbit, setbit
Side Effects: Sets the condition code in the arithmetic controls.

6-95

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.57 scanbyte

Mnemonic: scanbyte Scan Byte Equal
Format: scanbyte srcl, src2
reg/lit reg/lit
Description: Performs byte-by-byte comparison of srcl and src2 and sets condition code

to 010, when any two corresponding bytes are equal . When no corresponding
bytes are equal, condition code is set to 000,.

Action: if((src1 & OxOO0000FF) == (src2 & O0x000000FF)
|| (src & 0x0000FFO0) == (src2 & OX0000FFO0)
|| (src1 & OXOOFF0000) == (src2 & OxO0FF0000)
|| (src1 & OXFFO00000) == (src2 & OxFFO00000))

AC.cc = 010,;
else
AC.cc =000,

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: # Assune r9 = 0x11AB1100

scanbyte 0x00AB0011, r9# AC.cc = 010,
Opcode: scanbyte 5ACH REG
See Also: bswap
Side Effects: Sets the condition code in the arithmetic controls.

6-96

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.58 SEL<cc>

Mnemonic: selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered
Format: sel* srcl, src2, dst
reg/lit reg/lit reg
Description: Selects either srcl or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. When for Unordered the condition code is O, or

when for the other cases the logica AND of the condition code and the mask
part of the opcode is not zero, then the value of src2 is stored in the desti-
nation. Else, the value of srcl is stored in the destination.

Table 6.17. Condition Code Mask Descriptions

Instruction Mask Condition
selno 000, |Unordered
selg 001, |Greater
sele 010, |Equal
selge 011, |Greater or equal
sell 100, |Less
selne 101, |Notequal
selle 110, |Less or equal
selo 111, |Ordered
Action: if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;
else
dst = srcl;
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)

6-97

INSTRUCTION SET REFERENCE

Example:

Opcode:

See Also:

Notes:

6-98

sel e g0, g1, g2

sel |

selno
selg
sele
selge
sell
selne
selle
selo

90,91, 92

784H
794H
7A4H
7B4H
7C4H
7D4H
7TE4AH
7F4H

AC.cc = 010,
g2 = gl

AC.cc = 001,
g2 = g0

REG
REG
REG
REG
REG
REG
REG
REG

MOVE, TEST<cc>, cmpi, cmpo, SUB<cc>

intel

These coreinstructions are not implemented on 80960Cx, Kx and Sx proces-

SOrs.

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.59 sethit

Mnemonic: setbhit Set Bit
Format: setbit bitpos, src, dst
reg/lit reg/lit reg
Description: Copies src valueto dst with one bit set. bitpos specifies bit to be set.
Action: dst = src | (2** (bitpos%632));
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: setbit 15, r9, r1 # rl1l =r9 with bit 15 set.
Opcode: setbit 583H REG

See Also: alterbit, chkbit, clrbit, notbit _

6-99

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.60 SHIFT

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer
Format: sh* len, src, dst
reg/lit reg/lit reg
Description: Shifts src left or right by the number of bits indicated with the len operand

and stores the result in dst. Bits shifted beyond register boundary are
discarded. For values of len > 32, the processor interprets the value as 32.

shlo shifts zerosin from the least significant bit; shro shifts zerosin from the
most significant bit. These instructions are equivalent to mulo and divo by
the power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated when the bits shifted out are not the same as the most significant
bit (bit 31). When overflow occurs, dst equals src shifted left as much as
possible without overflowing.

shri performs a conventiona arithmetic shift-right operation by shifting in
the most significant bit (bit 31). When this instruction is used to divide a
negative integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result when the bits shifted out are non-zero and
the src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivaent to muli and divi by the power of 2.

Action: shlo:
if(srcl < 32)
dst = src* (2**len);
else

shro:
if(srcl < 32)

dst = src/ (2**len);
else

6-100

u I
I ‘d” INSTRUCTION SET REFERENCE

shli:
if(len > 32)
count = 32;
else
count = srcl;
temp = src;
while((temp[31] == temp[30]) & & (count > 0))
{ temp=(temp* 2)[31:0];
count = count - 1,
}
dst = temp;
if(count > 0)
{ if(ACom==1)
AC.of = 1;
else
generate_fault(ARITHMETIC.OVERFLOW);

}

shri:
if(len > 32)
count = 32;
else
count = srcl;
temp = src;
while(count > 0)
{ temp=(temp >> 1)[31:0];
temp[31] = src[31];
count = count - 1,

}
dst = temp;
shrdi:
dst = src/ (2**len);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.OVERFLOW Forshli.
Example: shli 13, g4, r6 # g6 = g4 shifted left 13 bits.
Opcode: shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG

6-101

int
INSTRUCTION SET REFERENCE I ‘é““

See Also: divi, muli, rotate, eshro

Notes: shli and shrdi are identical to multiplications and divisions for all positive
and negative values of src2. shri isthe conventional arithmetic right shift that
does not produce a correct quotient when src2 is negative.

6-102

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.61 spanbit

Mnemonic: spanbit Span Over Bit
Format: spanbit sre, dst
reg/lit reg
Description: Searches src vaue for the most significant clear bit (O bit). When a most

significant 0 bit is found, its bit number is stored in dst and condition code is
set to 010,. When src value is all 1's, all 1's are stored dist and condition
code is set to 0G0

Action: dst = OXFFFFFFFF;
AC.cc = 00G;
for(i=31;i>=0;i-)

{if((srcl & 2**) == 0)) _
{ dst = i;

AC.cc = 016;
break;
}
}
Faults: STANDARD Refer tosection 6.1.6, “Faults” (pg. 6-5)
Example: # Assune r2 is not Oxffffffff
spanbit r2, r9 # r9 = bit nunber of nost-
significant clear bit in r2;
AC.cc = 010,
Opcode: spanbit 640H REG
See Also: scanbit
Side Effects: Sets the condition code in the arithmetic controls.

6-103

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.62 STORE

Mnemonic: st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad
Format: st* srcl, dst
reg mem
Description: Copies a byte or group of bytes from a register or group of registers to

memory. src specifies a register or the first (lowest humbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte
or agroup of bytesisto be stored. The full range of addressing modes may be
used in specifying dst. Refer to section 2.3, “MEMORY ADDRESSING
MODES” (pg. 2-6)for a complete discussion.

stob andstib store a byte andtos andstis store a half word from thgrc
register's low order bytes. Data for ordinal stores is truncated to fit the
destination width. When the data for integer stores cannot be represented
correctly in the destination width, an Arithmetic Integer Overflow fault is
signaled.

st, stl, stt andstq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

Forstl, src must specify an even numbered register (e.g., g0, g2, ... or r0, r2,
...). Forstt andstq, src must specify a register number that is a multiple of
four (e.g., 90, g4, g8, ... orr0, r4, 18, ...).

Action: st:

if (illegal_write_to_on_chip_RAM)
generate_fault(TYPE.MISMATCH);

else if ((effective_address[1:0] B9,) && unaligned_fault_enabled)
{store_to_memory(effective_address)[31:8]src1;
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = srcl;

6-104

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Action: stob:
if (illegal_write_to_on_chip_ RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
else
store_to_memory(effective_address)[7:0] = src1[7:0];

stib:
if (illegal_write_to_on_chip_ RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif ((src1[31:8] !=0) && (srcl[31:8] != OXFFFFFF))
{ store_to_memory(effective_address)[7:0] = src1[7:0];

if (AC.om==1)
AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);
}
else
store_to_memory(effective_address)[7:0] = src1[7:0];
end if;
stos:

if (illegal_write_to_on_chip_ RAM_or_ MMR)
generate fault(TYPE.MISMATCH);
elseif ((effective_address[Q] != 0,) & & unaligned_fault_enabled)
{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate fault(OPERATION.UNALIGNED);
}
else
store_to_memory(effective_address)[15:0] = src1[15:0];

stis:
if (illegal_write_to_on_chip_ RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif ((effective_address[Q] != 0,) & & unaligned_fault_enabled)
{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate fault(OPERATION.UNALIGNED);
}
elseif ((src1[31:16] !=0) && (src1[31:16] != OXFFFF))
{ store to_memory(effective_address)[15:0] = src1[15:0];
if (AC.om==1)
AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);,

}

6-105

int
INSTRUCTION SET REFERENCE I ‘d““

6-106

else
store_to_memory(effective_address)[15:0] = src1[15:0];

stl:
if (illegal_write_to_on_chip_RAM_or_ MMR)
generate fault(TYPE.MISMATCH);
elseif (reg_number(srcl) % 2 !'=0)
generate fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[2:0] != 000,) & & unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl _+ 1;
generate fault (OPERATION.UNALIGNED);
}
else
{ store to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl _+ 1;
}

stt:
if (illegal_write_to_on_chip_ RAM_or_ MMR)
generate fault(TYPE.MISMATCH);
elseif (reg_number(srcl) % 4 !'=0)
generate_fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[3:0] != 0000,) && unaigned fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl _+ 1;
store_to_memory(effective_address + 8)[31:0] = srcl_+ 2;
generate fault (OPERATION.UNALIGNED);

else
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl _+ 1;
store_to_memory(effective_address + 8)[31:0] = srcl_+ 2;

stq:
if (illegal_write_to_on_chip_ RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif (reg_number(srcl) % 4 !'=0)
generate_fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[3:0] != 0000,) && unaigned fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl _+ 1;
store_to_memory(effective_address + 8)[31:0] = srcl_+ 2;

u I
I ‘d” INSTRUCTION SET REFERENCE

store_to_memory(effective_address + 12)[31:0] = srcl_+_3;
generate fault (OPERATION.UNALIGNED);

else
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl _+ 1;
store_to_memory(effective_address + 8)[31:0] = srcl_+ 2;
store_to_memory(effective_address + 12)[31:0] = srcl_+_3;
}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.OVERFLOW Forstib, stis.

Example: st g2, 1254 (g6) # Word begi nning at of fset
4 1254 + (g6) = g2. _

Opcode: st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM
See Also: LOAD, MOVE
Notes: illegal_write_to_on_chip_RAM is an implementation-dependent mechanism.

The mapping of register bits to memaaf@) depends on the endianism of the
memory region and is implementation-dependent.

6-107

int
INSTRUCTION SET REFERENCE I ‘d““

6.2.63 subc

Mnemonic: subc Subtract Ordinal With Carry
Format: subc srcl, src2, dst
reg/lit reg/lit reg
Description: Subtracts srcl from src2, then subtracts the opposite of condition code bit 1

(used here as the carry bit) and stores the result in dst. When the ordinal
subtraction results in a carry, condition code hit 1 is set to 1, otherwise it is
set to 0.

This instruction can also be used for integer subtraction. Here, when integer
subtraction resultsin an overflow, condition code bit O is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

Action: dst = (src2 - srcl -1+ AC.cc[1])[31:0];

AC.cc[2:0] = 000,;
if((src2[31] == srcl[31]) & & (src2[31] !=dst[31]))

AC.cc[0] =1, # Overflow bit.
AC.cc[1] =(src2- srcl -1+ AC.cc[1])[32]; # Carry out.
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: subc g5, g6, g7 # g7 =g6 - g5 - not(condition code bit 1)
Opcode: subc 5B2H REG
See Also: addc, addi, addo, subi, subo
Side Effects: Sets the condition code in the arithmetic controls.

6-108

u I
I ‘d” INSTRUCTION SET REFERENCE

6.2.64 SUB<cc>

Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Lessor Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subio Subtract Integer if Ordered
Format: sub* srcl, src2, dst
reg/lit reg/lit reg
Description: Subtracts srcl from src2 conditionally based on the condition code bitsin the

arithmetic controls.

When for Unordered the condition code is 0, or when for the other cases the
logica AND of the condition code and the mask part of the opcode is not
zero; then srcl is subtracted from src2 and the result stored in the destination.

Instruction Mask Condition
subono, subino 000, Unordered
subog, subig 001, Greater
suboe, subie 010, Equal
suboge, subige 011, Greater or equal
subol, subil 100, Less
subone, subine 101, Not equal
subole, subile 110, Less or equal
suboo, subio 111, Ordered

6-109

INSTRUCTION SET REFERENCE

Action:

Faults:

Example:

Opcode:

6-110

SUBO<cc>:

if ((mask & AC.cc) || (mask == AC.cc))
dst = (src2 - srcl)[31:0];

SUBI<cc>:

if ((mask & AC.cc) || (mask == AC.cc))

{
{

}

if((true_result > (2**31) - 1) || (true_result < -2**31))
Check for overflow

{

}
STANDARD

suboge g0, g1, g2

subil e g0, g1, g2

subono
subog
suboe
suboge
subol
subone
subole
suboo
subino
subig
subie
subige
subil
subine
subile
subio

if AC.om==1)
AC.of =1,
else
generate fault (ARITHMETIC.OVERFLOW);

782H
792H
7A2H
7B2H
7C2H
7D2H
7E2H
7F2H
783H
793H
7A3H
7B3H
7C3H
7D3H
7E3H
7F3H

true_result = (src2 - srcl);
dst = true_result[31:0];

AC.cc = 001,
g2 not

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG

intel

Refer to section 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.OVERFLOW For theSUBI<cc> class.

AC.cc = 010,
g2 =

u I
I ‘d” INSTRUCTION SET REFERENCE

See Also: subc, subi, subo, SEL<cc>, TEST<cc>
Notes: These core instructions are not implemented on 80960Cx, Kx and Sx proces-
Sors.

6-111

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.65 subi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal
Format: sub* srcl, src2, dst
reg/lit reg/lit reg
Description: Subtracts srcl from src2 and stores the result in dst. The binary results from

these two instructions are identical. The only difference is that subi can
signal an integer overflow.

Action: subo:
dst = (src2 - srcl)[31:0];

subi:

true_result = (src2 - srcl);

dst = true_result[31:0];

if((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ if(ACom==1)

AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);
}
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
ARITHMETIC.OVERFLOW Forsubi.
Example: subi g6, g9, gl2 # gl12 = g9 - g6
Opcode: subi 593H REG
subo 592H REG
See Also: addi, addo, subc, addc

6-112

u I
I ‘d“’ INSTRUCTION SET REFERENCE

6.2.66 syncf

Mnemonic: syncf Synchronize Faults
Format: syncf
Description: Waits for al faults to be generated that are associated with any prior
uncompleted instructions.
Action: if(AC.nif == 1)
break;
else

wait_until_all_previous _instructions_in_flow_have _completed();
Thisaso meansthat al of the faults on these instructions have
been reported.

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5) _

Example: ld xyz, g6
addi r6, r8, r8
syncf

and g6, Ox1f, g8

The syncf instruction ensures that any faults
that may occur during the execution of the

| d and addi instructions occur before the

and instruction is executed.

Opcode: syncf 66FH REG

See Also: mark, fmark

6-113

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.67 sysctl

Mnemonic: sysctl System Control
Format: sysctl srcl, sre2, src/dst
reg/lit reg/lit reg
Description: Performs system management and control operations including requesting

software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitiaization, modifying memory-mapped
registers, and acquiring breakpoint resource information.

Processor control function specified by the message field of srcl is executed.
The type field of srcl is interpreted depending upon the command.
Remaining srcl bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.

1 16 15 8 7 0
Field 2 Message Type Field 1

Figure 6-7. Srcl Operand Interpretation

Table 6-18. sysctl Field Definitions

srcl src2 src/dst
Message
Type Field 1 Field 2 Field 3 Field 4
Request Interrupt 0x0 | Vector Number N/U N/U N/U
Invalidate Cache 0x1 N/U N/U N/U N/U
) . Cache Mode
ggs;‘g”re Instruction | 442 | Configuration N/U nggf;;’:d N/U
(See Table 6-19)
Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer

Register Group

Load Control Register 0x4 N/U N/U N/U
Number
Modify Lower 2 bytes
Memory-Mapped 0x5 N/U of MMR Value to write Mask
Control Register (MMR) address
. Breakpointinfo
Breakpoint Resource 0xX6 N/U N/U N/U (See

Request

Figure 6-8)

NOTE: Sources and fields that are not used (designated N/U) are ignored.

6-114

u I
I ‘d” INSTRUCTION SET REFERENCE

Table 6-19. Cache Mode Configuration

Mode Field Mode Description 80960JA 80960JF/JD 80960JT
000, Normal cache enabled 2 Kbyte 4 Kbyte 16 Kbyte
XX1, Full cache disabled 2 Kbyte 4 Kbyte 16 Kbyte

Load and lock one way
100, or 110, of the cache 1 Kbyte 2 Kbyte 8 Kbyte
31 8 7 4 3 0

AV,
available | # available

Reserved - Set to zero data instruction
breakpoints | breakpoints

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request

Action: if (PC.em != supervisor)
generate fault(TYPE.MISMATCH);
order_wrt(previous_operations);
OPtype = (srcl & 0xff00) >> 8;
switch (OPtype) {
case O: # Signal Software Interrupt
vector_to_post = Oxff & srcl,;
priority to post = vector_to_post >> 3;
pend_ints addr = interrupt_table base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table_base,atomic_|lock);
Priority zero just rescans Interrupt Table
if (priority_to_post !=0)
{pend_ints = memory_read(pend_ints_addr, non-cacheabl€)
pend_intg7 & vector] = 1,
pend_priority[priority_to_post] = 1;
memory_write(pend_ints_addr, pend_ints); }
memory_write(interrupt_table_base,pend_priority,atomic_unlock);
Update internal software priority with highest priority interrupt
from newly adjusted Pending Priorities word. The current internal
software priority is always replaced by the new, computed one. (If
there is no bit set in pending_priorities word for the current
interna one, then it is discarded by this action.)
if (pend_priority == 0)
SW_Int_Priority = 0;
else{ msh_set = scan_bit(pend_priority);
SW_Int_Priority = msb_set; }
Make sure change to internal software priority takes full effect

6-115

int
INSTRUCTION SET REFERENCE I ‘d““

before next instruction.
order_wrt(subsequent_operations);

6-116

case 1.

case 2.

case 3.

caxe 4.

break;
Global Invalidate Instruction Cache
invalidate_instruction_cache();
unlock_instruction_cache();
break;
Configure Instruction-Cache
mode = srcl & Oxff;
if (mode & 1) disable_instruction_cache;
€lse switch (mode) {
case O: enable_instruction_cache; break;
case 4,6: #Load & Lock code into I-Cache
All contiguous blocks are locked.
Note: block =way oni960 Jx processor.
src2 has starting address of code to lock.
src2 is aligned to aquad word
boundary.
aligned_addr = src2 & OxfffffffQ;
invalidate(l-cache); unlock(l-cache);
for (j =0;j <number_of_blocks that_lock; j++)
{way = block_associated with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i <end; i=i+4)
{ set=set associated with(i);
word = word_associated_with(i);
Icache_ling[set][way][word] =
memory[i];
update tag n_valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
default:
generate_operation_invalid_operand_fault;
} break;
Software Re-init
disable(l_cache); invaidate(l_cache);
disable(D_cache); invalidate(D_cache);
Process PRCB(dst); # dst has ptr to new PRCB
IP=srcz;
break;
* Load One Group of Control Registers From Control Table*/
grpoff = (srcl & Oxff) * 16;
for (i = 0; i < 4; i=i+4)

u I
I ‘d” INSTRUCTION SET REFERENCE

memory[control_reg_addr(i,grpoff)] = memory[i+grpoff];

}
break;

Action: case 5: # Modify One Memory-Mapped Control Register (MMR)
src1[31:16] has lower 2 bytes of MMR address
src2 has value to write; dst has mask.
After operation, dst has old value of MMR
addr = (0xff00 << 16) | (srcl >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;
case 6: # Breakpoint Resource Request
acquire_available _instr_breakpoints();
dst[3:0] = number_of available_instr_breakpoints;
acquire_available data breakpoints();
dst[7:4] = number_of _available_data_breakpoints;

dst[31:8] = 0;
break;
default: # Reserved, fault occurs
generate fault(OPERATION.INVALID_OPERAND);
break;
}
order_wrt(subsequent_operations);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: | dconst 0x100,r6 # Set up message.
sysctl r6,r7,r8 # Invalidate |-cache.
r7, r8 are not used.
| dconst 0x204, g0 # Set up nmessage type and
cache configuration node.
Lock hal f cache.
| dconst 0x20000000, g2 # Starting address of code.
sysctl g0, g2, g2 # Execute Load and Lock.
Opcode: sysctl 659H REG
See Also: dcctl, icctl
Notes: This instruction is implemented on 80960Rx, Hx, Jx and Cx processors, and

may or may not be implemented on future i960 processors.

6-117

INSTRUCTION SET REFEREN

6.2.68 TEST<cc>

CE

intel

Mnemonic: teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered
Format: test* dst:srcl
reg
Description: Stores a true (01H) in dst when the logical AND of the condition code and

opcode mask part is not zero. Otherwise, the instruction stores a false (00H)
in dst. For testno (Unordered), a true is stored when the condition code is
000,, otherwise afaseis stored.

The following table shows the condition code mask for each instruction. The
mask isin bits 0-2 of the opcode.

Table 6-20. Condition Code Mask Descriptions

Instruction Mask Condition
testno 000, Unordered
testg 001, Greater
teste 010, Equal
testge 011, Greater or equal
testl 100, Less
testne 101, Not equal
testle 110, Less or equal
testo 111, Ordered

6-118

u I
I ‘d“’ INSTRUCTION SET REFERENCE

Action: For al TEST<cc> except testno:
if((mask & AC.cc) !=000,)
srcl=1; #true value
else
srcl=0; #falsevalue

testno:
if(AC.cc == 000,)
srcl=1; #true value
else
srcl=0; #falsevalue
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: # Assume AC.cc = 100,
testl g9 # g9 = 0x00000001
Opcode: teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H COBR
testno 20H COBR
See Also: cmpi, cmpdeci, cmpinci

6-119

int
INSTRUCTION SET REFERENCE I ‘é““

6.2.69 xnor, xor
Mnemonic: xnor Exclusive Nor
xor Exclusive Or
Format: xnor srcl, src2, dst
reg/lit reg/lit reg
xor srcl, srez, dst
reg/lit reg/lit reg
Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)

operation on the src2 and srcl values and stores the result in dst.

Action: XNor:
dst = ~(src2 | srcl) | (src2 & srcl);

Xor:
dst = (src2 | srcl) & ~(src2 & srcl);
Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-5)
Example: xnor r3, r9, rl12 #r12 =r9 XNOR r3
xor gl, g7, g4 # g4 = g7 XOR gl
Opcode: xnor 589H REG
xor 586H REG
See Also: and, andnot, nand, nor, not, notand, notor, or, ornot

6-120

intel

PROCEDURE CALLS

intel

CHAPTER 7
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® processor architecture supports two methods for making procedure calls:

« A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

¢ An integrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the progra

On a branch-and-linkb@l, balx), the processor branches and saves a return IP in a registe
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates
a new set of local registers and a new stack for the called procedure. The saved context is restored
when the return instructiomet) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
a procedure call. The user program then handles register and stack management for the call. Since
the 1960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link are not necessary. Additionally, the integrated call is much faster than typical
RISC-coded calls.

The branch-and-link instruction in the 1960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the
call tree.

In the i960 architecture the integrated call and return mechanism is used in two ways:

« explicit calls to procedures in a user’s program

. implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.

7-1

int
PROCEDURE CALLS I ‘d“"

The processor performstwo cal actions:

local When aloca cal is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. Thelocal stack refers
to the stack of the calling procedure.

supervisor When a supervisor cal is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call isissued from supervisor mode, the call degenerates into
alocal cal (i.e., no mode nor stack switch).

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform alocal cal action. With call and callx, the called procedure’s IP is included as an
operand in the instruction.

A system call is made withalls. This instruction is similar teall andcallx, except that the
processor obtains the called procedure’s IP fronsgdiem procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred to
assystem-local andsystem-supervisor calls, respectively. A system-supervisor call is also referred

to as asupervisor call.

7.1 CALL AND RETURN MECHANISM

At any point in a program, the i960 processor has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame.

*« When a call executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

*« When areturn executes, the current local register set and current stack frame are deallocated.
The previous local register set and previous stack frame are restored.

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local registers
are on-chip, they provide fast access storage for local variables. Of the 16 local registers, 13 are
available for general use; r0, rl and r2 are reserved for linkage information to tie procedures together.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

7-2

u
Intdm PROCEDURE CALLS

The procedure stack can be located anywhere in the address space and grows from low addresses to
high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture alows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to section 7.1.4, “Caching Local Register Sets” (pg. 7yl section 7.1.4.1, “Reserving
Local Register Sets for High Priority Interrupts” (pg. 748y more about local registers and
procedure stack interrelations.

Procedure Stack

Current Register Set Previous Frame Pointer (PFP) r0
go — Stack Pointer (SP) 1
. Previous
Return Instruction Pointer (RIP) r2 Stack
Frame
r15
Frame Pointer (FP) gl5
user allocated stack
padding area
Previous Frame Pointer (PFP) r0 |—
Stack Pointer (SP) rl
register Current
reserved for RIP r2 save area Stack
Frame
r15
user allocated stack

unused stack

stack growth
(toward higher addresses)

Figure 7-1. Procedure Stack Structure and Local Registers

7-3

int
PROCEDURE CALLS I ‘d““

7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers r0 (PFP), rl (SP) and r2 (RIP) contain information to
link procedures together and link local registersto the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use
g15 for general storage.

Stack frame alignment is defined for each implementation of the 1960 processor family, according

to an SALIGN parameter (ssection A.3, “Data and Data Structure Alignment” (pg. A-8) the

1960 Jx processor, stacks are aligned on 16-byte boundarieBi¢see 7-). When the processor

needs to create a new frame on a procedure call, it adds a padding area to the stack so that the new
frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The stack
pointer value is stored in local register rl, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action
creates the register save area in the stack frame for the local registers.

The program must modify the SP register value when data is stored or removed from the stack.
The 1960 architecture does not provide an explicit push or pop instruction to perform this action.
This is typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to the stack in the presence of unforeseen faults and interrupts. In
the general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the allocated space:

nmov sp,ré

addo 24, sp, sp

st data, (r4)

st data, 20(r4)

7-4

u
Intdm PROCEDURE CALLS

7.1.2.4 Considerations When Popping Data off the Stack

Care should be taken in reading the stack in the presence of unforeseen faults and interrupts. In the
genera case, to ensure that data about to be popped off the stack is not corrupted by a fault or
interrupt record, the data should be read first and then the sp should be decremented:

subo 24,sp,r4

Id 20(r4),rn

Id (rd),rn

nmov r4,sp

7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’s upper
28 bits are stored in local register rO, the previous frame pointer (PFP) register. The four

least-significant bits of the PFP are used to store the return type fielbigbee 7-5andTable 7-2

for more information on the PFP and the return-type field.

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is descrilsedtion 7.8,
“RETURNS” (pg. 7-20)

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mechanism
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP.
An OPERATION.INVALID_OPERAND fault is generated when attempting to write to the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame’s
return instruction address. When a call is made, the processor saves the address of the instruction
after the call in the image of the RIP register in the calling frame.

7.1.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers.

7-5

int
PROCEDURE CALLS I ‘d““

The events for call and return operations are given in a logica order of operation. The i960 Jx
processor can execute independent operations in paralel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processor often begins prefetching of
the target instruction for the call or return before the operation is complete.

7.1.3.1 Call Operation

When acall, calls or callx instruction is executed or an implicit call is triggered:

1

The processor stores the instruction pointer for the instruction following the call in the
current stack’s RIP register (r2).

The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these for use by the called procedure. The local registers are saved in the on-chip local
register cache when space is available.

The frame pointer (g15) for the calling procedure is stored in the current stack’s PFP register
(r0). The return type field in the PFP register is set according to the call type which is
performed. Sesection 7.8, “RETURNS” (pg. 7-20)

For a local or system-local call, a new stack frame is allocated by using the old stack pointer
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a
new frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame’s register save area. This value is stored in the SP register.

For an interrupt call from user mode in a non-interrupted state, the current interrupt stack
pointer value is used instead of the SP value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP)
value is used instead of the SP value saved in step 2.

The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer frontalhethe system
procedure table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.

7-6

u
Intdm PROCEDURE CALLS

7.1.3.2 Return Operation

A return from any call type — explicit or implicit — is always initiated with a retust) (
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with
the value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usually read
from the local register cache; however, in some cases, these registers have been flushed from
register cache to memory and must be read directly from the save area in the stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the instruction to which it returns. The
frames created before thet instruction was executed are overwritten by later implicit or expligj
call operations.

7.1.4 Caching Local Register Sets

Actual implementations of the i960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a call
or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets must at times
be saved to (and restored from) their associated save areas in the procedure stack. Because these
operations require access to external memory, this local cache miss affects call and return performance.

When a call is made and no frames are available in the register cache, a register set in the cache must
be saved to external memory to make room for the current set of local registers in the cache (see
section 4.2, “LOCAL REGISTER CACHE” (pg. 4-2)This action is referred to as a frame spill.

The oldest set of local registers stored in the cache is spilled to the associated local register save area
in the procedure stackigure 7-2illustrates a call operation with and without a frame spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fitigure 7-3illustrates return operations with and without
frame fills.

Theflushreg instruction (described isection 6.2.30, “flushreg” (pg. 6-5vrites all local register
sets (except the current one) to their associated stack frames in memory. The register cache is then
invalidated, meaning that all flushed register sets must be restored from their save areas in memory.

7-7

int
PROCEDURE CALLS I ‘d““

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, there are some special cases:

* A store to the register save area in memory does not necessarily update a local register set,
unless user software executeshreg first.

¢ Reading from the register save area in memory does not necessarily return the current value of
a local register set, unless user software exefutgsreg first.

¢ There is no mechanism, includifigshreg, to access the current local register set with a read
or write to memory.

« flushreg must be executed sometime before returning from the current frame when the
current procedure modifies the PFP in register r0, or else the behavioref i&ruction is
not predictable.

¢ The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts, software can limit the number of frames
available to all remaining code. This includes code that is either in the executing state (non-inter-
rupted) or code that is in the interrupted state but has a process priority less than 28. For the
purposes of discussion here, this remaining code is referrechtm-asitical code. Specifying a

limit for non-critical code ensures that some number of free frames are available to high-priority
interrupt service routines. Software can specify the limit for non-critical code by writing bits 10
through 8 of the register cache configuration word in the PRCBHgeee 12-6 on page 12-1.7

The value indicates how many frames within the register cache may be used by non-critical code
before a frame needs to be flushed to external memory. The programmed limit is used only when a
frame is pushed, which occurs only for an implicit or explicit call.

Allowed values of the programmed limit range from 0 to 7. Setting the value to O reserves no
frames for high-priority interrupts. Setting the value to 7 causes the register cache to become
disabled for non-critical code. Seection 12.3.1.2, “Process Control Block (PRCB)” (pg. 12-16)

7-8

u
Intdm PROCEDURE CALLS

call with no frame spill call with frame spill
0 0 0
Procedure Stack 4
(0 = Main, successive 1 1
numbers indicate nested
procedure level) 2 > Pl
3 3 3
4 4 4
local register
set n stored
on procedure stack 5 S Frame 5
user A Sp'”
stack 6
space /6
reserved 7
for local 7 !
register set n l
/8 8
l g

Local Register Cache
(with no sets reserved for
high priority interrupts)

Empty 1 2
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 8

egieter oot -/ o]
R 7

Figure 7-2. Frame Spill

7-9

PROCEDURE CALLS

intel

return with no frame fill

Procedure Stack

(0 = Main, successive
numbers indicate nested

procedure level)

Local Register Cache

return with frame fill

_— T

0 0

1 1

2 2

; o

4 l

Frame

l Fill

(With no sets reserved
for high priority interrupts)

Empty

Empty

Empty

L.

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Current Local
Register Set

—_— >

I

local register user
set n stored stack

on procedure stack space

9

reserved
for local
register set n

~a

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

7-10

Figure 7-3. Frame Fill

u
Intdm PROCEDURE CALLS

7.1.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to
memory. The caching mechanism is not write-through. Local register set contents are not saved
automatically to the save area in memory when the register set is cached. This would cause a
significant performanceloss for call operations.

Also, no automatic update policy isimplemented for the register cache. When the register save area
in memory for a cached register set is modified, there is no guarantee that the modification is
reflected when the register set is restored. For a frame spill, the set must be flushed to memory
prior to the modification for the modification to be valid.

Theflushreg instruction causes the contents of all cached local register sets to be written (flushed)
to their associated stack frames in memory. The register cache is then invalidated, meaning that all
flushed register sets are restored from their save areas in memory. The current set of loca registers
is not written to memory. flushreg is commonly used in debuggers or fault handlersto gain access
to all saved locdl registers. In thisway, call history may be traced back through nested procedures.
flushreg is aso used when implementing task switches in multitasking kernels. The procedure
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to
update the current procedure stack and invalidate all entries in the local register cache. Next, the
procedure stack is changed by directly modifying the FP and SP registers and executing a call
operation. After flushreg executes, the procedure stack may also be changed by modifying the
previous frame in memory and executing a return operation.

When a set of local registersis assigned to a new procedure, the processor may or may not clear or
initialize these registers. Therefore, initial register contents are unpredictable. Also, the processor
doesnot initialize the local register save areain the newly created stack frame for the procedure; its
contents are equally unpredictable.

7.2 MODIFYING THE PFP REGISTER

The FP must not be directly modified by user software or risk corrupting the local registers.
Instead, implement context switches by modifying the PFP.

Modification of the PFP istypically for context switches; as part of the switch, the active procedure

changes the pointer to the frame that it returns to (previous frame pointer — PFP). Great care should
be taken in modifying the PFP. In the general caséysareg must be issued before and after
modifying the PFP when the local register cache is enablecEfseaple 7-). This requirement
ensures the correct operation of a context switch on all i960 processors in all situations.

7-11

int
PROCEDURE CALLS I ‘d““

Example 7-1. flushreg

Do a context switch.
Assune PFP = 0x5000.

flushreg # Flush Frames to correct address.

| da 0x8000, pfp

flushreg # Ensure that "ret" gets updated PFP.
ret

The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and
removed from the local register cache. Whenflinrehreg before the modification was omitted, a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the
frame of the previous context to be written to the wrong location in external memory.

Theflushreg after the modification ensures that outstanding results are completely written to the
PFP before a subsequent instruction can be executed. Recall that riéteinstruction uses the
low-order 4 bits of the PFP to select whiel function to perform. Requiring thifeushreg after the

PFP madification allows an i960 implementation to implement a simple mechanism that quickly
selects theet function at the time theet instruction is issued and provides a faster return operation.

Note theflushreg after the modification executes very quickly because the local register cache has
already been flushed by tiishreg before; only synchronization of the PFP is performed. i960
processor implementations may provide other mechanisms to ensure PFP synchronization in addition
toflushreg, but aflushreg after a PFP modification is ensured to work on all i960 processors.

7.3 PARAMETER PASSING

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than fits in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in a global register.

7-12

u
Intdm PROCEDURE CALLS

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list isin the stack for a calling procedure. Space for the argument list is created by incre-
menting the SP register value. When the argument list is stored in the current stack, the argument
list is automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers.

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using
the global registers. When the number of parameters exceeds 12, additional parameters are passed
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designated
register. Similarly, several registers are set aside for return arguments and a return argument block
pointer is defined to point to additional parameters. When the number of return arguments exceeds
the available number of return argument registers, the calling procedure passes a pointer to an
argument list on its stack where the remaining return values are plkacatple 7-2illustrates
parameter passing by value and by reference.

Local registers are automatically saved when a call is made. Because of the local registe-

they are saved quickly and with no external bus traffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters — now in local
registers — are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure must
preserve all normally non-preserved parameter registers, such as the global registers. This is
necessary because the interrupt or fault occurs at any point in the user’s program and a return
from an interrupt or fault must restore the exact processor state. The interrupt or fault
procedure can move non-preserved global registers to local registers before the nested call.

7-13

int
PROCEDURE CALLS I ‘é““

Example 7-2. Parameter Passing Code Example

Exanpl e of paraneter passing .
C-source:int a,b[10];
a = procl(a,1,’x’,&b[0]);
assembles to ...
mov r3,g0 # value of a
Idconst 1,91 # value of 1
Idconst 120,92 # value of “x”
Ida 0x40(fp),g3 # reference to b[10]
call _procl
mov g0,r3 #save return value in “a”
_procl:
movq g0,r4 # save parameters
other instructions in procedure
. # and nested calls
mov r3,g0 # load return parameter
ret
7.4 LOCAL CALLS

A local call does not cause a stack switch. A loca call can be made two ways:

e with thecall andcallx instructions; or

« with a system-local call as describedsattion 7.5, “SYSTEM CALLS” (pg. 7-15)

call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement (i.e.,

228 to 222 - 4). callx allows any of the addressing modes to be used to specify the procedure
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing.

When a local call is made with all or callx, the processor performs the same operation as
described irsection 7.1.3.1, “Call Operation” (pg. 7-6)he target IP for the call is derived from
the instruction’s operands and the new stack frame is allocated on the current stack.

7-14

u
Intdm PROCEDURE CALLS

7.5 SYSTEM CALLS

A system call is a call made viathe system procedure table. It can be used to make a system-local

call — similar to a local call made wittall andcallx in the sense that there is no stack nor mode
switch — or a system supervisor call. A system call is initiated watls, which requires a
procedure number operand. The procedure number provides an index into the system procedure
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using the
.sysproc directive. At link time, the optimized call directive, callj, is replaced witlila when a

system procedure target is specified. (Refer to current i960 processor assembler documentation for
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, applications software does not need to be changed each j
implementation of the kernel services is modified. Only the entries in the system proceduﬂ
must be changed. Second, the ability to switch to a different execution mode and stack with

supervisor call allows kernel procedures and data to be insulated from applications code. This benefit
is further described isection 3.8, “USER-SUPERVISOR PROTECTION MODEL” (pg. 3-23)

75.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These can be
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is described in
section 8.1, “FAULT HANDLING OVERVIEW” (pg. 8-1)

Figure 7-4shows the system procedure table structure. It is 1088 bytes in length and can have up to

260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer is located in the PRCB. The following subsections describe this table’s fields.

7-15

int
PROCEDURE CALLS I d@

31 0
000H
008H
supervisor stack pointer base T| OOCH
010H Trace
Control
Bit
02CH
procedure entry 0 030H
procedure entry 1 034H
procedure entry 2 038H
03CH
438H
procedure entry 259 43CH
31 Procedure Entry 210
‘ address D:I
L
Reserved Entry Type:
(Initialize to 0) r 00 - Local
10-Supervisor
. Preserved

Figure 7-4. System Procedure Table

7-16

u
Intdm PROCEDURE CALLS

75.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. Each
entry is one word in length and consists of an address (IP) field and a type field. The address field
gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two
least-significant bits specify entry type. The procedure entry type field indicates call type:
system-local call or system-supervisor calaljle 7-3. On a system call, the processor performs
different actions depending on the type of call selected.

Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type
00 System-Local Call
01 Reserved®
10 System-Supervisor Call
11 Reserved®

1. Calls with reserved entry types have unpredictable behavior.

75.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack calfzsttiser

stack, when not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure t&tideie 7-4 during the reset initial-

ization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16-byte boundary to
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC register
(PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. Setting
this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use of this bit
is described irsection 9.1.2, “PC Trace Enable Bit and Trace-Fault-Pending Flag” (pg. 9-3)

7-17

int
PROCEDURE CALLS I ‘d““

7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of

00, the processor executes a system-local call to the selected procedure. The action that the
processor performs is the same as described in section 7.1.3.1, “Call Operation” (pg. 7-6)he

call’s target IP is taken from the system procedure table and the new stack frame is allocated on the
current stack, and the processor does not switch to supervisor modealEhalgorithm is
described irsection 6.2.14, “calls” (pg. 6-25)

75.3 System Call to a Supervisor Procedure

When acalls instruction references an entry in the system procedure table with an entry type of
10,, the processor executes a system-supervisor call to the selected procedure. The call's target IP
is taken from the system procedure table.

The processor performs the same action as describeskdtion 7.1.3.1, “Call Operation”
(pg. 7-6) with the following exceptions:
¢ When the processor is in user mode, it switches to supervisor mode.

*« When a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new
frame for the called procedure is placed at the location pointed to after alignment of SP.

« When no mode switch occurs, the new frame is allocated on the current stack.

« When a mode switch occurs, the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace control
bit in the system procedure table.

* When no mode switch occurs, the value D@@lls instruction) or 004 (fault call) is saved in
the return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instruatihan(d

callx) orcalls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
section 3.8, “USER-SUPERVISOR PROTECTION MODEL" (pg. 3-23)

7-18

u
Intdm PROCEDURE CALLS

7.6 USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks — the user stack — is for procedures executed in user mode;
the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in strudtigarg 7-). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack is usually created in the initialization code. seegon 12.2, “INITIAL-
IZATION” (pg. 12-2). The base stack pointers must be aligned to a 16-byte boundary; otherwise,
the first frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary.

7.7 INTERRUPT AND FAULT CALLS
The architecture defines two types of implicit calls that make use of the call and return mechu=_e

interrupt-handling procedure calls and fault-handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored
from these records. SEHAPTER 8, FAULTSand CHAPTER 11, INTERRUPTSor more
information on the structure of the fault and interrupt records.

7-19

int
PROCEDURE CALLS I ‘é““

7.8 RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt cal or afault call. When ret
executes, the processor uses the information from the return-type field in the PFP register
(Figure 7-5) to determine the type of return action to take.

Return Status
Return-Type Field - PFP.rt
Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer
Address-PFP.a ¢

P wo

31 28 24 20 16 12 8 4

Figure 7-5. Previous Frame Pointer Register (PFP) (r0)

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rt0 or bit 0 of the return-type field) storesthe trace enable bit value when
an explicit system-supervisor call is made from user mode. When the call is made, the PC register
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controlsbit in the
system procedure table. On a return, the trace enable bit's origina vaue is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See section 9.5.2.1, “Tracing on Explicit Call” (pg. 9-13)

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes.
When call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, when this flag is set and prereturn-trace mode is enabled, a
prereturn trace event is generated on a return, before any actions associated with the return
operation are performed. Seection 9.2, “TRACE MODES” (pg. 9-3jor a discussion of
interaction between call-trace and prereturn-trace modes with the prereturn-trace flag.

7-20

u
Intdm PROCEDURE CALLS

Table 7-2. Encoding of Return Status Field

Return Status .
Field Call Type Return Action
Local call
000 (system-local call or Local return
system-supervisor call made from | (return to local stack; no mode switch)
supervisor mode)
001 Fault call Fault return
Supervisor return
Svstem-supervisor from user (return to user stack, mode switch to user
01t m); de P mode, trace enable bit is replaced with the
t! bit stored in the PFP register on the
call)
100 reserved 2
101 reserved?
110 reserved?
111 Interrupt call Interrupt return
NOTES:

1. “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a
user-to-supervisor mode switch.
2. This return type results in unpredictable behavior.

7.9 BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or
branch-and-link-extended instruction (balx). When either instruction executes, the processor
branches to the first instruction of the called procedure (the target instruction), while saving a
return IP for the calling procedure in a register. The called procedure uses the same set of local
registers and stack frame as the calling procedure:

¢ Forbal, the return IP is automatically saved in global register g14

« Forbalx, the return IP instruction is saved in a register specified by one of the instruction’s
operands

A return from a branch-and-link is generally carried out withkgbranch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The
branch-and-link method of making procedure calls is recommended for calls to leaf procedures.
Leaf procedures typically call no other procedures. Branch-and-link is the fastest way to make a
call, providing the calling procedure does not require its own registers or stack frame.

7-21

intel

FAULTS

intel

CHAPTER 8
FAULTS

This chapter describes the i960% Jx processor’s fault handling facilities. Subjects covered include
the fault handling data structures and fault handling mechanismsseséen 8.10, “FAULT
REFERENCE” (pg. 8-21jor detailed information on each fault type.

8.1 FAULT HANDLING OVERVIEW

The 1960 processor architecture defines various conditions in code and/or the processor’s internal
state that could cause the processor to deliver incorrect or inappropriate results or that could cause
it to choose an undesirable control path. These are chllédconditions. For example, the
architecture defines faults for divide-by-zero and overflow conditions on integer calculations with
an inappropriate operand value.

As shown inFigure 8-1 the architecture defines a fault table, a system procedure table, a
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) to handle
processor-generated faults.

Fault

Fault Fault

Processor Table Handling
- Procedures
System)

Procedure Supervisor

Table Stack

Current Stack

Figure 8-1. Fault-Handling Data Structures

8-1

int
FAULTS I ‘el

The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. If the processor is in the
interrupted state, the processor uses the interrupt stack.

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software.

The processor can detect afault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be;

e Alocal call (call-extended operation)
¢ A system-local call (local call through the system procedure table)
* A system-supervisor call (supervisor call through the system procedure table)

A normal fault condition is handled by the processor in the following manner:
e The current local registers are saved and cached on-chip.

e PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
section 7.8, “RETURNS” (pg. 7-20pr more information.

« If the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is re-aligned on the current stack.

e The processor writes the fault record on the new stack. This record includes information on
the fault and the processor’s state when the fault was generated.

« The Instruction Pointer (IP) of the first instruction of the fault handler is accessed through the
fault table or through the system procedure table (for system fault calls).

After the fault record is created, the processor executes the selected fault handling procedure. If a
fault is recoverable (i.e., the program can be resumed after handling the fault) the Return Instruction
Pointer (RIP) is defined for the fault being serviced (®e&tion 8.10, “FAULT REFERENCE”

(pg. 8-21) and the processor will resume execution at the RIP upon return from the fault handler. If
the RIP is undefined, the fault handling procedure can create one by usihglitiheg instruction
followed by a modification of the RIP in the previous frame @eetion 8.7.5 on page 8-19he

fault handler can also call a debug monitor or reset the processor instead of resuming prior execution.

This procedure call mechanism also handles faults that occur:
* While the processor is servicing an interrupt
¢ While the processor is servicing another fault

8-2

int
I dm FAULTS

8.2 FAULT TYPES

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects afault, it records the fault
type and subtype numbers in the fault record. It then uses the type number to select the fault
handling procedure.

Thefault handling procedure can optionally use the subtype number to select a specific fault handling
action. Thei960 Jx processor recognizes 960 architecture-defined faults and a new fault subtype for
detecting unaligned memory accesses. Table 8-1 ligts all faults that the 1960 Jx processor detects,
arranged by type and subtype. Text that follows the table gives column definitions.

Table 8-1. i960% Jx Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number or
Number Name Bit Position Name

See section 8.10.4,
OH OVERRIDE NA NA “OVERRIDE Faults”
(pg. 8-26)

see section 8.6.4,

OH PARALLEL NA NA “Parallel Faults” (pg. 8-9)
Bit 1 INSTRUCTION 0001 0002H
Bit 2 BRANCH 0001 0004H
Bit 3 CALL 0001 0008H
1H TRACE Bit 4 RETURN 0001 0010H
Bit 5 PRERETURN 0001 0020H
Bit 6 SUPERVISOR 0001 0040H
Bit 7 MARK/BREAKPOINT 0001 0080H
1H INVALID_OPCODE 0002 0001H
2H UNIMPLEMENTED 0002 0002H
2H OPERATION 3H UNALIGNED 0002 0003H
4H INVALID_OPERAND 0002 0004H
1H INTEGER_OVERFLOW | 0003 0001H
SH | ARITHMETIC 2H ZERO-DIVIDE 0003 0002H
4H Reserved
5H CONSTRAINT 1H RANGE 0005 0001H
6H Reserved
7H PROTECTION Bit 1 LENGTH 0007 0002H
8H - 9H | Reserved
AH TYPE 1H MISMATCH 000A 0001H

BH - FH | Reserved

8-3

int
FAULTS I ‘el

In Table 8-1:
e The first (left-most) column contains the fault type numbers in hexadecimal.
¢ The second column shows the fault type name.

¢ The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of
indicating a fault subtype is used for certain faults (such as trace faults) in which two or more
fault subtypes may occur simultaneously.

e« The fourth column gives the fault subtype name. For convenience, individual faults are
referenced by their fault-subtype names. Thus an OPERATION.INVALID_OPERAND fault
is referred to as an INVALID_OPERAND fault; an ARITHMETIC.INTEGER_OVERFLOW
fault is referred to as an INTEGER_OVERFLOW fault.

¢ The fifth column shows the encoding of the word in the fault record that contains the fault
type and fault subtype numbers.

Other 1960 processor family members may provide extensions that recognize additional fault
conditions. Fault type and subtype encoding allows all faults to be included in the fault table: those
that are common to all i960 processors and those that are specific to one or more family members.
The fault types are used consistently for all family members. For example, Fault Type 4H is
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4H
to store the pointer to the floating point fault handling procedure.

8.3 FAULT TABLE

The fault table Rigure 8-3 is the processor’s pathway to the fault handling procedures. It can be
located anywhere in the address space. From the process control block, the processor obtains a
pointer to the fault table during initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor uses the
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the
fault handling procedure for the type of fault that occurred. Once called, a fault handling procedure
has the option of reading the fault subtype or subtypes from the fault record when determining the
appropriate fault recovery action.

8-4

int
I dm FAULTS

31 Fault Table 0
PARALLEL/OVERRIDE Fault Entry 00H
TRACE Fault Entry 08H
OPERATION Fault Entry 10H
ARITHMETIC Fault Entry 18H
20H
CONSTRAINT Fault Entry 28H
30H
PROTECTION Fault Entry 38H
40H
48H
TYPE Fault Entry 50H
< 4
FCH
31 Local-Call Entry 210
Fault-Handler Procedure Address |0| 0fn
n+4
31 System-Call Entry 210
Fault-Handler Procedure Number | 1| o n
0000 027FH n+4
|:| Reserved (Initialize to 0)

Figure 8-2. Fault Table and Fault Table Entries

8-5

int
FAULTS I ‘el

Asindicated in Figure 8-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word) and
the value in the entry’s second word determine the entry type.

local-call entry Provides an instruction pointer for the fault handling procedure. The

(type 0Q) processor uses this entry to invoke the specified procedure by means of an
implicit local-call operation. The second word of a local procedure entry is
reserved. It must be set to zero when the fault table is created and not
accessed after that.

system-call entry Provides a procedure number in the system procedure table. This entry must

(type 1Q) have an entry type of 3Gand a value in the second word of 0000 027FH.
The processor computes the system procedure number by shifting right the
first word of the fault entry by two bit positions. Using this system procedure
number, the processor invokes the specified fault handling procedure by
means of an implicit call-system operation similar to that performed for the
calls instruction.

Other entry types (@land 13) are reserved and have unpredictable behavior.

To summarize, a fault handling procedure can be invoked through the fault table in any of three
ways: a local call, a system-local call or a system-supervisor call.

8.4 STACK USED IN FAULT HANDLING

The 1960 architecture does not define a dedicated fault handling stack. Instead, to handle a fault,
the processor uses either the user, interrupt or supervisor stack, whichever is active when the fault
is generated. There is, however, one exception: if the user stack is active when a fault is generated
and the fault handling procedure is called with an implicit system supervisor call, the processor
switches to the supervisor stack to handle the fault.

8.5 FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the same
stack that the fault handling procedure will use to handle the fault.

8-6

int
! -el FAULTS

8.5.1 Fault Record Description

Figure 8-3 shows the fault record’s structure. In this record, the fault's type number and subtype
number (or bit positions for multiple subtypes) are stored in the fault type and subtype fields,
respectively. The Address of Faulting Instruction Field contains the IP of the instruction that
caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respective fault
record fields. The processor uses this information to resume program execution after the fault is handled.

31 0

NFP - (n+1)*32

FAULT DATA

NFP - 24- n*32

NFP - 20- n*32

NFP - 12- n*32
1 FITYE’Egn)I 1 1 |FS|LJBTYF:E| NFP - 8- n*32
ADDRESS OF FAULTING INSTRUCTION (n) NFP - 4- n*32
NFP - 64
| RESUMPTION INFORMATION
NFP - 52
NFP - 44
. OVERRIDE FAULT DATA I
NFP - 32
FAULT DATA
L L LU L
PROCESS CONTROLS NFP-16
ARITHMETIC CONTROLS NFP-12
L L L 1 1 1 T 11
m —ereen - DRI | revenveedy - wee-s
e .. . AODRESSOFFAULTNGINSTRUCTONG) . | NFP4
31 28 24 20 16 12 8 4 0

NOTES: “NFP” means “New Frame Pointer”
“n” means “number of faults”

. RESERVED

Figure 8-3. Fault Record

int
FAULTS I ‘el

The Resumption Information Field is used to store information about a pending trace fault. If a
trace fault and a non-trace fault occur simultaneously, the non-trace fault is serviced first and the
pending trace may be lost depending on the non-trace fault encountered. The Trace Reporting
paragraph for each fault specifies whether the pending trace is kept or lost.

8.5.2 Fault Record Location

Thefault record is stored on the stack that the processor uses to execute the fault handling procedure.
Asshown in Figure 8-4, this stack can be the user stack, supervisor stack or interrupt stack. The fault
record begins at byte address NFP-1. NFP refers to the new frame pointer that is computed by adding
the memory size alocated for padding and the fault record to the previous stack pointer (SP). The
processor cal culates the new stackpointer (NSP) by adding 80 bytes to the NFP.

Current Stack
31 (User, Supervisor, or Interrupt Stack) 0
FP
Current Frame
¢ ¢ SP
31 Current Stack or Supervisor Stack® 0
SP
; Padding Area }
Stack
Fault
Growth < Fault Record 2 Rzléord
NFP-4
NFP
T New Frame T
¢ ¢ NSP
NOTES:
1. When the processor is in user mode and the fault handler procedure is called with a system supervisor
call, the processor switches to the supervisor stack.

Figure 8-4. Storage of the Fault Record on the Stack

8-8

int
I dm FAULTS

8.6 MULTIPLE AND PARALLEL FAULTS

Multiple fault conditions can occur during a single instruction execution and during multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.

8.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single ingtruction execution. For example, an instruction
can have an invalid operand and unaligned address. When this situation occurs, the processor is
required to recognize and generate at least one of the fault conditions. The processor may not detect
all fault conditions and will report only one detected non-trace fault on asingle instruction.

In amultiple fault situation, the reported fault condition is left to the implementation.

8.6.2 Multiple Trace Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise
(see section 8.9, “PRECISE AND IMPRECISE FAULTS” (pg.8-)19Multiple trace fault
conditions on the same instruction are reported in a single trace fault record (with the exce
prereturn trace, which always happens alone). To support multiple fault reporting, the trace fault
uses bit positions in the fault-subtype field to indicate occurrences of multiple faults of the same
type (se€Table 8-1.

8.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction
The execution of a single instruction can create one or more trace fault conditions in addition to
multiple non-trace fault conditions. When this occurs:

¢ The pending trace is dismissed if any of the non trace faults dismisses it, as mentioned in the
“Trace Reporting” paragraph for that faultdaction 8.10, “FAULT REFERENCE” (pg. 8-21)

e The processor services one of the non trace faults.

« Finally, the trace is serviced upon return from the non-trace fault handler if it was not
dismissed in step 1.

8.6.4 Parallel Faults
The 1960 Jx processor exploits the architecture’s tolerance of out-of-order instruction execution by

issuing instructions to independent execution units on the chip. The following subsections describe
how the processor handles faults in this environment.

8-9

int
FAULTS I ‘el

8.6.4.1 Faults on Multiple Instructions Executed in Parallel

If AC.nif=0, imprecise faultsrelative to different instructions executing in parallel may be reported

in asingle parallel fault record. For these conditions, the processor calls a unique fault handler, the
PARALLEL fault handler (see section 8.9.4, “No Imprecise Faults (AC.nif) Bit” (pg. 8-R0Jhis
mechanism allows instructions that can fault to be executed in parallel with other instructions or
out of order.

In parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The optional section is the
area below NFP-64 where the fault records for each of the parallel faults that occurred are stored.
The fault handling procedure for parallel faults can then analyze the fault record and handle the
faults. The fault record for parallel faults is described in the next section.

If the RIP is undefined for at least one of the faults found in the parallel fault record, then the RIP
of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can
either create a RIP and return or call a debug monitor to analyze the faults.

If the RIP is defined for all faults found in the fault record, then it will point to the next instruction
not yet executed. The parallel fault handler can simply return to the next instruction not yet
executed with aet instruction.

Consider the following code example, whererthei and theaddi instructions both have overflow
conditions. AC.om=0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. Theaddi andmuli are allowed to execute in parallel when AC.nif = 0, because
they are executed in different units. The faults that these instructions can generate
(ARITHMETIC) are imprecise.

muli g2, g4, g6; # results in integer overflow
addi g8, g9, g10; # results in integer overflow

The fault on theaddi is detected before the fault on timaili because thenuli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler tardihe
instruction (seesection 8.9.5, “Controlling Fault Precision” (pg. 8-R0WVhich is when thenuli

fault is detected. The processor builds a parallel fault record with information relative to both
faults and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be
recovered by storing the desired result of the instruction in the proper destination register and
setting the AC.of flag (optional) to indicate that an overflow occurredetfat the end of the
parallel fault handler routine will then return to the next instruction not yet executed in the
program flow.

On the 1960 Jx processor, thauli overflow fault is the only fault that can happen with a delay.
Therefore, parallel fault records can report a maximum of 2 faults, one of which mustubie a
ARITHMETIC.INTEGER_OVERFLOW fault.

8-10

int
I dm FAULTS

A pardle fault handler must be accessed through a system-supervisor call. Loca and system-local
paralel fault handlers are not supported by the architecture and have unpredictable behavior. Tracing
isdisabled upon entry into the parallel fault handler (PC.teis cleared). It is restored upon return from
the handler. To prevent infinite internal loops, the parallel fault handler should not set PC.te.

8.6.4.2 Fault Record for Parallel Faults

When parallel faults occur, the processor selects one of the faults and recordsit in the first 16 bytes

of the fault record as described in section 8.5.1, “Fault Record Description” (pg. 8-Mhe
remaining parallel faults are written to the fault record’s optional section, and the fault handling
procedure for parallel faults is invokeBigure 8-3shows the structure of the fault record for
parallel faults.

The OType/OSubtype word at NFP - 20 contains the number of parallel faults. The optional section
also contains a 32-byte parallel fault record for each additional parallel fault. These parallel fault
records are stored incrementally in the fault record starting at byte offset NFP-65. The fault record
for each additional fault contains only the fault type, fault subtype, address-of-faulting-instruction

and the optional fault section. (For example, if two parallel faults occur, the fault record f
second fault is located from NFP-96 to NFP-65.)

To calculate byte offsets, “n” indicates the fault number. Thus, for the second fault recorded (n=2),
the relationship (NFP-4-(n * 32)) reduces to NFP-72. For the i960 Jx processor, a maximum of two

faults are reported in the parallel fault record, and one of them must be the
ARITHMETIC.INTEGER_OVERFLOW fault on auli instruction.

8.6.5 Override Faults

The 1960 Jx processor can detect a fault condition while the processor is preparing to service a
previously detected fault. When this occurs, it is calledoesrride condition. This section
describes this condition and how the processor handles it.

A normal fault condition is handled by the processor in the following manner:

e The current local registers are saved and cached on-chip.

¢ PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
section 7.8, “RETURNS” (pg. 7-20pr more information.

e If the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is re-aligned on the current stack.

e The processor writes the fault record on the new stack.

« The IP of the first instruction of the fault handler is accessed through the fault table or through
the system procedure table (for system fault calls).

8-11

int
FAULTS I ‘el

A fault that occurs during any of the above actions is called an override fault. In response to this
condition, the processor does the following:

e Switches the execution mode to supervisor.

¢ Selects the override condition that shows that the writing of the fault record was unsuccessful.
If no such fault exists, the processor selects one of the other fault conditions. This method
ensures that the fault handler has information regarding the fault record write.

e Saves information pertaining to the override condition selected. The fault record describes the
first fault as described previously. Field OType contains the fault type of the second fault, field
OSubtype contains the fault subtype of the second fault and field override-fault-data contains
what would normally be the fault data field for the second fault type.

« Attempts to access the IP of the first instruction in the override fault handler through the
system procedure table.

It should be noted that a fault that occurs while the processor is actually executing a fault handling
procedure is not an override fault.

The override fault entry is entry 0. If the override fault entry in the fault table points to a location
beyond the system procedure table, the processor enters system error mode. Override fault
conditions include: PROTECTION and OPERATION.UNIMPLEMENTED faults.

An override fault handler must be accessed through a system-supervisor call. Local and
system-local override fault handlers are not supported by the architecture and have an
unpredictable behavior. Tracing is disabled upon entry into the override fault handler (PC.te is
cleared). It is restored upon return from the handler. To prevent infinite internal loops, the override
fault handler should not set PC.te.

8.6.6 System Error

If a fault is detected while the processor is in the process of servicing an override or parallel fault,
the processor enters the system error state. Note that “servicing” indicates that the processor has
detected the override or parallel fault, but has not begun executing the fault handling procedure.
This type of error causes the processor to enter a system error state. In this state, the processor uses
only one read bus transaction to signal the fail code message; the address of the bus transaction is
the fail code itself.

8.7 FAULT HANDLING PROCEDURES
The fault handling procedures can be located anywhere in the address space except within the

on-chip data RAM or MMR space. Each procedure must begin on a word boundary. The processor
can execute the procedure in user or supervisor mode, depending on the fault table entry type.

8-12

int
I dm FAULTS

8.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible,

the processor’s fault handling mechanism allows the processor to automatically resume work on
the program or pending interrupt when the fault occurred. Resumption is initiated with a
instruction in the fault handling procedure.

If recovery from the fault is not possible or not desirable, the fault handling procedure can take one
of the following actions, depending on the nature and severity of the fault condition (or conditions,
in the case of multiple faults):

¢ Return to a point in the program or interrupt code other than the point of the fault.

e Call a debug monitor.

« Perform processor or system shutdown with or without explicitly saving the processor state
and fault information.

When working with the processor at the development level, a common fault handling strategy is to
save the fault and processor state information and call a debugging tool such as a monitor. _

8.7.2 Program Resumption Following a Fault
Because of the wide variety of faults, they can occur at different times with respect to the faulting
instruction:

« Before execution of the faulting instruction (e.g., fetch from on-chip RAM)

e During instruction execution (e.g., integer overflow)

¢ Immediately following execution (e.g., trace)

8.7.2.1 Faults Happening Before Instruction Execution

The following fault types occur before instruction execution:

« ARITHMETIC.ZERO_DIVIDE

« TYPE.MISMATCH

* PROTECTION.LENGTH

¢ All OPERATION subtypes except UNALIGNED

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. In some cases the fault occurs before

the faulting instruction is executed, the faulting instruction may be fixed and re-executed upon
return from the fault handling procedure.

8-13

int
FAULTS I ‘el

8.7.2.2 Faults Happening During Instruction Execution

The following fault types occur during instruction execution:
« CONSTRAINT.RANGE

« OPERATION.UNALIGNED

« ARITHMETIC.INTEGER_OVERFLOW

For these faults, the fault handler must explicity modify the RIP to return to the faulting
application (except for ARITHMETIC.INTEGER_OVERFLOW).

When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change such that program execution cannot be resumed after the
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored

in the destination. If the destination register is the same as one of the source registers, the source
value is lost, making it impossible to re-execute the faulting instruction.

8.7.2.3 Faults Happening After Instruction Execution

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can return to
the next instruction in the flow:

« TRACE

¢ ARITHMETIC.INTEGER_OVERFLOW

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

¢ All TRACE Subtypes

The effect of specific fault types on a program is defineskotion 8.10, “FAULT REFERENCE”
(pg. 8-21)under the headinBrogram State Changes.

8.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image of
the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing the fault
handler after &lushreg. The RIP in the previous frame points to an instruction where program
execution can be resumed with no break in the program’s control flow. It generally points to the faulting
instruction or to the next instruction to be executed. In some instances, however, the RIP is undefined.
RIP content for each fault is describedéttion 8.10, “FAULT REFERENCE” (pg. 8-21)

8-14

int
I dm FAULTS

8.7.4 Returning to the Point in the Program Where the Fault Occurred

Asdescribed in section 8.7.2, “Program Resumption Following a Fault” (pg. 841®st faults can

be handled such that program control flow is not affected. In this case, the processor allows a
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with @t instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

Also, to restore the PC register from the fault record upon return from the fault handler, the fault
handling procedure must be executed in supervisor mode either by using a supervisor call or by
running the program in supervisor mode. See the pseudocedetion 6.2.54, “ret” (pg. 6-92)

8.7.5 Returning to a Point in the Program Other Than Where the Fault

Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault handling
procedure should perform the following steps:

1. Flush the local register sets to the stack willaghreg instruction. _

2. Modify the RIP in the previous frame.

3. Clear trace-fault-pending flag in fault record’s process controls field before the return (optional).
4, Execute a return with thet instruction.

Use this technique carefully and only in situations where the fault handling procedure is closely
coupled with the application program.

8.7.6 Fault Controls

For certain fault types and subtypes, the processor employs register mask bits or flags that determine
whether or not a fault is generated when a fault condition octabde 8-2summarizes these flags
and masks, the data structures in which they are located, and the fault subtypes they affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed Bection 8.10, “FAULT REFERENCE” (pg. 8-21)

The Arithmetic Controls no imprecise faults (AC.nif) bit controls the synchronizing of faults for a

category of faults called imprecise faults. The function of this bit is describsdciion 8.9,
“PRECISE AND IMPRECISE FAULTS” (pg. 8-19)

8-15

int
FAULTS I ‘el

TC register trace mode bits and the PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; the trace enable bit (PC.te) enables trace fault generation. The use of these
bitsisdescribed in the trace faults description in section 8.10, “FAULT REFERENCE” (pg. 8-21)
Further discussion of these flags is provide@HAPTER 9, TRACING AND DEBUGGING

Table 8-2. Fault Control Bits and Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit | Arithmetic Controls (AC) Register | INTEGER_OVERFLOW

No Imprecise Faults Bit | Arithmetic Controls (AC) Register| All Imprecise Faults
Trace Enable Bit Process Controls (PC) Register | All TRACE Faults

All TRACE Faults except hardware
breakpoint traces and fmark

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault

Trace Mode Trace Controls (TC) Register

The unaligned fault mask bit is located in the process control block (PRCB), which is read from
the fault configuration word (located at address PRCB pointer + OCH) during initialization. It
controls whether unaligned memory accesses generate a faultse8ten 13.5.2, “Bus
Transactions Across Region Boundaries” (pg. 13-7)

8.8 FAULT HANDLING ACTION

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and,
if possible, restores the program state when the fault recovery action completes. No software other
than the fault handling procedures is required to support this activity.

Three types of implicit procedure calls can be used to invoke the fault handling procedure: a local
call, a system-local call and a system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault handling
procedure. These sections are provided for those readers who wish to know the details of the fault
handling mechanism.

8-16

int
I dm FAULTS

8.8.1 Local Fault Call
When the sdlected fault handler entry in the fault table is an entry type 000, (a loca procedure), the
processor operates asdescribed in section 7.1.3.1, “Call Operation” (pg. 7;@)ith the following exceptions:

« A new frame is created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

e The fault record is copied into the area allocated for it in the Staghré 8-4, beginning at NFP-1.

e The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

* The processor stores the fault return code {0ithe PFP return type field.

If the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described igection 8.7.2, “Program Resumption Following a Fault” (pg. 8-13)

If the handler action results in recovery from the faultetinstruction in the fault handling
procedure allows processor control to return to the program that was executing when the fault
occurred. Upon return, the processor performs the action descritsedttion 7.1.3.2, “Retur

Operation” (pg. 7-7)except that the arithmetic controls field from the fault record is copiedm
the AC register. If the processor is in user mode before execution of the return, the process

field from the fault record is not copied back to the PC register.

8.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (entry
type 1G), the processor performs the same action as is described in the previous section for a local
fault call or return. The only difference is that the processor gets the fault handling procedure's
address from the system procedure table rather than from the fault table.

8.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action describeédtion 7.1.3.1, “Call Operation” (pg. 7;6)
with the following exceptions:

e If the fault occurs while in user mode, the processor switches to supervisor mode, reads the
supervisor stack pointer from the system procedure table and switches to the supervisor stack.
A new frame is then created on the supervisor stack.

e If the fault occurs while in supervisor mode, the processor creates a new frame on the current
stack. If the processor is executing a supervisor procedure when the fault occurred, the current
stack is the supervisor stack; if it is executing an interrupt handler procedure, the current stack
is the interrupt stack. (The processor switches to supervisor mode when handling interrupts.)

8-17

int
FAULTS I ‘el

e The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1. (Sed-igure 8-4)

e The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

e The processor stores the fault return code {pbilthe PFP register return type field. If the
fault is not a trace, parallel or override fault, it copies the state of the system procedure table
trace control flag (byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace,
parallel or override fault, the trace enable bit is cleared.

On a return from the fault handling procedure, the processor performs the action described in
section 7.1.3.2, “Return Operation” (pg. 7with the addition of the following:
e The fault record arithmetic controls field is copied into the AC register.

e If the processor is in supervisor mode prior to the return from the fault handling procedure
(which it should be), the fault record process controls field is copied into the PC register. The
mode is then switched back to user, if it was in user mode before the call.

e« The processor switches back to the stack it was using when the fault occurred. (If the
processor was in user mode when the fault occurred, this operation causes a switch from the
supervisor stack to the user stack.)

« If the trace-fault-pending flag and trace enable bits are set in the PC field of the fault record,
the trace fault on the instruction at the origin of the supervisor fault call is handled at this time.

The user should note that PC register restoration causes any changes to the process controls done
by the fault handling procedure to be lost.

8.8.4 Faults and Interrupts

If an interrupt occurs during an instruction that will fault, an instruction that has already faulted, or
fault handling procedure selection, the processor handles the interrupt in the following way:

1. Completes the selection of the fault handling procedure.
2. Creates the fault record.

3. Services the interrupt just prior to executing the first instruction of the fault handling
procedure.

4. Handles the fault upon return from the interrupt.

Handling the interrupt before the fault reduces interrupt latency.

8-18

int
I dm FAULTS

8.9 PRECISE AND IMPRECISE FAULTS

Asdescribed in section 8.10.5, “PARALLEL Faults” (pg. 8-2,7hhe i960 architecture — to support
parallel and out-of-order instruction execution — allows some faults to be generated together.

The processor provides two mechanisms for controlling the circumstances under which faults are
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchronize
faults. Seesection 8.9.5, “Controlling Fault Precision” (pg. 8-Z0) more information. Faults are
categorized as precise, imprecise and asynchronous. The following subsections describe each.

8.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:
e The faulting instruction is the earliest instruction in the instruction issue order to generate a fault.

e Allinstructions after the faulting instruction, in instruction issue order, are guaranteed not to
have executed.

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be fos]
parallel records with other precise or imprecise faults.

8.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may
not be possible to access the source operands of the instruction. This is because they may have
been modified by subsequent instructions executed out of order. However, the RIP of some
imprecise faults (e.g., ARITHMETIC) points to the next instruction that has not yet executed and
guarantees the return from the fault handler to the original flow of execution. Faults that the
architecture allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TYPE.

8.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the 80960Jx.

8-19

int
FAULTS I ‘el

8.94 No Imprecise Faults (AC.nif) Bit

The Arithmetic Controls no imprecise faults (AC.nif) bit controls imprecise fault generation. If
AC.nif is set, out of order instruction execution is disabled and all faults generated are precise.
Therefore, setting this bit will reduce processor performance. If AC.nif is clear, several imprecise
faults may be reported together in a parallel fault record. Precise faults can never be found in
parallel fault records, thus only more than one imprecise fault occurring concurrently with AC.nif
= 0 can produce a parall el fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors
from which recovery is not needed. This also allows the processor to take advantage of internal
pipelining, which can speed up processing time. When only precise faults are alowed, the
processor must restrict the use of pipelining to prevent imprecise faults.

The AC.nif bit should be set if recovery from one or more imprecise faults is required. For
example, the AC.nif bit should be set if a program needs to handle and recover from unmasked
integer-overflow faults. The fault handling procedure cannot be closely coupled with the
application to perform imprecise fault recovery.

8.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of al instructions that occur
prior to syncf and to generate all faults before it begins work on instructions that occur after
syncf. Thisinstruction has two uses:

e It forces faults to be precise when the AC.nif bit is clear.
e It ensures that all instructions are complete and all faults are generated in one block of code
before executing another block of code.

The implicit fault call operation synchronizes all faults. In addition, the following instructions or
operations perform synchronization of all faults:

e Call and return operations includirgll, callx, calls andret instructions, plus the implicit
interrupt and fault call operations.
e Atomic operations includingtadd andatmod.

8-20

int
I dm FAULTS

8.10 FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault type.
The following paragraphs describe the information that is provided for each fault type.

Fault Type: Gives the number that appears in the fault record fault-type field
when the fault is generated.

Fault Subtype: Ligtsthe fault subtypes and the number associated with each fault subtype.

Function: Describesthe purpose and handling of the fault type and each subtype.

RIP: Describes the value saved in the image of the RIP register in the stack

frame that the processor was using when the fault occurred. Inthe RIP
definitions, “next instruction” refers to the instruction directly after
the faulting instruction or to an instruction to which the processor can
logically return when resuming program execution.

Note that the discussions of many fault types specify that the
contains the address of the instruction that would have exe

next had the fault not occurred.

Fault IP: Describes the contents of the fault record’s fault instruction pointer
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

Program State Changes: Describes the process state changes that would prevent re-executing

the faulting instruction if applicable.

Trace Reporting: Relates whether a trace fault (other than PRERET) can be detected
on the faulting instruction, also if and when the fault is serviced.

Notes: Additional information specific to particular implementations of the
i960 architecture.

8-21

FAULTS

intel

8.10.1 ARITHMETIC Faults

Fault Type:
Fault Subtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

8-22

3H

Number Name

OH Reserved

1H INTEGER_OVERFLOW
2H ZERO DIVIDE

3H-FH Reserved

Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER_OVERFLOW fault is generated when
the result of an integer instruction overflows its destination and the
AC register integer overflow mask is cleared. Here, the result’s
least significant bits are stored in the destination, wherns
destination size. Instructions that generate this fault are:

addi subi stis
stib shli ADDI<cc>
muli divi SUBI<cc>

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is zero.
Instructions that generate this fault are:

divo divi
ediv remi
remo modi

IP of the instruction that would have executed next if the fault had
not occurred.

IP of the faulting instruction.
Imprecise.

Faults may be imprecise when executing with the AC.nif bit
cleared. INTEGER_OVERFLOW and ZERO_DIVIDE faults may
not be recoverable because the result is stored in the destination
before the fault is generated (e.g., the faulting instruction cannot be
re-executed if the destination register was also a source register for
the instruction).

The trace is reported upon return from the arithmetic fault handler.

intel

FAULTS

8.10.2 CONSTRAINT Faults

Fault Type:
Fault Subtype:

Function:

RIP:
Fault IP:

Class:

Program State Changes:

Trace Reporting:

5H

Number Name
OH Reserved
1H RANGE
2H-FH Reserved

Indicates the program or procedure violated an architectural constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc>
instruction is executed and the AC register condition code field
matches the condition required by the instruction.

No defined value.

Faulting instruction.

Imprecise.

These faults may be imprecise when executing with the AC.nif bit

cleared. No changes in the program’s control flow accompany t

faults. A CONSTRAINT.RANGE fault is generated after the
FAULT<cc> instruction executes. The program state is not affected.

Serviced upon return from the Constraint fault handler.

8-23

int
FAULTS I ‘el

8.10.3 OPERATION Faults

Fault Type: 2H
Fault Subtype: Number Name
OH Reserved
1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED
4H INVALID_OPERAND
5H - FH Reserved
Function: Indicates the processor cannot execute the current instruction

because of invalid instruction syntax or operand semantics.

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode.

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or unaligned access to a memory-mapped
region is performed, or when attempting to write memory-mapped
region OXFF0084X X when rights have not been granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word
or group of words in non-MMR memory; and (2) the fault is
enabled by the unaligned-fault mask bit in the PRCB fault configu-
ration word.

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands
having specia requirements that are not satisfied. This fault is
generated when specifying a non-defined sysctl, icctl, dcctl or
intctl command, or referencing an unaligned long-, triple- or
quad-register group, or by referencing an undefined register, or by
writing to the RIP register (r2).

RIP: No defined value.
Fault IP: Address of the faulting instruction.
Fault Data: When an UNALIGNED fault is signaled, the effective address of

the unaligned access is placed in the fault record’s optional data
section, beginning at address NFP-24. This address is useful to
debug a program that is making unintentional unaligned accesses.

8-24

int
I dm FAULTS

Class: Imprecise.

Program State Changes: For the INVALID_OPCODE and UNIMPLEMENTED faults (case:
store to MMR), the destination of the faulting instruction is not
modified. (For the UNALIGNED fault, the memory operation
completes correctly before the fault is reported.) In all other cases,
the destination is undefined.

Trace Reporting: OPERATION.UNALIGNED fault: the trace is reported upon return
from the OPERATION fault handler.
All other subtypes: the trace event is lost.

Note: OPERATION.UNALIGNED fault is not implemented on i960 Kx
and Sx CPUs.

8-25

int
FAULTS I ‘el

8.10.4 OVERRIDE Faults
Fault Type: Fault table entry = OH

The fault type in the fault record on the stack equals the fault type
of theinitial fault.

Fault Subtype: The fault subtype in the fault record on the stack equals the fault
subtype of theinitial fault.

Fault OType: The fault type of the additional fault detected while attempting to
deliver the program fault.

Fault OSubtype: The fault subtype of the additional fault detected while attempting
to deliver the program fault.

Function: The override fault handler must be accessed through a system-super-
visor cal. Local and system-local override fault handlers are not
supported and have an unpredictable behavior. Tracing is disabled
upon entry into the override fault handler (PC.te is cleared). It is
restored upon return from the handler. To prevent infinite internal
loops, the override fault handler should not set PC.te.

Trace Reporting: Same behavior asif the override condition had not existed. Refer to
the description of the original program fault.

8-26

intel

FAULTS

8.10.5 PARALLEL Faults

Fault Type:

Fault Subtype:
Fault OType:
Fault OSubtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

Fault table entry = OH
Fault type in fault record = fault type of one of the parallel faults.

Fault subtype of one of the parallel faults.
OH
Number of paralel faults.

See section 8.6.4, “Parallel Faults” (pg.8-9%or a complete
description of parallel faults. When the AC.nif=0, the architecture
permits the processor to execute instructions in parallel and
out-of-order by different execution units. When an imprecise fault
occurs in any of these units, it is not possible to stop the execution of
those instructions after the faulting instruction. It is also possible
that more than one fault is detected from different instructions
almost at the same time.

When there is more than one outstanding fault at the point wh
execution units terminate, a parallel fault situation arises. The
record of parallel faults contains the fault information of all faults thal
occurred in parallel. The number of parallel faults is indicated in the
OSubtype Field (NFP-20). Sé&gure 8-3 The maximum size of the
fault record is implementation dependent and depends on the number
of parallel and pipeline execution units in the specific implementation.

The parallel fault handler must be accessed through a system-super-
visor call. Local and system-local parallel fault handlers are not
supported by the 1960 processor and have an unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC.te
is cleared). It is restored upon return from the handler. To prevent
infinite internal loops, the parallel fault handler should not set PC.te.

If all parallel fault types allow a RIP to be defined, the RIP is the
next instruction in the flow of execution, otherwise it is undefined.

IP of one of the faulting instructions.
Imprecise.
State changes associated with all the parallel faults.

If all parallel fault types allow for a resumption trace, then a trace is
reported upon return from the parallel fault handler, or else it is lost.

8-27

int
FAULTS I ‘el

8.10.6 PROTECTION Faults

Fault Type: H
Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 LENGTH
Bits 2-7 Reserved
Function: Indicates that a program or procedure is attempting to perform an

illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index
operand used in a calls instruction points to an entry beyond the
extent of the system procedure table.

RIP: IP of the faulting instruction.

Fault IP: PROTECTION.LENGTH: IP of the faulting instruction.
Class: PROTECTION.LENGTH: Is precise.

Program State Changes: LENGTH: Theinstruction does not execute.

Trace Reporting: PROTECTION.LENGTH: The trace event is|ost.

8-28

int
I dm FAULTS

8.10.7 TRACE Faults

Fault Type: 1H
Fault Subtype: Number Name
Bit0 Reserved
Bit 1 INSTRUCTION
Bit 2 BRANCH
Bit 3 CALL
Bit 4 RETURN
Bit 5 PRERETURN
Bit 6 SUPERVISOR
Bit 7 MARK/BREAKPOINT
Function: Indicates the processor detected one or more trace events. The event
tracing mechanism is described in CHAPTER 9, TRACING AND
DEBUGGING.

A trace event isthe occurrence of a particular instruction or instruction
typein theingtruction stream. The processor recognizes seven different
trace events. instruction, branch, call, return, prereturn, supervisor,
mark. It detects these events only if the TC register mode bit is set for

the event. If the PC register trace enable bit is also set, the processor
generates afault when atrace event is detected.

A TRACE fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace event).
The following trace modes are avail able:

INSTRUCTION Generates a trace event following every
instruction.
BRANCH Generates a trace event following any

branch instruction when the branch is
taken (a branch trace event does not
occur on branch-and-link or call
instructions).

CALL Generates a trace event following any
call or branch-and-link instruction or an
implicit fault call.

RETURN Generates atrace event following aret.

8-29

FAULTS

8-30

intel

PRERETURN Generates a trace event prior to any ret
instruction, provided the PFP register
prereturn trace flag is set (the processor
sets the flag automatically when a call
trace is serviced). A prereturn trace
fault is always generated alone.

SUPERVISOR Generates a trace event following any
calls instruction that references a
supervisor procedure entry in the
system procedure table and on areturn
from a supervisor procedure where the
return status type in the PFP register is
010, or 011,.

MARK/BREAKPOINT Generates a trace event following the
mark instruction. The MARK fault
subtype bit indicates a match of the
instruction-address breakpoint register,
the data-address breakpoint register as
well asthe fmark and mark instructions.

A TRACE fault subtype bit is associated with each mode. Multiple
fault subtypes can occur simultaneously; all trace fault conditions
detected on one instruction (except prereturn) are reported in one
single trace fault, with the fault subtype bit set for each subtype that
occurs. The prereturn trace is aways reported alone.

When a fault type other than a TRACE fault is generated during
execution of an instruction that causes a trace event, the non-trace
fault is handled before the trace fault. An exception is the
prereturn-trace fault, which occurs before the processor detects a
non-trace fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the TRACE fault is
handled. Again, the TRACE.PRERETURN fault is different. Since
it is generated before the instruction, it is handled before any
interrupt that occurs during instruction execution.

A trace fault handler must be accessed through a system-supervisor
call (it must be a supervisor procedure in the system procedure
table). Local and system-local trace fault handlers are not supported
by the architecture and may have unpredictable behavior. Tracing is
automatically disabled when entering the trace fault handler and is
restored upon return from the trace fault handler. The trace fault
handler should not modify PC.te.

intel

RIP:
Fault IP:

Class:

Program State Changes:

FAULTS

Instruction immediately following the instruction traced, in
instruction issue order, except for PRERETURN. For
PRERETURN, the RIP isthe return instruction traced.

IP of the faulting instruction for all except prereturn trace and call
trace (on implicit fault calls), for which the fault IP field is
undefined.

Precise.

All trace faults except PRERETURN are serviced after the
execution of the faulting instruction. The processor returns to the
instruction immediately following the instruction traced, in
instruction issue order. For PRERETURN, the return is traced
before it executes. The processor re-executes the return instruction
after completion of the PRERETURN trace fault handler.

8-31

FAULTS

8.10.8 TYPE Faults
Fault Type:
Fault Subtype:

Function:

RIP:
Fault IP:
Class:

Program State Changes:

Trace Reporting:
Note:

8-32

intel

AH

Number Name

OH Reserved

1H MISMATCH
2H-FH Reserved

Indicates a program or procedure attempted to perform an illegd
operation on an architecture-defined datatype or atyped datastructure.

A TYPE.MISMATCH fault is generated when attempts are made to:

Execute a privileged (supervisor-mode only) instruction while
the processor is in user mode. Privileged instructions on the
i960 Jx processor are:

modpc dcctl
halt intctl
sysctl inten
icctl intdis

Write to on-chip data RAM while the processor is in super-
visor-only write mode and BCON.irp is set. S&gure 13-3

Write to the first 64 bytes of on-chip data RAM while the
processor is in either user or supervisor mode and BCON.sirp
is set. Se&igure 13-3

Write to memory-mapped registers in supervisor space from
user mode.

Write to timer registers while in user mode, when timer
registers are protected against user-mode writes.

No defined value.

IP of the faulting instruction.

Imprecise.

The fault happens before execution of the instruction. The machine
state is not changed.

The trace event is lost.

modpc can be used in user mode, to read the PC. In supervisor
mode, modpc is used to modify the PC.

intel
S

TRACING AND DEBUGGING

intel

CHAPTER 9
TRACING AND DEBUGGING

This chapter describes the i960% Jx processor’s facilities for runtime activity monitoring. The i960
architecture provides facilities for monitoring processor activity through trace event generation. A
trace event indicates a condition where the processor has just completed executing a particular
instruction or a type of instruction or where the processor is about to execute a particular
instruction. When the processor detects a trace event, it generates a trace fault and makes an
implicit call to the fault handling procedure for trace faults. This procedure can, in turn, call
debugging software to display or analyze the processor state when the trace event occurred. This
analysis can be used to locate software or hardware bugs or for general system monitoring during
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits
in the trace controls (TC) register. Alternatively, thark andfmark instructions can be used to
generate trace events explicitly in the instruction stream.

The 1960 Jx processor also provides four hardware breakpoint registers that generate trac s
and trace faults. Two registers are dedicated to trapping on instruction execution adq
(IPBO0,1), while the remaining two registers can trap on the addresses of various types
accesses (DABO,1).

9.1 TRACE CONTROLS

To use the architecture’s tracing facilities, software must provide trace fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate the following registers
and control bits to enable the various tracing modes and enable or disable tracing in general.

¢ TC register mode bits * PCregister trace enable bit

< DABO-DABLI registers’ address field and Previous Frame Pointer (PFP) register return
enable bit (in the control table) status field prereturn trace flag (bit 3)

e System procedure table super- « Breakpoint Control (BPCON) register

visor-stack-pointer field trace control bit breakpoint mode bits and enable bits (in the
control table)

« IPBO-IPBL1 registers’ address field
(in the control table)

These controls are described in the following subsections.

9-1

'ntel
TRACING AND DEBUGGING I ¢

9.1.1 Trace Controls (TC) Register

The TC register (Figure 9-1) allows software to define conditions that generate trace events.

Trace Mode Bits
Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c
Return Trace Mode - TC.r
Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Mark Trace Mode - TC.mk

31 28 24 20 16
dld|ilfi m
1(0j1]0 s|{p|rlc|bli
ARIERE k

12 8 4 0

Hardware Breakpoint Event Flags
Instruction-Address Breakpoint 0 - TC.iOf
Instruction-Address Breakpoint 1 - TC.i1f
Data-Address Breakpoint 0 - TC.dOf

Data-Address Breakpoint 1 - TC.d1f
|:| Reserved

Figure 9-1. 80960Jx Trace Controls (TC) Register

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event when a call or branch-and-link operation executes. See section 9.2
(pg. 9-3). The processor uses event flags to monitor which breakpoint trace events are generated.

A specid instruction, modify-trace-controls (modtc), alows software to modify the TC register.
On initialization, the TC register is read from the Control Table. modtc can then be used to set or
clear trace mode hits as required. Updating TC mode bits may take up to four non-branching
instructions to take effect. Software can access the breakpoint event flags using modtc. The
processor automatically sets and clears these flags as part of its trace handling mechanism: the
breakpoint event flag corresponding to the trace being serviced is set in the TC while servicing a
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler.
When the program is not in atrace fault handler, or when the trace is not for breakpoints, the TC
event bits are clear. On the 1960 Jx processor, TC register bits 0, 8 through 23 and 28 through 31
are reserved. Software must initiaize these bits to zero and cannot modify them afterwards.

9-2

u
Intdw TRACING AND DEBUGGING

9.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag

The Process Controls (PC) register trace enable bit and the trace-fault-pending flag in the PC field

of the fault record control tracing (see section 3.7.3, “Process Controls (PC) Register” (pg. 3-21)

The trace enable bit enables the processor’s tracing facilities; when set, the processor generates
trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the trace
enable bit to begin tracing. This bit is also altered as part of some call and return operations that the
processor performs as describedéation 9.5.2, “Tracing on Calls and Returns” (pg. 9-12)

The update of PC.te throughodpc may take up to four non-branching instructions to take effect.
The update of PC.te through call and return operations is immediate.

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to remember
to service a trace fault when a trace event is detected at the same time as another event (e.g.,
non-trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and
depending on the event type and execution mode, the trace-fault-pending flag in the PC field of the
fault record may be used to generate a fault upon return from the non-trace fault event (see
section 9.5.2.4, “Tracing on Return from Implicit Call: Fault Case” (pg. 9:15)

9.2 TRACE MODES _

This section defines trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode.

¢ Instruction trace e Branch trace Mark trace ¢ Prereturn trace
e Calltrace ¢ Return trace e Supervisor trace

Seesection 9.4, “HANDLING MULTIPLE TRACE EVENTS” (pg. 9-11jor a description of
processor function when multiple trace events occur.

9.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is
executed. A debug monitor can use this mode (TC.i = 1, PC.te = 1) to single-step the processor.

9-3

'ntel
TRACING AND DEBUGGING I ¢

9.2.2 Branch Trace

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.teis set, the processor generates
a branch-trace fault immediately after a branch instruction executes, if the branch is taken. A
branch-trace event is not generated for conditional-branch instructions that do not branch,
branch-and-link instructions, and call-and-return instructions.

9.2.3 Call Trace

When the call-trace mode is enabled in TC (TC.c = 1) and PC.teis set. The processor generates a
call-trace fault when acall instruction (call, callx or calls) or a branch-and-link instruction (bal or
balx) executes. See section 9.5.2.1, “Tracing on Explicit Call” (pg. 9-1f8)x a detailed description
of call tracing on explicit instructions. Interrupt calls are never traced.

An implicit call to a non trace fault handler also generates a call trace if TC.c and PC.te are set
after the call. Refer t®ection 9.5.2.2, “Tracing on Implicit Call” (pg. 9-149r a complete
description of this case.

When the processor services an explicit call trace fault, it sets the prereturn-trace flag (PFP register
bit 3) in the new frame created by the call operation or in the current frame if a branch-and-link
operation was performed. The processor uses this flag to determine whether or not to signal a
prereturn-trace event omret instruction.

9.2.4 Return Trace

When the return-trace mode is enabled in TC and PC.te is set. The processor generates a
return-trace fault for a return from an explicit call (PFP.rrr=000 or PFP.rrr=01x). See
section 9.5.2.3, “Tracing on Return from Explicit Call” (pg. 9-15)

A return from fault may be traced and a return from interrupt cannot be traceskcSiea 9.5.2.4,
“Tracing on Return from Implicit Call: Fault Case” (pg. 9-1&)dsection 9.5.2.5, “Tracing on
Return from Implicit Call: Interrupt Case” (pg. 9-1f®)y details.

9.25 Prereturn Trace

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are set, the
processor generates a prereturn-trace fault prior to executgtgeaecution. The dependence on

PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode.

9-4

u
Intdw TRACING AND DEBUGGING

If another trace event occurs at the same time as the prereturn-trace event, the processor generates a
fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it generates a
fault on the prereturn-trace event. The prereturn trace is the only trace event that can cause two
successive trace faults to be generated between instruction boundaries.

9.2.6 Supervisor Trace

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a super-
visor-trace fault after either of the following:

* A call-system instructioncélls) executes from user mode and the procedure table entry is for
a system-supervisor call.

* Aretinstruction executes from supervisor mode and the return-type field is sep tor @1,
(i.e., return froncalls).

This trace mode allows a debugging program to determine kernel-procedure call boundaries within
the instruction stream.

9.2.7 Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified
other trace modes, using thrark instruction. It should be noted that the MARK fault subtype

in the fault record is used to indicate a match of the instruction-address breakpoint registers or the
data-address breakpoint registers as well agithek andmark instructions.

9.2.7.1 Software Breakpoints

mark andfmark allow breakpoint trace faults to be generated at specific points in the instruction
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace
fault any time it encountersnaark instructionfmark causes the processor to generate a mark trace

fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If PC.te is
clear,mark andfmark behave like no-ops.

9.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction
execution and data access.

The 1960 Jx processor implements two instruction and two data address breakpoint registers,
denoted IPBO, IPB1, DABO and DAB1. The instruction and data address breakpoint registers are
32-bit registers. The instruction breakpoint registers cause a bftealexecution of the target
instruction. The DABX registers cause a brafikr the memory access has been issued to the bus
controller, or the data cache.

9-5

'ntel
TRACING AND DEBUGGING I ¢

Hardware breakpoint registers may be armed or disarmed. When the registers are armed, hardware
breakpoints can generate an architectural trace fault. When the registers are disarmed, no action
occurs, and execution continues normally. Since instructions are always word aligned, the two
low-order bits of the IPBx registers act as control bits. Control bitsfor the DABX registersresidein
the Breakpoint Control (BPCON) registers. BPCON enables the data address breakpoint registers,
and sets the specific modes of these registers. Hardware breakpoints are globally enabled by the
process controlstrace enable bit (PC.te).

The IPBx, DABX, and BPCON registers may be accessed using normal load and store instructions
(except for loads from IPBx register). The application must be in supervisor mode for a legal
access to occur. See Section 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-6) for
more information on the address for each register.

Applications must request modification rights to the hardware breakpoint resources, before
attempting to modify these resources. Rights are requested by executing the sysctl instruction, as
described in the following section.

9.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware
breakpoint resources before any attempt is made to modify them. This mechanism is employed to
eliminate simultaneous usage of breakpoint resources by emulation tools and application code. An
emulation tool exercises supervisor control over breakpoint resource allocation. If the emulator
retains control of breakpoint resources, none are available for application code. If an emulation
tool is not being used in conjunction with the device, modification rights to breakpoint resources
will be granted to the application. The emulation tool may relinquish control of breakpoint
resources to the application.

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers
without first obtaining rights, an OPERATION.UNIMPLEMENTED fault will be generated. In
this case, the breakpoint resource will not be modified, whether accessed through a sysctl
instruction or as a memory-mapped register.

9-6

u
Intdw TRACING AND DEBUGGING

Application code requests modification rights by executing the sysctl instruction and issuing the
Breakpoint Resource Request message (srcl.Message Type = 06H). In response, the current
available breakpoint resources will be returned as the src/dst parameter (src/dst must be aregister).
The src2 parameter is not used. Results returned in the src/dst parameter must be interpreted as
shown in Table 9-1.

Table 9-1. src/dst Encoding

src/dst 7:4 src/dst 3:0

Number of Available Data Address Breakpoints | Number of Available Instruction Breakpoints

NOTE: src/dst 31:8 are reserved and will always return zeroes.

The following code sampleillustrates the execution of the breakpoint resource request.

| dconst 0x600, r4 # Load t he Breakpoi nt Resource
Request nessage type into r4.
sysctl r4, r4, r4 # I ssue the request.

Assume in this example that after execution of the sysctl instruction, the vaue of r4 is
0000 0022H. This indicates that the application has gained modification rights to both instruction
and both data address breakpoint registers. If the value returned is zero, the application has not
gained the rights to the breakpoint resources.

Because the 1960 Jx processor does not initialize the breakpoint registers from the control table during
initialization (as 1960 Cx processors do), the application must explicitly initialize the breakpoint
registers in order to use them once modification rights have been granted by the sysctl ingtruction.

9.2.7.4 Breakpoint Control Register

The format of the BPCON registers are shown in Figure 9-2 and Figure 9-3. Each breakpoint has
four control bits associated with it: two mode and two enable bits. The enable bits (DABX.€0,
DABXx.el) in BPCON act to enable or disable the data address breakpoints, while the mode bits
(DABx.m0O, DABx.m1) dictate which type of access will generate a break event.

9-7

'ntel
TRACING AND DEBUGGING I ¢

DABO
DAB1 J
[Il |
m eleymimje |e
1]0 of1]o 0
31 28 24 20 16 12 8 4 0
Reserved Hardware Reset Value: 0000 0000H
(Initialize to 0) Software Re-Init Value: 0000 0000H

Figure 9-2. Breakpoint Control Register (BPCON)

Programming the BPCON register is summarized in Table 9-2 and Table 9-3.

Table 9-2. Configuring the Data Address Breakpoint (DAB) Registers

PC.te | DABx.el | DABx.e0 Description
0 X X No action. With PC.te clear, breakpoints are globally disabled.
X 0 0 No action. DABXx is disabled.
1 0 1 Reserved.
1 1 0 Reserved.
1 1 1 Generate a Trace Fault.

NOTE: “X”=don’t care. Reserved combinations must not be used.

The mode bits of BPCON control what type of access generates a fault, trace message, or break
event, as summarized in Table 9-3.

Table 9-3. Programming the Data Address Breakpoint (DAB) Modes

DABx.m1 | DABx.mO Mode
0 0 Break on Data Write Access Only.
0 1 Break on Data Read or Data Write Access.
1 0 Break on Data Read Access.
1 1 Reserved.

9-8

u
Intdw TRACING AND DEBUGGING

9.2.75 Data Address Breakpoint (DAB) Registers

The format for the Data Address Breakpoint (DAB) registers is shown in Figure 9-3. Each
breakpoint register contains a 32-bit address of a byte to match on.

A breakpoint is triggered when both a data access’s type and address matches that specified by
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are
contained in BPCON (segection 9.2.74 qualify the access types that DAB will match. An
access-type match selects that DAB register to perform address checking. An address match occurs
when the byte address of any of the bytes referenced by the data access matches the byte address
contained within a selected DAB.

Consider the following example. DABO is enabled to break on any data read access and has a value
of 100FH. Any of the following instructions will cause the DABO breakpoint to be triggered:

| dob 0x100f, r8
| dos 0x100e,r8
I d 0x100c, r8
I d 0x100d, r8 /* even unal igned accesses */
| dl 0x1008, r8
| dt 0x1004,r8

I dg 0x1000, r 8 _
Note that the instruction:

[dt 0x1000,r8

does not cause the breakpoint to be triggered because byte 100FH is not referenced by the triple
word access.

Data address breakpoints can be set to break on any data read, any data write, or any data read or
data write access. All accesses qualify for checking. These include explicit load and store instruc-
tions, and implicit data accesses performed by other instructions and normal processor operations.

For data accesses to the memory-mapped control register space, it is unpredictable whether
breakpoint traces are generated when the access matches the breakpoints and also results in an
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault

will always be reported in this case.

9-9

'ntel
TRACING AND DEBUGGING I ¢

Data Address l

31 28 24 20 16 12 8 4 0

Hardware Reset Value: 0000 0000H
Software Re-init Value: 0000 0000H

Figure 9-3. Data Address Breakpoint (DAB) Register Format

9.2.7.6 Instruction Breakpoint (IPB) Registers

The format for the instruction breakpoint registers is given in Figure 9-4. Instruction Breakpoint
(IPB) Register Format. The upper thirty bits of the IPBx register contain the word-aligned
instruction address on which to break. The two low-order bits indicate the action to take upon an
address match.

IPBx Mode
Instruction Address l

1]0
31 28 24 20 16 12 8 4 0

Hardware Reset Value: 0000 0000H
Software Re-init Value: 0000 0000H

Figure 9-4. Instruction Breakpoint (IPB) Register Format
Programming the instruction breakpoint register modes is shown in Table 9-4

On the 1960 Jx processor, the instruction breakpoint memory-mapped registers can be read by using
the sysctl instruction only. They can be modified by sysctl or by aword-length store instruction.

9-10

u
Intdw TRACING AND DEBUGGING

Table 9-4. Instruction Breakpoint Modes

PC.te IPBx.m1 IPBx.mO Action
0 X X No action. Globally disabled.
X 0 0 No action. IPBx disabled.
1 0 1 Reserved.
1 1 0 Reserved.
1 1 1 Generate a Trace Fault.

NOTE: “X” = don't care. Reserved combinations must not be used.

9.3 GENERATING A TRACE FAULT
To summarize the information presented in the previous sections, the processor services a trace
fault when PC.te is set and the processor detects any of the following conditions:

¢ Aninstruction included in a trace mode group executes or is about to execute (in the case of a
prereturn trace event) and the trace mode for that instruction is enabled.

e Afault call operation executes and the call-trace mode is enabled. _
« A mark instruction executes and the mark-trace mode is enabled.
¢ An fmark instruction executes.

e The processor executes an instruction at an IP matching an enabled instruction address
breakpoint (IPB) register.

e The processor issues a memory access matching the conditions of an enabled data address
breakpoint (DAB) register.

9.4 HANDLING MULTIPLE TRACE EVENTS

With the exception of a prereturn trace event, which is always reported alone, it is possible for a
combination of trace events to be reported in the same fault record. The processor may not report all
events; however, it will always report a supervisor event and it will always signal at least one event.

If the processor reports prereturn trace and other trace types at the same time, it reports the other
trace types in a single trace fault record first, and then services the prereturn trace fault upon return
from the other trace fault.

9-11

'ntel
TRACING AND DEBUGGING I ¢

9.5 TRACE FAULT HANDLING PROCEDURE

The processor calls the trace fault handling procedure when it detects a trace event. See
section 8.7, “FAULT HANDLING PROCEDURES” (pg. 8-12)r general requirements for fault
handling procedures.

The trace fault handling procedure is involved in a specific way and is handled differently than
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace
fault handler. Recall that for all other implicit or explicit system-supervisor calls the trace enable
bit is replaced with the supervisor stack pointer trace enable bit (SSP.te) located at byte 12, bit O of
the system procedure table. The exception handling of trace enable for trace faults ensures that
tracing is turned off when a trace fault handling procedure is being executed. This is necessary to
prevent an endless loop of trace fault handling calls.

95.1 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’'s current state in the interrupt record, then clearing
the PC register trace enable bit.

On returning from the interrupt handling procedure, the processor restores the PC register to the
state it was in prior to handling the interrupt, which restores the trace enable bit. See
section 9.5.2.2, “Tracing on Implicit Call” (pg. 9-1dhdsection 9.5.2.5, “Tracing on Return from
Implicit Call: Interrupt Case” (pg. 9-16pr detailed descriptions of tracing on calls and returns
from interrupts.

9.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.

9-12

u
Intdw TRACING AND DEBUGGING

95.2.1 Tracing on Explicit Call
Tracing an explicit call happens before execution of the first instruction of the procedure called.

Tracing is not modified by using a call or callx instruction. Further, tracing is not modified by
using acalls instruction from supervisor mode. When calls isissued from user mode, PC.teisread
from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, which is
cached on chip during initialization. The trace enable bit in effect before the calls is stored in the
new PFP[O] bit and is restored upon return from the routine (see section 9.5.2.3, “Tracing on
Return from Explicit Call” (pg. 9-19) Thecalls instruction and all instructions of the procedure
called are traced according to the new PC.te.

Table 9-5summarizes all cases.

Table 9-5. Tracing on Explicit Call

Call Prcc:iltlelc?gre Calling Saved Pr(c):?ggire
Type Trace Enable Procedure Mode PFP.r[2:0] Trace Enable Bit
call, callx PC.te user or supervisor 000, PC.te

calls PC.te user Stores PC.te into SSP.te
bit 0 of PFP.rt2:0

Refer to Table 7-2, “Encoding of Return Status Field,” pg. 7-21).

9-13

calls PC.te supervisor 000, PC.te
01&2

'ntel
TRACING AND DEBUGGING I ¢

9.5.2.2 Tracing on Implicit Call

Tracing on an implicit call happens before execution of the first instruction of the non-trace fault
handler called. Table 9-6 summarizes all cases of tracing on implicit call. In the table, ais a bit
variable that symbolizes the trace enable bit in PC.

Table 9-6. Tracing on Implicit Call

Previous
PC.te Value
Call PrsoycsésLnre ;;?r:rt];r Source | Target Used for
Type PC.te PC.te Traces on
Table Entry | Return Status S
(PEP.rt[2:0]) Implicit Call
00-Fault! N.A. 001, a? a? a?
10-Fault 00, 001, a’ a’ a’
10-Fault! 10, 001, a2 SSP.te SSP.te
00-Parallel/Override Fault 2

X Type of trace fault not supported

00-Trace Fault
10-Parallel/Override Fault

00 Type of trace fault not supported
10-Trace Fault 2 P PP
10-Parallel/Override Fault 2

10, 001, a 0 0
10-Trace Fault
Interrupt N.A. 111, a2 0 0

1. On i960 Jx processor, all faults except parallel/override and trace faults.
2. “X" and “a” are bit variables.

Tracing is not atered on the way to alocal or a system-loca fault handler, so the call is traced if
PC.teand TC.c are set before the call. For an implicit system-supervisor call, PC.teis read from the
Supervisor Stack Pointer enable bit (SSP.te). The trace on the call is serviced before execution of the
first instruction of the non-trace fault handler (tracing is disabled on the way to atrace fault handler).

On the 1960 Jx processor, the parallel/override fault handler must be accessed through a
system-supervisor call. Tracing is disabled on the way to the parallel/override fault handler.

The only type of trace fault handler supported isthe system-supervisor type. Tracing isdisabled on
the way to the trace fault handler.

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never traced.

Note that the Fault 1P field of the fault record is not defined when tracing afault call, because there
is no instruction pointer associated with an implicit call.

9-14

u
Intdm TRACING AND DEBUGGING

9.5.2.3 Tracing on Return from Explicit Call
Table 9-7 shows all cases.

Table 9-7. Tracing on Return from Explicit Call

PFP.rt2:0 Execution Mode PC.em| Trace Enable Used for Trace on Return
000, user or supervisor PC.te
Ola, user PC.te
Olap super to (from PFP.1[2:0])

Refer to Table 7-2, “Encoding of Return Status Field,” pg. 7-21).

For areturn from local call (return type 000,), tracing is not modified. For areturn from system
call (return type Ola, with PC.te equal to “a” before the call), tracing of the return and subsequent
instructions is controlled by “a”, which is restored in the PC.te during execution of the return.

95.24 Tracing on Return from Implicit Call: Fault Case

When the processor detects several fault conditions on the same instruction (referred to_as the
“target”), the non-trace fault is serviced first. Upon return from the non-trace fault handl
processor services a trace fault on the target if in supervisor mode before the return and if t
enable and trace-fault-pending flags are set in the PC field of the non-trace fault record (at FP-

If the processor is in user mode before the return, tracing is not altered. The pending trace on the
target instruction is lost, and the return is traced according to the current PC.te.

Table 9-8. Tracing on Return from Fault

Target
PC.em PC.te PC.te Pending Trace on Trace on
PFP.rrr Before Before
After Target When Return When
Return Return
Return
001 user w w Pending Trace is w & TC.event
Lost
(FP-16).te &
001 super w (FP-16).te Not Traced
(FP-16).tfp

9-15

'ntel
TRACING AND DEBUGGING I ¢

9.5.25 Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction completes
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced if the
interrupt handler did not switch to user mode. On the 1960 Jx processor, the interrupt handler
returns directly to the trace fault handler.

If theinterrupt return is executed from user mode, the PC register is not restored and tracing of the
return occurs according to the PC.te and TC.modes bit fields.

Table 9-9. Tracing on Return from Interrupt

Trace on

rrr | PC.em | PC.te Tgt PC.te Pending Trace on Target When Return When

111 user w w Pending Trace is Lost w & TC.ev

111 | super w (FP-16).TE RIP points to trace handler Not Traced*

* Assume the interrupt handler does not turn tracing on. If it does, it is unpredictable whether the return is
traced or not.

9-16

intel

TIMERS

10

intel

CHAPTER 10
TIMERS

This chapter describes the 1960% Jx processor’'s dual, independent 32-bit timers. Topics include
timer registers (TMRx, TCRx and TRRX), timer operation, timer interrupts, and timer register
values at initialization.

Each timer is programmed by the timer registers. These registers are memory-mapped within the
processor, addressable on 32-bit boundaries. When enabled, a timer decrements the user-defined
count value with each Timer Clock (TCLOCK) cycle. The countdown rate is also
user-configurable to be equal to the bus clock frequency, or the bus clock rate divided by 2, 4 or 8.
The timers can be programmed to either stop when the count value reaches zero (single-shot mode)
or run continuously (auto-reload mode). When a timer’s count reaches zero, the timer’s interrupt
unit signals the processor’s interrupt controll€igure 10-1 shows a diagram of the timer
functions. See alseigure 10-5for the Timer Unit state diagram.

M Timer Mode Register

l«<—>| Clock Unit Bus
Timer Reload Register Clock
32-bit Register

1y Selected, Clock

Timer Count Register

Internal 32-hit Counter

CPU
Bus

Address
Detect

32-bit Compare
Against Zero

Terminal Count

Interrupt Unit

Fault User/ Interrupt
Output Supervisor Output
Status

Figure 10-1. Timer Functional Diagram

10-1

TIMERS

intel

Table 10-1. Timer Performance Ranges

Bus Frequency (MHz) Max Resolution (ns) Max Range (mins)
40 25 14.3
33 30.3 17.4
25 40 22.9
20 50 28.6
16 62.5 35.8

10.1

TIMER REGISTERS

As shown in Table 10-2, each timer has three memory-mapped registers:

Timer Mode Register - programs the specific mode of operation or indicates the current

programmed status of the timer. This register is describesgdgtion 10.1.1, “Timer Mode
Registers (TMRO, TMR1)” (pg. 10-3)

Timer Count Register - contains the timer’s current count.seton 10.1.2, “Timer Count
Register (TCRO, TCR1)” (pg. 10-6)

Timer Reload Register - contains the timer’s reload counts&aén 10.1.3, “Timer Reload
Register (TRRO, TRR1)” (pg. 10-7)

Table 10-2. Timer Registers

Timer Unit Register Acronym Register Name
TMRO Timer Mode Register 0
Timer O TCRO Timer Count Register 0
TRRO Timer Reload Register 0
TMR1 Timer Mode Register 1
Timer 1 TCR1 Timer Count Register 1
TRR1 Timer Reload Register 1

For register memory locations, séable 3-5, (pg. 3-11)

10-2

int
I -el TIMERS

10.1.1 Timer Mode Registers (TMRO, TMR1)

The Timer Mode Register (TMRX) lets the user program the mode of operation and determine the
current status of the timer. TMRX bits are described in the subsections following Figure 10-2 and
are summarized in Table 10-4.

Terminal Count Status - TMRx.tc
(0) No Terminal Count
(1) Terminal Count

Timer Enable - TMRx.enable
(0) Disabled
(1) Enabled

Timer Auto Reload Enable - TMRx.reload
(0) Auto Reload Disabled
(1) Auto Reload Enabled

Timer Register Supervisor Write Control - TMRx.sup
(0) Supervisor and User Mode Write Enabled
(1) Supervisor Mode Only Write Enabled

Timer Input Clock Selects - TMRXx.csel1:0
(00) 1:1 Timer Clock = Bus Clock
(01) 2:1 Timer Clock = Bus Clock / 2
(10) 4:1 Timer Clock = Bus Clock / 4
(11) 8:1 Timer Clock = Bus Clock / 8

31 28 24 20 16 12 8 1 \

10

Ti

3

er Mode Register (TMRO, TMR1)

Reserved
(Initialize to 0)

Figure 10-2. Timer Mode Register (TMRO, TMR1)

10-3

TIMERS Intd®

10.1.1.1 Bit 0 - Terminal Count Status Bit (TMRX.tc)

The TMRx.tc bit is set when the Timer Count Register (TCRx) decrements to 0 and bit 2
(TMRx.reload) is not set for atimer. The TMRX.tc bit allows applications to monitor timer status
through software instead of interrupts. TMRX.tc remains set until software accesses (reads or
writes) the TMRX. The access clears TMRX.tc. The timer ignores any value specified for TMRXx.tc
in awrite request.

When auto-reload is selected for a timer and the timer is enabled, the TMRXx.tc bit status is
unpredictable. Software should not rely on the value of the TMRx.tc bit when auto-reload is
enabled.

The processor also clears the TMRX.tc bit upon hardware or software reset. Refer to section 12.2,
“INITIALIZATION” (pg. 12-2) .

10.1.1.2 Bit 1 - Timer Enable (TMRx.enable)

The TMRx.enable bit allows user software to control the timer's RUN/STOP status. When:

TMRx.enable = 1 The Timer Count Register (TCRx) value decrements every Timer Clock
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Select
(TMRx.csel bits 0-1). Seeection 10.1.1.5When TMRx.reload=0, the
timer automatically clears TMRx.enable when the count reaches zero.
When TMRXx.reload=1, the bit remains set. Seetion 10.1.1.3

TMRx.enable =0 The timer is disabled and ignores all input transitions.

User software sets this bit. Once started, the timer continues to run, regardless of other processor
activity.For example, the timer runs while the processor is in Halt mode. Three events can stop the timer:
* User software explicitly clearing this bit (i.e., TMRx.enable = 0).

¢ TCRx value decrements to 0, and the Timer Auto Reload Enable (TMRx.reload) bit = 0.

e Hardware or software reset. Refersertion 12.2, “INITIALIZATION” (pg. 12-2)

10-4

int
I -el TIMERS

10.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)

The TMRx.reload bit determines whether the timer runs continuously or in single-shot mode.
When TCRx = 0 and TMRx.enable = 1 and:

TMRx.reload =1 The timer runs continuously. The processor:

1. Automatically loads TCRx with the valuein the Timer Reload Register (TRRx), when TCRx
value decrementsto O.

2. Decrements TCRx until it equals 0 again.

Steps 1 and 2 repeat until software clears TMRX bits 1 or 2.
TMRx.reload =0 The timer runs until the Timer Count Register = 0. TRRx has no effect on
the timer.

User software sets this bit. When TMRx.enable and TMRx.rel oad are set and TRRx does not equal
0, the timer continues to run in auto-reload mode, regardiess of other processor activity.For
example, the timer runs while the processor isin Halt mode. Two events can stop the timer:

¢ User software explicitly clearing either TMRx.enable or TMRXx.reload.
e Hardware or software reset. Refersertion 12.2, “INITIALIZATION” (pg. 12-2)

The processor clears this bit upon hardware or software reset. Refsectmn 12.2,
“INITIALIZATION” (pg. 12-2) .

10.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup)

The TMRx.sup bit enables or disables user mode writes to the timer registers (TMRx, TCRX,
TRRX). Supervisor mode writes are allowed regardless of this bit's condition. Software can read
these registers from either mode.

When:

TMRx.sup =1 The timer generates a TYMESMATCH fault when a user mode task
attempts a write to any of the timer registers; however, supervisor mode
writes are allowed.

TMRx.sup =0 The timer registers can be written from either user or supervisor mode.

The processor clears TMRx.sup upon hardware or software reset. Refsction 12.2,
“INITIALIZATION” (pg. 12-2) .

10-5

TIMERS Inté““

10.1.1.5 Bits 4,5 - Timer Input Clock Select (TMRx.csel1:0)

User software programs the TMRx.csel bits to select the Timer Clock (TCLOCK) frequency. See
Table 10-3. As shown in Figure 10-1, the bus clock is an input to the timer clock unit. These bits
allow the application to specify whether TCLOCK runs at or slower than the bus clock frequency.

Table 10-3. Timer Input Clock (TCLOCK) Frequency Selection

TMIE)it.cssell TMF?)lt.cdrseIO Timer Clock (TCLOCK)
0 0 Timer Clock = Bus Clock
0 1 Timer Clock = Bus Clock / 2
1 0 Timer Clock = Bus Clock / 4
1 1 Timer Clock = Bus Clock / 8

The processor clears these bits upon hardware or software reset (TCLOCK = Bus Clock).

10.1.2 Timer Count Register (TCRO, TCR1)

The Timer Count Register (TCRX) is a 32-bit register that contains the timer’s current count. The
register value decrements with each timer clock tick. When this register value decrements to zero
(terminal count), a timer interrupt is generated. When TMRx.reload is not set for the timer, the
status bit in the timer mode register (TMRXx.tc) is set and remains set until the TMRX register is
accessedrigure 10-3shows the timer count register.

Timer Count Value - TCRx.d31:0 J
D310
28 24 20 16 12 8 4 0
Timer Count Register (TCRO, TCR1)

Figure 10-3. Timer Count Register (TCRO, TCR1)

The valid programmable range is from 1H to FFFF FFFFH. (Avoid programming TCRx to 0 as it
has varying results as described gection 10.5, “UNCOMMON TCRX AND TRRX
CONDITIONS” (pg. 10-12)

User software can read or write TCRx whether the timer is running or stopped. Bit 3 of TMRXx

determines user read/write control (ssection 10.1.1)4 The TCRx value is undefined after
hardware or software reset.

10-6

int
I -el TIMERS

10.1.3 Timer Reload Register (TRRO, TRR1)

The Timer Reload Register (TRRx; Figure 10-4) is a 32-bit register that contains the timer’s reload
count. The timer loads the reload count value into TCRx when TMRx.reload is set (1),
TMRx.enable is set (1) and TCRx equals zero.

As with TCRX, the valid programmable range is from 1H to FFFF FFFFH. Avoid programming a
value of 0, as it may prevent TINTx from asserting continuously. (Seetion 10.5,
“UNCOMMON TCRX AND TRRX CONDITIONS” (pg. 10-12Jor more information.)

User software can access TRRx whether the timer is running or stopped. Bit 3 of TMRXx
determines read/write control (seection 10.1.1.4 TRRx value is undefined after hardware or
software reset.

Timer Auto-Reload Value - TRRx.d31:0
D31:0
[
28 24 20 16 12 8 4 0

Timer Reload Register (TRRO, TRR1)

Figure 10-4. Timer Reload Register (TRRO, TRR1)

10.2 TIMER OPERATION

This section summarizes timer operation and describes load/store access latency for the timer registers.

10.2.1 Basic Timer Operation

Each timer has a programmable enable bit in its control register (TMRx.enable) to start and stop
counting. The supervisor (TMRXx.sup) bit controls write access to the enable bit. This allows the
programmer to prevent user mode tasks from enabling or disabling the timer. Once the timer is
enabled, the value stored in the Timer Count Register (TCRx) decrements every Timer Clock
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Select (TMRx.csel) bit
setting. The countdown rate can be set to equal the bus clock frequency, or the bus clock rate
divided by 2, 4 or 8. Setting TCLOCK to a slower rate lets the user specify a longer count period
with the same 32-bit TCRx value.

10-7

TIMERS Inté““

Software can read or write the TCRx vaue whether the timer is running or stopped. This lets the
user monitor the count without using hardware interrupts. The TMRx.sup bit lets the programmer
alow or prevent user mode writes to TCRx, TMRx and TRRX.

When the TCRx value decrements to zero, the unit’s interrupt request signals the processor’s
interrupt controller. Sesection 10.3, “TIMER INTERRUPTS” (pg. 10-119r more information.

The timer checks the value of the timer reload bit (TMRx.reload) setting. When TMRx.reload. = 1,
the processor:

« Automatically reloads TCRx with the value in the Timer Reload Register (TRRX).

e« Decrements TCRx until it equals 0 again.
This process repeats until software clears TMRx.reload or TMR.enable.

When TMRx.reload = 0, the timer stops running and sets the terminal count bit (TMRXx.tc). This
bit remains set until user software reads or writes the TMRXx register. Either access type clears the
bit. The timer ignores any value specified for TMRXx.tc in a write request.

Table 10-4. Timer Mode Register Control Bit Summary

o © re)
™ g x % N % — g
= X % 5 = == 2 Action
e I = O B B
= = S
= = E
X X X X 0 | Timer disabled.
X X N 0 1 Timer enabled, TMRx.enable is cleared when TCRx decrements
to zero.
X N N 1 1 Timer and auto reload enabled, TMRx.enable remains set when
TCRx=0. When TCRx=0, TCRx equals the TRRx value.
0 X X X X | No faults for user mode writes are generated.
1 X X X X | TYPE.MISMATCH fault generated on user mode write.

Notes:
X =don't care

N = a number between 1H and FFFF FFFFH

10-8

intel

TIMERS

10.2.2 Load/Store Access Latency for Timer Registers

As with all other load accesses from internal memory-mapped registers, a load instruction that
accesses atimer register has alatency of one internal processor cycle. With one exception, a store
access to a timer register completes and all state changes take effect before the next instruction
begins execution. The exception to this is when disabling a timer. Latency associated with the

disabling action is such that a timer interrupt may be posted immediately after the disabling
instruction completes. This can occur when the timer is near zero as the store to TMRx occurs. In

this case, the timer interrupt is posted immediately after the store to TMRx completes and before

the next instruction can execute. Table 10-5 summarizes the timer access and response timings.
Refer also to the individual register descriptionsfor details.

Note that the processor may delay the actual issuing of the load or store operation due to previous

instruction activity and resource availability of processor functional units.

The processor ensures that the TMRx.tc bit is cleared within one bus clock after a load or store
instruction accesses TMRX.

Table 10-5. Timer Responses to Register Bit Settings (Sheet 1 of 2)

Name Status Action
Timer clears this bit when user software accesses TMRXx. This bit can
READ |be set 1 bus clock later. The timer sets this bit within 1 bus clock of
(TMRx.tc) TCRx reaching zero when TMRx.reload=0.
Terminal Count - —
Bit 0 Timer clears this bit within 1 bus clock after the software accesses
WRITE | TMRX. The timer ignores any value specified for TMRXx.tc in a write
request.
Bit is available 1 bus clock after executing a read instruction from
(TMRx.enable) | READ TMRX.
Timer Enable — —
Bit 1 Writing a ‘1’ enables the bus clock to decrement TCRx within 1 bus
I WRITE . . .
clock after executing a store instruction to TMRX.
Bit is available 1 bus clock after executing a read instruction from
(TMRx.reload) | READ |0
Timer Auto — —
Reload Enable Writing a ‘1’ enables the reload capability within 1 bus clock after the
Bit 2 WRITE | store instruction to TMRx has executed. The timer loads TRRx data

into TCRx and decrements this value during the next bus clock cycle.

10-9

intel

TIMERS
Table 10-5. Timer Responses to Register Bit Settings (Sheet 2 of 2)
Name Status Action
(TMRX.sup) READ Bit is available 1 bus clock after executing a read instruction from
. . TMRXx.
Timer Register
SyperiSOT Writing a ‘1’ locks out user mode writes within 1 bus clock after the
Write Control | WRITE | store instruction executes to TMRx. Upon detecting a user mode write
Bit 3 the timer generates a TYPE.MISMATCH fault.
READ Bits are available 1 bus clock after executing a read instruction from
(TMRx.csel1:0) TMRXx.csel1:0 bit(s).
Timer Input - -
Clock Select The timer re-synchronizes the clock cycle used to decrement TCRx
Bits 4-5 WRITE | within one bus clock cycle after executing a store instruction to
TMRXx.csell:0 bit(s).
The current TCRx count value is available within 1 bus clock cycle
(TCRx.d31:0) READ | after executing a read instruction from TCRx. When the timer is
. running, the pre-decremented value is returned as the current value.
Timer Count
Register The value written to TCRx becomes the active value within 1 bus
WRITE | clock cycle. When the timer is running, the value written is
decremented in the current clock cycle.
The current TRRx count value is available within 1 bus clock after
READ executing a read instruction from TRRx. When the timer is transferring
the TRRx count into TCRx in the current count cycle, the timer returns
(TRRx.d31:0) the new TCRXx count value to the executing read instruction.
Timer Reload - - -
Register The value written to TRRx becomes the active value stored in TRRx
WRITE within 1 bus clock cycle. When the timer is transferring the TRRx

value into the TCRXx, data written to TRRXx is also transferred into
TCRXx.

10-10

int
I -el TIMERS

10.3 TIMER INTERRUPTS

Each timer isthe source for one interrupt. When atimer detects a zero count in its TCRX, the timer
generates an interna edge-detected Timer Interrupt signal (TINTX) to the interrupt controller, and
the interrupt-pending (IPND.tipx) bit is set in the interrupt controller. Each timer interrupt can be
selectively masked in the Interrupt Mask (IMSK) register or handled as a dedicated
hardware-requested interrupt. Refer to CHAPTER 11, INTERRUPTS for a description of
hardware-requested interrupts.

When the interrupt is disabled after a request is generated, but before a pending interrupt is
serviced, the interrupt request is still active (the Interrupt Controller latches the request). When a
timer generates a second interrupt request before the CPU services the first interrupt request, the
second request may be lost.

When auto-reload is enabled for atimer, the timer continues to decrement the value in TCRx even
after entry into the timer interrupt handler.

10.4 POWERUP/RESET INITIALIZATION

Upon power up, external hardware reset or software reset (sysctl), the timer registers are
initialized to the values shown in Table 10-6.

Table 10-6. Timer Powerup Mode Settings

Mode/Control Bit Notes
TMRx.tc =0 No terminal count
TMRx.enable =0 Prevents counting and assertion of TINTx
TMRx.reload = 0 Single terminal count mode
TMRx.sup =0 Supervisor or user mode access
TMRx.csel1:0 =0 Timer Clock = Bus Clock
TCRx.d31:0=0 Undefined
TRRx.d31:0=0 Undefined
TINTX output Deasserted

10-11

TIMERS Inté““

105 UNCOMMON TCRX AND TRRX CONDITIONS

Table 10-4 summarizes the most common settings for programming the timer registers. Under
certain conditions, however, it may be useful to set the Timer Count Register or the Timer Reload
Register to zero before enabling the timer. Table 10-7 details the conditions and results when these
conditions are set.

Table 10-7. Uncommon TMRx Control Bit Settings

S| @
x x c—g -%
N o — C
% 5 2= =22 Action
F|F | Qg 0
= =
sl sl
X 0 0 1 TMRx.tc and TINTx set, TMR.enable cleared
0 0 1 1 Timer and auto reload enabled, TINTx not generated and timer enable
remains set.
0 N 1 1 Timer and auto reload enabled. TINT.x set when TCRx=0. The timer
remains enabled but further TINTX's are not generated.
Timer and auto reload enabled, TINTx not set initially, TCRx = TRRX,
N 0 1 1 TINTx set when TCRx has completely decremented the value it
loaded from TRRx. TMRx.enable remains set.

NOTE:
X =don't care

N = a number between 1H and FFFF FFFFH

10-12

int
I -el TIMERS

10.6 TIMER STATE DIAGRAM

Figure 10-5 shows the common states of the Timer Unit. For uncommon conditions see
section 10.5, “UNCOMMON TCRX AND TRRX CONDITIONS” (pg. 10-12)

Hardware/Software Reset

TMRx.enable = 0
TMRx.reload = 0

TMRx.sup =0

TMRx.csell:0 =0

IPND.tip = 0
SW Write Bus Clock or
(TMRx.enable = 0) IDLE SW Read

SW Write (TMRx.enable = 1)

TMRx.enable = 1
TMRx.reload =user value
TMRXx.sup = user value
TMRx.csell:0 = user value

4

— _ See section 10.5, “UNCOMMON
Initial TCRx TCRXx=0 _ | TCRXAND TRRX CONDITIONS"
Check (pg. 10-12)
4 TCRx = 0

d Clock Unit Tick
< SW Read “pecrement and TCRx =0

SW Write TCRx=0
<IMRx.enable =1 | TMRy.reload =user value TC=1 TC=0
_ TMRx.sup = user value IPND.tip=1 -
TMRx.enable =0 | TmRx.csell:0 = user value TMRx.enable = 0 TMRx.enable = 1
TCRx = TRRx

A

Reload = 1

SW Write
SW Read M Tc-0 l< SW Read/Write & Reload = 0 TC Detected
I — State

Bus Clock

Figure 10-5. Timer Unit State Diagram

10-13

intel

INTERRUP

11

intel

CHAPTER 11
INTERRUPTS

This chapter describes the i960® processor core architecture interrupt mechanism and the i960 Jx
processor interrupt controller. Key topics include the i960 Jx processor’s facilities for requesting

and posting interrupts, the programmer’s interface to the on-chip interrupt controller, latency and
how to optimize interrupt performance.

111 OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor can
handle another task. Interrupts commonly request 1/O services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the i960 processor family,
the architecture defines a consistent interrupt state and interrupt-priority-handling mechanism. To
manage and prioritize interrupt requests in parallel with processor execution, the i960 Jx processor
provides an on-chip programmable interrupt controller.

Requests for interrupt service come from many sources. These requests are prioritized so that
instruction execution is redirected only if an interrupt request is of higher priority than that of the
executing task. On the 1960 Jx processor, interrupt requests may originate from external hardware
sources, internal timer unit sources or from software. External interrupts are detected with the
chip’s 8-bit interrupt port and with a dedicated Non-Maskable Interrupt {Nihbiut. Interrupt

requests originate from software by #hesctl instruction. To manage and prioritize all possiﬂ
interrupts, the processor integrates an on-chip programmable interrupt controller. Int

interrupt controller configuration and operation is describedsection 11.7, “EXTERNAL
INTERFACE DESCRIPTION” (pg. 11-18)

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedure. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. The processor
creates a new frame for the interrupt on this stack and a new set of local registers is allocated to the
interrupt procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program'’s state, switches
back to the stack that the processor was using prior to the interrupt and resumes program execution.

11-1

int
INTERRUPTS I ‘el

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than being handled immediately. The mechanism for saving the interrupt is referred to as
interrupt posting. Interrupt posting is described in section 11.6.5, “Posting Interrupts” (pg. 11-9)

The i960 core architecture defines two data structures to support interrupt processing: the interrupt
table (sedrigure 11-) and interrupt stack. The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software-requested
interrupts. The interrupt stack prevents interrupt handling procedures from using the stack in use
by the application program. It also allows the interrupt stack to be located in a different area of
memory than the user and supervisor stack (e.g., fast SRAM).

LT K ‘Memory X
| | [|
| | [Interrupt Int ; I
I i9g0® I I Table nterrup I
Interrupt 19607 Jx | Handling [
Request : Processor : : Interrupt Pointer Procedure :
| | | |
Figure 11-1. Interrupt Handling Data Structures
11.1.1 The i1960® Jx Processor Interrupt Controller

The 1960 Jx processor Interrupt Controller Unit (ICU) provides a flexible, low-latency means for
requesting and posting interrupts and minimizing the core’s interrupt handling burden. Acting
independently from the core, the interrupt controller posts interrupts requested by hardware and
software sources and compares the priorities of posted interrupts with the current process priority.
The interrupt controller provides the following features for managing hardware-requested interrupts:
« Low latency, high throughput handling

e Support of up to 240 external sources

« Eight external interrupt pins, one non-maskable interrupt pin, two internal timers sources for
detection of hardware-requested interrupts

« Edge or level detection on external interrupt pins

« Debounce option on external interrupt pins

The user program interfaces to the interrupt controller with six memory-mapped control registers.
The interrupt control register (ICON) and interrupt map control registers (IMAPO-IMAP2)
provide configuration information. The interrupt pending (IPND) register posts

hardware-requested interrupts. The interrupt mask (IMSK) register selectively masks
hardware-requested interrupts.

11-2

u
I I‘el INTERRUPTS

112 SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor’s interrupt handling facilities, user software must provide the following items
in memory:

¢ Interrupt Table
¢ Interrupt Handler Routines
e Interrupt Stack

These items are established in memory as part of the initialization procedure. Once these items are
present in memory and pointers to them have been entered in the appropriate system data
structures, the processor handles interrupts automatically and independently from software.

113 INTERRUPT PRIORITY

Each interrupt vector number is eight bits in length, allowing up to 256 unique vector numbers to be
defined in principle. Each vector number priority is defined by dividing the vector number by eight.
Thus, at each priority level, there are eight possible vector numbers (e.g., vector numbers 8-15 have a
priority of 1 and vector numbers 246-255 have a priority of 31). Vector numbers 0-7 cannot be used
because a priority-0 interrupt would never successfully stop execution of a program of any priority. In
addition, vector numbers 244-247 and 249-251 are reserved; therefore, 240 external interrupt sources
and the non-maskable interrupt (N\ire available to the user.

The processor compares its current priority with the interrupt request priority to determine whether
to service the interrupt immediately or to delay service. The interrupt is serviced immediatel
priority is higher than the priority of the program or interrupt the processor is executing cur
If the interrupt priority is less than or equal to the processor’s current priority, the process
not service the request but rather posts it as a pending interrupte&em 11.4.2, “Pending
Interrupts” (pg. 11-5)When multiple interrupt requests are pending at the same priority level, the
request with the highest vector number is serviced first.

Priority-31 interrupts are handled as a special case. Even when the processor is executing at priority
level 31, a priority-31 interrupt interrupts the processor. On the i960 Jx processor, the non-maskable
interrupt (NM]) interrupts priority-31 execution; no interrupt can interrupt an IKkHdler.

11-3

int
INTERRUPTS I ‘el

114 INTERRUPT TABLE

The interrupt table (see Figure 11-2) is 1028 bytes in length and can be located anywhere in the
non-reserved address space. It must be aligned on a word boundary. The processor reads a pointer
to the interrupt table byte O during initialization. The interrupt table must be located in RAM since
the processor must be able to read and write the table’s pending interrupt section.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.

31 87 0
Pending Priorities 000H
004H
> Pending Interrupts
020H
Entry 8 024H (Vector 8)
Entry 9 028H (Vector 9)
Entry 10 02CH (Vector 10)
> : > :
Entry 243 3DOH (Vector 243)
3D4H (Vector 244)
< e
3EOH (Vector 247)
NMI Vector 3E4H (Vector 248)
3E8H (Vector 249)
< <~ :
3FOH (Vector 251)
Entry 252 3F4H (Vector 252)
T Entry 255 T4OOH (Vector 255)
Vector Entry 210 E T
t :
| Instruction Pointer | X| X SoryNo)r/r%;
01 Reserved?*
10 Reserved!
11 Reserved®
1 Vector entries with a reserved type
:| Reserved (Initialize to 0) cause unpredictable behavior.
- Preserved

Figure 11-2. Interrupt Table

11-4

u
I I‘el INTERRUPTS

11.4.1 Vector Entries

A vector entry contains a specific interrupt handler’'s address. When an interrupt is serviced, the
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number that points to a vector entry in the interrupt
table. The vector entry section contains 248 word-length entries. Vector numbers 8-243 and
252-255 and their associated vector entries are used for conventional interrupts. Vector numbers
244-247 and 249-251 are reserved. Vector number 248 and its associated vector entry is used for
the non-maskable interrupt (NMNector numbers 0-7 cannot be used.

Vector entry 248 contains the NMandler address. When the processor is initialized, thevebtor
located in the interrupt table is automatically read and stored in location OH of internal data RAM. The
NMI vector is subsequently fetched from internal data RAM to improve this interrupt’s performance.

The vector entry structure is given at the bottonfigiure 11-2 Each interrupt procedure must
begin on a word boundary, so the processor assumes that the vector’s two least significant bits
are 0. Bits 0 and 1 of an entry indicate entry type: on the i960 Jx processor, only type 00 is valid.
The other possible entry types are reserved and must not be used.

11.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two fields:
pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the prod
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s prio 11
set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is 5

Each of the pending interrupts field’s 256 bits represents an interrupt vector number. Byte offset 5
is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.

11-5

int
INTERRUPTS I ‘el

11.4.3 Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor.
The purpose of caching these fields is to reduce interrupt latency by allowing the processor to
access certain interrupt vector numbers and the pending interrupt information without having to
make external memory accesses. The i960 Jx processor caches the following:

¢ The value of the highest priority posted in the pending priorities field.
¢ A predefined subset of interrupt vector numbers (entries from the interrupt table).

¢ Pending interrupts received from external interrupt pins.

This caching mechanism is non-transparent; the processor may modify fields in a cached interrupt
table without modifying the same fields in the interrupt table itself. Vector caching is described in
section 11.9.2.1, “Vector Caching Option” (pg. 11-35)

11-6

u
I I‘el INTERRUPTS

115 INTERRUPT STACK AND INTERRUPT RECORD

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack described in section 7.1.1, “Local Registers and the
Procedure Stack” (pg. 7-2As with the local stack, the interrupt stack grows from lower addresses
to higher addresses.

The processor saves the state of an interrupted program, or an interrupted interrupt procedure, in a
record on the interrupt stadkigure 11-3shows the structure of this interrupt record.

Current Stack
31 (Local, Supervisor, or Interrupt Stack) 0

[
< Current Frame % FP

Interrupt Stack

g Padding Area $

Optional Data

Stack (not used by 80960Jx)
Growth
Saved Process Controls Register NFP-16
Interrupt
Saved Arithmetic Controls Register NFP-12 | Record 11
Vector Number NEP-8
NFP

{ New Frame 2
l D Reserved

Figure 11-3. Storage of an Interrupt Record on the Interrupt Stack

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was serviced and the interrupt vector number used. Relative to the new frame pointer
(NFP), the saved AC register is located at address NFP-12, the saved PC register is located at
address NFP-16.

In the i960 Jx processor, the stack is aligned to a 16-byte boundary. When the processor needs to

create a new frame on an interrupt call, it adds a padding area to the stack so that the new frame
starts on a 16-byte boundary.

11-7

int
INTERRUPTS I ‘el

116 MANAGING INTERRUPT REQUESTS

The 1960 processor architecture provides a consistent interrupt model, as required for interrupt
handler compatibility between various implementations of the i960 processor family. The archi-
tecture, however, leaves the interrupt request management strategy to the specific 1960 processor
family implementations. In the i960 Jx processor, a programmable on-chip interrupt controller
manages al interrupt requests (Figure 11-12). These requests originate from:

* Eight-bit external interrupt pins XINT:0]

e Two internal timer unit interrupts (TINT[1:0])

¢ Non-maskable interrupt pin (NMI

e sysctl instruction execution (software-initiated interrupts)

11.6.1 External Interrupts
External interrupt pins can be programmed to operate in three modes:
1. Dedicated mode: the pins may be individually mapped to interrupt vectors.

2. Expanded mode: the pins may be interpreted as a bit field which can request any of the 240
possible external interrupts that the i960 processor family supports.

3. Mixed mode: five pins operate in expanded mode and can request 32 different interrupts,
and three pins operate in dedicated mode.

Dedicated-mode requests are posted in the Interrupt Pending Register (IPND). The processor’s
ICU does not post expanded-mode requests.

11.6.2 Non-Maskable Interrupt (NMI)

The NMI pin generates an interrupt for implementation of critical interrupt routines.gvdides
an interrupt that cannot be masked and that has a priority of 31. The interrupt vector fashdiel
in the interrupt table as vector number 248. During initialization, the core caches the vector for NMI
on-chip, to reduce NMiatency. The NMVector is cached in location OH of internal data RAM.

The core immediately services NVdquests. While servicing an NMhe core does not respond

to any other interrupt requests — even another N&tjuest. The processor remains in this
non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. Note that a
return-from-interrupt in user mode does not unblock NMI events and should be avoided by
software. An interrupt request on the Npilh is always falling-edge detected.

11-8

u
I I‘el INTERRUPTS

11.6.3 Timer Interrupts

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. Timer unit interrupt requests are always handled as dedicated-mode interrupt
requests.

11.6.4 Software Interrupts

The application program may use the sysctl instruction to request interrupt service. The vector that

sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts section,
depending upon the current processor priority and the request’s priority. The interrupt controller
caches the priority of the highest priority interrupt posted in the interrupt table. The processor can
request vector 248 (NNllas a software interrupt; however, the interrupt vector will be read from
the interrupt table, not from the internal vector cache.

11.6.5 Posting Interrupts
Interrupts are posted to the processor by a number of different mechanisms; these are described in
the following sections.

« Software interrupts: interrupts posted through the interrupt table, by software running on
the 1960 Jx processor.

e External Interrupts: interrupts posted through the interrupt table, by an external agent to
the 1960 Jx processor.

e Hardware interrupts: interrupts posted directly to the i960 Jx processor through an impl 11
mentation-dependent mechanism that may avoid using the interrupt table.
11.6.5.1 Posting Software Interrupts via sysctl

In the 1960 Jx processorsysctl is typically used to request an interrupt in a program (see
Example 11-1. The request interrupt message type (OOH) is selected and the interrupt vector
number is specified in the least significant byte of the instruction operandseSgen 6.2.67,
“sysctl” (pg. 6-114)or a complete discussion gfsctl.

11-9

int
INTERRUPTS I ‘el

Example 11-1. Using sysctl to Request an Interrupt

| dconst 0x53, g5 # Vector nunmber 53H is | oaded
into byte 0 of register g5 and
the value is zero extended into
byte 1 of the register

sysctl g5, g5, g5 # Vector nunber 53H is posted

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required
value of O0H in the second byte of a register operand isimplied.

The action of the processor when it executes the sysctl instruction is as follows:

1. The processor performs an atomic write to the interrupt table and sets the bits in the
pending-interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The processor updates the internal software priority register with the value of the highest
pending priority from the interrupt table. This may be the priority of the interrupt that was
just posted.

The interrupt controller continuously compares the following three values. software priority
register, current process priority, priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions occur:

1. Theinterrupt controller signals the core that a software-generated interrupt is to be serviced.

2. The core checks the interrupt table in memory, determines the vector number of the highest
priority pending interrupt and clears the pending-interrupts and pending-priorities bitsin the
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority that is posted in the interrupt
table (if any) and writes that value into the software priority register.

4, The core services the highest priority interrupt.

If more than one pending interrupt is posted in the interrupt table at the same interrupt priority, the

core handles the interrupt with the highest vector number first. The software priority register is an

internal register and, as such, is not visible to the user. The core updates this register’s value only
whensysctl requests an interrupt or when a software-generated interrupt is serviced.

11-10

u
I I‘el INTERRUPTS

11.6.5.2 Posting Software Interrupts Directly in the Interrupt Table
Software can post interrupts by setting the desired pending-interrupt and pending-priorities bits
directly. Direct posting requires that software ensure that no external 1/0O agents post a pending

interrupt simultaneously, and that an interrupt cannot occur after one bit is set but before the other
is set. Note, however, that this method is not recommended and is not reliable.

11.6.5.3 Posting External Interrupts

An external agent posts (sets) a pending interrupt with vector “v” to the 1960 processor through the
interrupt table by executing the following algorithm:

Example 11-2. External Agent Posting

Ext er nal _Agent _Posti ng:

X = atom c_read(pending_priorities); # synchronize;
z = read(pending_interrupts[v/8]);

x[v/8] = 1;

z[v nod 8] = 1;
write(pending_interrupts[v/8]) =
atomic_wite(pending_priorities)

Z,
= X;

Generally, software cannot use this algorithm to post interrupts because there is no way for
software to have an atomic (locking) read/write operation span multiple instructions.

11
11.6.54 Posting Hardware Interrupts -

Certain interrupts are posted directly to the processor by an implementation-dependent mechanism
that can bypass the interrupt table. This is often done for performance reasons.

11.6.6 Resolving Interrupt Priority

The interrupt controller continuously compares the processor’s priority to the priorities of the
highest-posted software interrupt and the highest-pending hardware interrupt. The core is
interrupted when a pending interrupt request is higher than the processor priority or has a priority
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31 interrupt.)
There are no priority-0 interrupts, since such an interrupt would never have a priority higher than
the current process, and would therefore never be serviced.

11-11

int
INTERRUPTS I ‘el

In the event that both hardware and software requested interrupts are posted at the same level, the
hardware interrupt is delivered first while the software interrupt isleft pending. Asaresult, if both
priority-31 hardware- and software-requested interrupts are pending, control isfirst transferred to
the interrupt handler for the hardware-requested interrupt. However, before the first instruction of
that handler can be executed, the pending software-requested interrupt is delivered, which causes
control to be transferred to the corresponding interrupt handler.

Example 11-3. Interrupt Resolution

/* Model used to resolve interrupts between execution of all instructions */
if (NM _pending & ! bl ock_NM)
{ block_NM = true; /* Reset on return fromNM |NTR handler */
vecnum = 248; vector_addr = 0;
PC. priority = 31;
push_l ocal _regi ster_set();
got o common_i nt errupt_process; }
if (I1CON.gie == enabled) {
expand_HW.int () ;
temp = max(HW.Int _Priority, SWIint_Priority);
if (temp == 31 || tenp > PC. priority)
{ PC.priority = tenp;
if (SWInt_Priority > HWInt _Priority) goto Deliver_SWInt;
el se{ vecnum = HWvecnum goto Deliver_HWlInt;}

}

11.6.7 Sampling Pending Interrupts in the Interrupt Table

At specific points, the processor checks the interrupt table for pending interrupts. If oneisfound, it
is handled asif the interrupt occurred at that time. In the 1960 Jx processor, a check for pending
interrupts in the interrupt table is made when requesting a software interrupt with sysctl, or when
servicing a software interrupt.

When acheck of the interrupt table is made, the algorithm shown in Example 11-4 is used. Since the
pending interrupts may be cached, the check for pending interrupt operation may not involve any
memory operations. The agorithm uses synchronization because there may be multiple agents posting
and unposting interrupts. In the algorithm, w, X, y, and z are temporary registers within the processor.

11-12

u
I I‘el INTERRUPTS

Example 11-4. Sampling Pending Interrupts

Check_For _Pendi ng_Interrupts:

X = read(pending_priorities);
if(x == 0) return(); #nothing to do
y = nost_significant_bit(x);
if(y '=31 & y <= current_priority) return();
X = atom c_read(pending_priorities); #synchronize
if(x == 0)
{atom c_write(pending_priorities) = x;
return();} #interrupts di sappeared
(e.g., handl ed by another processor)
y = nost_significant_bit(x); #must be repeated
if(y '=31 & y <= current_priority)
{atom c_write(pending_priorities) = x;
return();} #interrupt disappeared
z = read(pending_interrupts[y]); #z is a byte
if(z == 0)
{x[y] = 0; #false alarm should not happen
atomc_wite(pending_priorities) = x;
return();}
el se
{w = nmost_significant_bit[z];
z[w = 0;
wite(pending_interrupts[y]) = z;
if(z == 0) x[y] = 0; #no others at this |eve
atomic_write(pending_priorities) = x;
take_interrupt();}

The algorithm shows that the pending interrupts are marked by abit in the pending interrupts field,
and that the pending priorities field is an optimization; the processor examines pending interrupts
only if the corresponding bit in Pending Prioritiesis set.

The steps prior to the atomic_read are another optimization. Note that these steps must be repeated
within the synchronized critical section, since another processor could have detected and accepted
the same pending interrupt(s).

Usesysctl with avector in the range 0 to 7 to force the core to check the interrupt table for pending
interrupts. When an external agent is posting interrupts to a shared interrupt table, use sysctl
periodically to guarantee recognition of pending interrupts posted in the table by the external agent.

11-13

int
INTERRUPTS I ‘el

11.6.8 Interrupt Controller Modes

The eight external interrupt pins can be configured for one of three modes: dedicated, expanded or
mixed. Each mode is described in the subsections that follow.

11.6.8.1 Dedicated Mode

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers that
may be assigned to a pin are those with the encoding PPPP 0010, (Figure 11-4), where bits
marked P are programmed with bits in the interrupt map (IMAP) registers. This encoding of
programmable bits and preset bits can designate 15 unique vector numbers, each with a unique,
even-numbered priority. (V ector 0000 0010, is undefined; it has a priority of 0.)

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in the
IPND register correspond to each of the eight dedicated external interrupt inputs, or the two timer
inputs to the interrupt controller. Theinterrupt mask (IMSK) register selectively masks each of the
dedicated-mode interrupts. Optionally, the IMSK register can be saved and cleared when a
dedicated-mode interrupt is serviced. This allows other hardware-generated interrupts to be locked

out until the mask is restored. See section 11.7.3, “Memory-Mapped Control Registers”
(pg. 11-21)for a further description of the IMSK, IPND and IMAP registers.

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned
dedicated-mode vectors. The timer interrupts are always dedicated-mode interrupts.

IMAP Control Registers Hard-wired Vector Offset
XINTO ——> PPPP 0010,
XINTL ——> PPPP 0010,
XINT2 ——> PPPP 0010,
L n n
L n n
n n
XINT7 ——> PPPP 0010,
TINTO ——> PPPP 0010,
TINT1 ——> PPPP 0010,
/[awmss 4LSB
ya Highest Selected
/78 Vector Number

Figure 11-4. Dedicated Mode

11-14

u
I I‘el INTERRUPTS

11.6.8.2 Expanded Mode

In expanded mode, up to 240 interrupts can be requested from external sources. Multiple external
sources are externally encoded into the 8-bit interrupt vector number. This vector number is then
applied to the external interrupt pins (Figure 11-5), with the XINTO pin representing the
least-significant bit and XINT7 the most significant bit of the number. Note that external interrupt
pins are active low; therefore, the inverse of the vector number is actually applied to the pins.

In expanded mode, external logic is responsible for posting and prioritizing external sources.
Typically, this scheme is implemented with a simple configuration of external priority encoders.
The interrupt source must remain asserted until the processor services the interrupt and explicitly
clears the source. As shown in Figure 11-6, simple, combinational logic can handle prioritization
of the external sources when more than one expanded mode interrupt is pending.

An expanded mode interrupt source must remain asserted until the processor services the interrupt
and explicitly clears the source. External-interrupt pins in expanded mode are always active low
and level-detect. The interrupt controller ignores vector numbers 0 though 7. The output of the
external priority encodersin Figure 11-6 can use the 0 vector to indicate that no external interrupts

are pending.

The low-order four bits of IMAPO buffer the expanded-mode interrupt internally. XINT[7:4] are
placed in IMAPQ[3:0]; XINT[3:0] are latched in a special register for use in further arbitrating the
interrupt and in selecting the interrupt handler.

IMSK register bit 0 provides a globa mask for all expanded interrupts. The remaining bits (1-7)

must be set to 0 in expanded mode. Optionally, the mask bit can be saved and cleared when an

expanded mode interrupt is serviced. This alows other hardware-requested interrupts to be locked
out until the mask is restored. IPND register bits 0-7 have no function in expanded mode, since

external logic is responsible for posting interrupts.

IMAP Control Registers Hard-wired Vector Offset
TINTO —> pPPP o010,
TINTL —> PPPP 0010,
4 MSB 41SB
XINT[7:0] Highest Selected
el 8 Vector Number

Figure 11-5. Expanded Mode

11-15

intel

INTERRUPTS
Enable Input
NC
g g OJ
MSB—Q7 El GSD g7 FE oGS
—O 6 “'_O 6 -
--—Q5
95 A2 o—— B A2
— 4 Priority ---—4 Priority
s Encoder ---—Q3 Encoder
ALO———
—O 2 “'_O 2
-00 E0 AOP— — 0 E0 A0
Interrupt Sources i
up to 63 lines J)
-7 E1 GSD
—J6
—Js
. A2
—4 Priority - To i960® Jx
—Q 3 Encoder N processor's
Al i
d O INT pins
—J1
Qo0 E0 A0
Q7 El GS©O
—J6)O—i >0——
—O 5
A2 0—
—4 Priority
—0 3 Encoder
AL
-2
B oo
0 E0 A0D
LSB
T —

11-16

Figure 11-6. Implementation of Expanded Mode Sources

u
I I‘el INTERRUPTS

11.6.8.3 Mixed Mode

In mixed mode, pins XINTO through XINT4 are configured for expanded mode. These pins are
encoded for the five most-significant bits of an expanded-mode vector number; the three
least-significant bits of the vector number are set internaly to 010,. Pins XINT5 through XINT7
are configured for dedicated mode.

Do not write to the low-order four bits of IMAPO as these bits are used to buffer the
expanded-mode interrupt internally. XINT[4:1] are placed in IMAPQ[3:0]; XINTO is latched in a
specia register for use in further arbitrating the interrupt and in selecting the interrupt handler.

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits 5 through 7 mask the
dedicated interrupts from pins XINT5 through XINT7, respectively. IMSK register bits 1-4 must
be set to 0 in mixed mode. The IPND register posts interrupts from the dedicated-mode pins
XINT[7:5]. IPND register bits that correspond to expanded-mode inputs are not used.

11.6.9 Saving the Interrupt Mask

Whenever an interrupt requested by XINT[7:0] or by the interna timers is serviced, the IMSK
register is automatically saved in register r3 of the new local register set allocated for the interrupt
handler. After the mask is saved, the IMSK register is optionally cleared. Thisallows all interrupts
except NMTs to be masked while an interrupt is being serviced. Since the IMSK register value is
saved, the interrupt procedure can restore the value before returning. The option of clearing the
mask is selected by programming the ICON register as described in section 11.7.4, “Interrupt

Control Register (ICON)” (pg. 11-22%everal options are provided for interrupt mask handling:
e Mask unchanged h

¢ Cleared for dedicated-mode sources only
¢ Cleared for expanded-mode sources only
¢ Cleared for all hardware-requested interrupts (dedicated and expanded mode)

The second and third options are used in mixed mode, where both dedicated-mode and
expanded-mode inputs are allowed. Timer unit interrupts are always dedicated-mode interrupts.

Note that when the same interrupt is requested simultaneously by a dedicated- and an
expanded-mode source, the interrupt is considered an expanded-mode interrupt and the IMSK
register is handled accordingly.

11-17

int
INTERRUPTS I ‘el

The IMSK register must be saved and cleared when expanded mode inputs request a priority-31
interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded mode,
the interrupt pins are level-activated. For level-activated interrupt inputs, instructions within the
interrupt handler are typicaly responsible for causing the source to deactivate. When these
priority-31 interrupts are not masked, another priority-31 interrupt is signaled and serviced before
the handler can deactivate the source. The first instruction of the interrupt handling procedure is
never reached, unless the option is selected to clear the IMSK register on entry to the interrupt.

Another use of the mask isto lock out other interrupts when executing time-critical portions of an
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. When
the IMSK register is cleared, the interrupt handler must restore the IMSK register to enable
interrupts after return from the handler.

117 EXTERNAL INTERFACE DESCRIPTION

This section describes the physical characteristics of the interrupt inputs. The 1960 Jx processor
provides eight external interrupt pins and one non-maskable interrupt pin for detecting external
interrupt requests. The eight external pins can be configured as dedicated inputs, where each pinis
capable of requesting a single interrupt. The external pins can also be configured in an expanded
mode, where the value asserted on the external pins represents an interrupt vector number. In this
mode, up to 240 values can be directly requested with the interrupt pins. The externa interrupt
pins can be configured in mixed mode. In this mode, some pins are dedicated inputs and the
remaining pins are used in expanded mode.

11.7.1 Pin Descriptions

The interrupt controller provides nine interrupt pins:

XINT[7:0] External Interrupt (input) - These eight pins cause interrupts to be requested.
Pins are software configurable for three modes. dedicated, expanded, mixed.
Each pin can be programmed as an edge- or level-detect input. Also, a debounce
sampling mode for these pins can be selected under program control.

NMI Non-Maskable Interrupt (input) - This edge-activated pin causes a non-maskable

interrupt event to occur. NMI is the highest priority interrupt recognized. A
debounce sampling mode for NMI can be selected under program control. This
pinisinternally synchronized.

External interrupt pin functions XINT[7:0] depend on the operation mode (expanded, dedicated or
mixed) and on several other options selected by setting ICON register bits.

11-18

u
I I‘el INTERRUPTS

11.7.2 Interrupt Detection Options

The XINT[7:0] pins can be programmed for level-low or falling-edge detection when used as
dedicated inputs. All dedicated inputs plus the NMI pin are programmed (globally) for fast
sampling or debounce sampling. Expanded-mode inputs are always sampled in debounce mode.
Pin detection and sampling options are selected by programming the ICON register.

When falling-edge detection is enabled and a high-to-low transition is detected, the processor sets
the corresponding pending bit in the IPND register. The processor clears the IPND bit upon entry
into the interrupt handler.

When a pin is programmed for low-level detection, the pin’s bit in the IPND register remains set as
long as the pin is asserted (low). The processor attempts to clear the IPND bit on entry into the
interrupt handler; however, if the active level on the pin is not removed at this time, the bit in the
IPND register remains set until the source of the interrupt is deactivated and the IPND bit is
explicitly cleared by software. Software may attempt to clear an interrupt pending bit before the
active level on the corresponding pin is removed. In this case, the active level on the interrupt pin

causes the pending bit to remain asserted.

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, the interrupt is

re-entered after the return is executed.

Example 11-5demonstrates how a level detect interrupt is typically handled. The example assumes

that theld from address “INTR_SRC,” deactivates the interrupt input.

Example 11-5. Return from a Level-detect Interrupt

Clear |level-detect interrupts before return from handl er

I d INTR_SRC, gO# Disniss the extern. interrupt

| da I PND_MVR, gl# gl = |IPND MVR address

| da 0x80, g2 # g2 = mask to clear XINT7 | PND bit
Loop until IPND bit 7 clears
wai t:

nmov 0,93

Try to clear the XINT7 | PND bit

at nod gl, g2, g3

bbs 0x7, g3, wait# Branch until IPND bit 7 clears
Optionally restore | MSK

nmv r3, IMsK

ret # Return from handl er

The debounce sampling mode provides a built-in filter for noisy or slow-falling inputs. The
debounce sampling mode requires that a low level is stable for three consecutive cycles before the
expanded mode vector is resolved internally. Expanded mode interrupts are always sampled using
the debounce sampling mode. This allows for skew time between changing outputs of external

priority encoders.

11-19

int
INTERRUPTS I ‘el

Figure 11-7 shows how a signa is sampled in each mode. The debounce-sampling option adds
several clock cycles to an interrupt’s latency due to the multiple clocks of sampling. Inputs are
sampled once every CLKIN cycle (external bus clock).

Interrupt pins are asynchronous inputs. Setup or hold times relative to CLKIN are not needed to
ensure proper pin detection. NoteFigure 11-7that interrupt inputs are sampled once every two
CLKIN cycles. For practical purposes, this means that asynchronous interrupting devices must
generate an interrupt signal that is asserted for at least three CLKIN cycles for the fast sampling
mode or seven CLKIN cycles for the debounce sampling mode.s&a&n 1.4, “Related
Documents” (pg. 1-10) These documents have setup and hold specifications that guarantee
detection of the interrupt on particular edges of CLKIN. These specification are useful in designs
that use synchronous logic to generate interrupt signals to the processor. These specification must
also be used to calculate the minimum signal width, as shotiguime 11-7

CLKIN [
XINTL7:0] : .
(fast sampled) [' \ *E_ 2 cycle Il’nln. ; /

. . Detect . . X X . .
; X ' Interrupt’
XINT[7:0] [! <«—— 4cycle min. —> /
(debounce)

Detect
Interrupt

+ Denotes sampling clock edge. Interrupt pins are sampled every CLKIN (external bus clock) cycle.

Figure 11-7. Interrupt Sampling

11-20

u
I l‘el INTERRUPTS

11.7.3 Memory-Mapped Control Registers

The programmer’s interface to the interrupt controller is through six memory-mapped control
registers: ICON control register, IMAPO-IMAP2 control registers, IMSK register and IPND
control registerTable 11-1describes the ICU registers.

Table 11-1. Interrupt Control Registers Memory-Mapped Addresses

Register Name Description Address
IPND Interrupt Pending Register FFO00 8500H
IMSK Interrupt Mask Register FFO00 8504H
ICON Interrupt Control Register FFO00 8510H
IMAPO Interrupt Map Register 0 FFOO0 8520H
IMAP1 Interrupt Map Register 1 FFOO0 8524H
IMAP2 Interrupt Map Register 2 FFOO0 8528H

11-21

int
INTERRUPTS I ‘el

11.7.4 Interrupt Control Register (ICON)

The ICON register (see Figure 11-8) is a 32-bit memory-mapped control register that sets up the
interrupt controller. Software can manipulate this register using the load/store type instructions.
The ICON register is aso automatically loaded at initiaization from the control table in external
memory.

Interrupt Mode - ICON.im
(00) Dedicated
(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode - ICON.sdm
(0) Level-low activated
(1) Falling-edge activated

Global Interrupts Enable - ICON.gie
(0) Enabled
(1) Disabled

Mask Operation - ICON.mo
(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded

mode interrupts

Vector Cache Enable - ICON.vce
(0) Fetch from external memory
(1) Fetch from internal RAM

Sampling Mode - ICON.sm
(0) debounce
(1) fast
S|s S|s|Ss|s S| s B B
slelolml9 dldld]s|dld]d|d|mlm
m mimgmimimimjimj|m
ellfole|7|e|5]|a|3|2|1]|0f[2]°
31 28 24 20 16 12 8 4 0

Interrupt Control Register (ICON)

Reserved
(Initialize to 0)

Figure 11-8. Interrupt Control (ICON) Register

The interrupt mode field (bits 0 and 1) determines the operation mode for the external interrupt
pins (XINT[7:0]), dedicated, expanded or mixed.

The signal detection mode hits (bits 2 - 9) determine whether the signals on the individua external
interrupt pins (XINT[7:Q]) are level-low activated or falling-edge activated. Expanded-mode inputs
are always level-detected; the NMT input is always edge-detected, regardless of the bit's value.

11-22

u
I I‘el INTERRUPTS

The global interrupts enable bit (bit 10) globally enables or disables the external interrupt pins and
timer unit inputs. It does not affect the NMT pin. Thisbit performsthe same function as clearing the
mask register. The global interrupts enable bit is a so changed indirectly by the use of the following
instructions: inten, intdis, intctl.

The mask-operation field (bits 11, 12) determines the operation the core performs on the mask
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts; or
cleared for both dedicated- and expanded-mode interrupts. IMSK is never cleared for NMI or
software interrupts.

The vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched
from the interrupt table or from internal data RAM. Only vectors with the four least-significant bits
equal to 0010, may be cached in internal data RAM.

The sampling-mode bit (bit 14) determines whether dedicated inputs and NMT pin are sampled
using debounce sampling or fast sampling. Expanded-mode inputs are always detected using
debounce mode.

Bits 15 through 31 are reserved and must be set to 0 at initiaization.

11.7.5 Interrupt Mapping Registers (IMAPO-IMAP2)

The IMAP registers (Figure 11-9) are three 32-bit registers (IMAPO through IMAP2). These
registers are used to program the vector number associated with the interrupt source when the

source is connected to a dedicated-mode input. IMAPO and IMAPL contain mapping information 11
for the externa interrupt pins (four bits per pin). IMAP2 contains mapping information for the
timer-interrupt inputs (four bits per interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-significant
bits are always 0010 In other words, each source can be programmed for a vector number of
PPPP 001§ where “P” indicates a programmable bit. For example, IMAPO bits 4 through 7
contain mapping information for the XINTin. If these bits are set to 0L]€he pin is mapped to
vector number 0110 003@or vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping
registers are also automatically loaded at initialization from the control table in external memory.
Note that bits 16 through 31 of IMAPO and IMAP1 are reserved and should be set to 0 at initial-
ization. Bits 0-15 and 24-31 of IMAP2 are also reserved and should be set to 0.

11-23

int
INTERRUPTS I ‘el

External Interrupt O Field - IMAPO.x0
External Interrupt 1 Field - IMAPO.x1
External Interrupt 2 Field - IMAPO.x2
External Interrupt 3 Field - IMAPO.x3
Y
x|Ix x| x| x| x| x| x| x| x|x|x]x|{x]x]x
313]3[3]2|2[2]2]1]1]1|[2]o]|of0fO
3210321032103210
28 24 20 16 12 8 4 0
Interrupt Map Register 0 (IMAPO)
External Interrupt 4 Field - IMAP1.x4
External Interrupt 5 Field - IMAP1.x5
External Interrupt 6 Field - IMAP1.x6
External Interrupt 7 Field - IMAP1.x7
XIx x| xpx| x| x| x| x| x|x|x]x|{x]x]x
7|17(7|7]6|6|/6]|6]5|5|5[5]4(4]4]|4
716(5|4]7|6|5]|4]7|6|5|4]7|6]|5]|4
28 24 20 16 12 8 4 0
Interrupt Map Register 1 (IMAP1)
Timer Interrupt O Field - IMAP2.t0
Timer Interrupt 1 Field - IMAP2.t1 —
tjt]ptftpttejt|t
1]1f 1] 1]0f{0]|0]O
3[2]1{0]3]2f1]0
28 24 20 16 12 8 4 0
Interrupt Map Register 2 (IMAP2)
Reserved
(Initialize to 0)

Figure 11-9. Interrupt Mapping (IMAPO-IMAP2) Registers

11-24

u
I I‘el INTERRUPTS

11.7.5.1 Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers

The IMSK and IPND registers (see Figure 11-10 and Figure 11-11) are both memory-mapped
registers. Bits 0 through 7 of these registers are associated with the external interrupt pins (XINTO
through XTNT7) and bits 12 and 13 are associated with the timer-interrupt inputs (TMRO and
TMR1). All other bits are reserved and should be set to O at initialization.

External Interrupt Pending Bits - IPND.xip
(0) No Interrupt
(1) Pending Interrupt
Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt J
(1) Pending Interrupt
t]t XX | xX|X X|X|X]|X
il ilipipipififigi
plp PIP|P[P]JP|P|P]|P
1]0 7]16]5]4]3]2]1]0
28 24 20 16 12 8 4 0
Interrupt Pending Register (Dedicated Mode)
Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt J
(1) Pending Interrupt
t]t
il
PP
1]0
28 24 20 16 12 8 4 0
Interrupt Pending Register (Expanded Mode)
External Interrupt Pending Bits - IPND.xip
(0) No Interrupt
(1) Pending Interrupt
Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt J
(1) Pending Interrupt
t]t XX |X
il i|ifi
PP plp|P
1]0 71615
28 24 20 16 12 8 4 0
RESERVED
Interrupt Pending Register (Mixed Mode) (INITIALIZE TO 0)

Figure 11-10. Interrupt Pending (IPND) Register

11-25

int
INTERRUPTS I ‘el

Dedicated External Interrupt Mask Bits - IMSK.xim
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked

=

t t XXX XIX]|X]|X]|X
ili i i i iififi
mim mmimimfim|mj|m|m
1]o0 7]16]5]4]3]|2]1]0
28 24 20 16 12 8 4 0
Interrupt Mask Register (IMSK) Dedicated Mode
Expanded External Interrupts Mask Bits - IMSK.eim
(0) Masked
(1) Not Masked
Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked
et e
I I i
m|m
1o m
28 24 20 16 12 8 4 0

Interrupt Mask Register (IMSK) Expanded Mode

Expanded External Interrupt Mask Bits - IMSK.eim
(0) Masked
(1) Not Masked

Dedicated External Interrupt Mask Bits - IMSK.xim
(0) Masked
(1) Not Masked

Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked

[V

t t X X X e

1 1 1 1 1 i

mim mimj|m

1]0 7]e6 |5 m
28 24 20 16 12 8 4 0

Interrupt Mask Register (IMSK) Mixed Mode

RESERVED
(INITIALIZE TO 0)

Figure 11-11. Interrupt Mask (IMSK) Registers

11-26

u
I I‘el INTERRUPTS

The IPND register posts dedicated-mode interrupts originating from the eight externa dedicated
sources (when configured in dedicated mode) and the two timer sources. Asserting one of these
inputs causes a 1 to be latched into its associated bit in the IPND register. In expanded mode, bits 0
through 7 of this register are not used and should not be modified; in mixed mode, bits O through 4
are not used and should not be modified.

The mask register provides a mechanism for masking individual bits in the IPND register. An
interrupt source is disabled if its associated mask bit is set to 0.

Mask register bit 0 has two functions: it masksinterrupt pin XINTO in dedicated mode and it masks
al expanded-mode interrupts globally in expanded and mixed modes. In expanded mode, bits 1
through 7 are not used and should contain zeros only; in mixed mode, bits 1 through 4 are not used
and should contain zeros only.

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on
the vaue of the ICON.mo bit. Note that IMSK is never cleared for NMI or software interrupt.

Although software can read and write IPND and IMSK using any memory-format instruction, a
read-modify-write operation on these registers must be performed using the atomic-modify
instruction (ATMOD). Executing an ATMOD on one of these registers causes the interrupt
controller to perform regular interrupt processing (including using or automatically updating IPND
and IMSK) either before or after, but not during the read-modify-write operation on that register.
This requirement ensures that modifications to IPND and IMSK take effect cleanly, completely,
and at a well-defined point. Note that the processor does not assert the CLOCK pin externally when
executing an atomic instruction to IPND and IMSK.

When the processor core handles apending interrupt, it attemptsto clear the bit that islatched for that
interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated with an
interrupt source that is programmed for level detection and the true level is still present, the bit
remains set. Because of this, the interrupt routine for a level-detected interrupt should clear the
external interrupt source and explicitly clear the IPND bit before return from the handler is executed.

An dternative method of posting interrupts in the IPND register, other than through the externa
interrupt pins, isto set bitsin the register directly using an ATMOD instruction. This operation hasthe
same effect as requesting an interrupt through the externa interrupt pins. The bit set in the IPND
register must be associated with an interrupt source that is programmed for dedicated-mode operation.

11.7.5.2 Interrupt Controller Register Access Requirements

Like al other load accesses from interna memory-mapped registers, once issued, a load
instruction that accesses an interrupt register has a latency of one internal processor cycle.

A store access to an interrupt register is synchronous with respect to the next instruction; that is, the
operation completes fully and all state changes take effect before the next instruction begins execution.

11-27

int
INTERRUPTS I ‘el

Interrupts can be enabled and disabled quickly by the new intdis and inten instructions, which
take four cycles each to execute. intctl takes a few cycles longer because it returns the previous
interrupt enable value. See CHAPTER 6, INSTRUCTION SET REFERENCE for more
information on these instructions.

11.7.5.3 Default and Reset Register Values

The ICON and IMAP2:0 control registers are loaded from the control table in external memory

when the processor is initiaized or reinitialized. The control table is described in section 12.3.3,

“Control Table” (pg. 12-2Q) The IMSK register is set to 0 when the processor is initialized
(RESETis deasserted). The IPND register value is undefined after a power-up initialization (cold
reset). The application is responsible for clearing this register before any mask register bits are set;
otherwise, unwanted interrupts may be triggered. The pending register value is retained for a reset
while power is on (warm reset).

11.8 INTERRUPT OPERATION SEQUENCE

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Requesting Interrupt — In the i960 Jx processor, the programmable on-chip interrupt controller
transparently manages all interrupt requests. Interrupts are generated by hardware (external
events) or software (the application program). Hardware requests are signaled on the 8-bit external
interrupt port (XINT7:Q]), the non-maskable interrupt pin (NMbr the two timer channels.
Software interrupts are signaled with #yesctl instruction with post-interrupt message type.

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediately
or saved for later service, depending on the interrupt’'s priority. Saving the interrupt for later
service is referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware
and software interrupts are posted differently:

« Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pending
(IPND) memory mapped register

« Software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table’s
pending priorities and pending interrupts fields

11-28

u
I I‘el INTERRUPTS

Checking Pending Interrupts — The interrupt controller compares each pending interrupt’s priority
with the current process priority. If process priority changes, posted interrupts of higher priority are
then serviced. Comparing the process priority to posted interrupt priority is handled differently for
hardware and software interrupts. Each hardware interrupt is assigned a specific priority when the
processor is configured. The priority of all posted hardware interrupts is continually compared to
the current process priority. Software interrupts are posted in the interrupt table in external
memory. The highest priority posted in this table is also saved in an on-chip software priority
register; this register is continually compared to the current process priority.

Servicing Interrupts — If the process priority falls below that of any posted interrupt, the interrupt
is serviced. The comparator signals the core to begin a microcode sequence to perform the
interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 11-12illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.

The comparator signals the core only when a posted interrupt is a higher priority than the process
priority. Because the comparator function is implemented in hardware, microcode cycles are never
consumed unless an interrupt is serviced.

11-29

INTERRUPTS

NTO - XINT7

Xl

T 1T

Interrupt Control :|,>

Register

Global
Interrupt
Disable

Interrupt Detection <
Block

Clear ¢¢¢¢¢¢¢¢

a Bn—» Pending Interrupts

YYYY VYV

Interrupt Masks

{ Y YYVYVYVYY
Interrupt | Interrupt
Pin Mode .
~ Selection Expanded-Mode
Interrupt Pin to N Block Vector
Vector Map
Registers 0 to 2 % Y
Vector Ack
Interrupt Core
Interrupt __
Vector Actior? < NMI
Core Block Pending
Ack

Process Priority
(in PC)

Software Interrupt

Priority Register

Processor
State

Core accepts interrupt if:
* Processor not stopped

* Not executing a fault-call OR

* Interrupt-call action AND
* Between instruction OR
* At a resumption point

(Internal)

Core:

* Calls interrupt handlers

* Posts software interrupts

* Checks for software interrupts

* Handles all interrupt table access

11-30

Figure 11-12. Interrupt Controller

u
I I‘el INTERRUPTS

11.8.1 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following example
describes how the interrupt controller can be dynamically configured after initialization.

Example 11-6 sets up the interrupt controller for expanded-mode operation. Initially the IMSK
register is masked to allow for setup. A value that selects expanded-mode operation is loaded into
the ICON register and the IMSK is unmasked.

Example 11-6. Programming the Interrupt Controller for Expanded Mode

Exanpl e expanded node setup .

nmov 0, g0

nmov 1, 91

st g0, | MBK # mask, |1 MBK MVR at O0XFF008504
st gl, | CON

st gl, | MSK # unmask expanded interrupts
11.8.2 Interrupt Service Routines

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt vector number. For example, one interrupt handler task might initiate atimer unit request.
The interrupt handler procedures can be located anywhere in the non-reserved address space. Since
instructionsin the i960 processor architecture must be word-aligned, each procedure must begin on
aword boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not aready in supervisor mode, the
processor always switches to supervisor mode while an interrupt is being handled. It also savesthe
states of the AC and PC registers for the interrupted program.

The interrupt procedure shares the remainder of the execution environment resources (namely the
global registers and the address space) with the interrupted program. Thus, interrupt procedures
must preserve and restore the state of any resources shared with a non-cooperating program. For
example, an interrupt procedure that uses a global register that is not permanently allocated to it

should save the register's contents before using the register and restore the contents before

returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the
instruction cache. Sesection 11.9.2.2, “Caching Interrupt Routines and Reserving Register

Frames” (pg. 11-36for a complete description.

11-31

int
INTERRUPTS I ‘el

11.8.3 Interrupt Context Switch

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler completes, the processor automatically restores the interrupted
program state.

The method that the processor uses to service an interrupt depends on the processor state when the
interrupt is received. If the processor is executing a background task when an interrupt request is
posted, the interrupt context switch must change stacks to the interrupt stack. This is called an
executing-state interrupt. If the processor is already executing an interrupt handler, no stack switch
is required since the interrupt stack is already in use. Thisis called an interrupted-state interrupt.

The following subsections describe interrupt handling actions for executing-state and inter-
rupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of
the processor and thus is serviced immediately when the processor receivesit.

11.8.3.1 Servicing an Interrupt from Executing State

When the processor receives an interrupt while in the executing state (i.e., executing a program,
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the same
regardless of whether the processor is in user or supervisor mode when the interrupt occurs. The
processor:

1. Switches to the interrupt stack (as shown in Figure 11-3). The interrupt stack pointer
becomes the new stack pointer for the processor.

2. Savesthe current PC and AC in an interrupt record on the interrupt stack. The processor also
saves the interrupt vector number.

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in
globd register g15.

4, Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and its
priority to the priority of the interrupt. Setting the processor’s priority to that of the interrupt
ensures that lower priority interrupts cannot interrupt the servicing of the current interrupt.

5. Clearsthetrace enable bit in PC. Clearing this bit allows the interrupt to be handled without
trace faults being raised.

6. Setsthe frame return status field pfp[2:0] to 111,.

7. Performs a cal operation as described in CHAPTER 7, PROCEDURE CALLS. The address
for the caled procedure is specified in the interrupt table for the specified interrupt vector
number.

11-32

u
I I‘el INTERRUPTS

After completing the interrupt procedure, the processor:

1. Copies the arithmetic controls field and the process controls field from the interrupt record
into the AC and PC, respectively. It then switches to the executing state and restores the
trace-enable bit to its value before the interrupt occurred.

2. Deallocates the current stack frame and interrupt record from the interrupt stack and
switches to the stack it was using before servicing the interrupt.

3. Performs a return operation as described in CHAPTER 7, PROCEDURE CALLS.

4, Resumes work on the program, if there are no pending interrupts to be serviced or trace
faults to be handled.

11.8.3.2 Servicing an Interrupt from Interrupted State

If the processor receives an interrupt while it is servicing another interrupt, and the new interrupt
has a higher priority than the interrupt currently being serviced, the current interrupt-handler
routine is interrupted. Here, the processor performs the same interrupt-servicing action as is
described in Section 11.8.3.1 to save the state of the interrupted interrupt-handler routine. The
interrupt record is saved on the top of the interrupt stack prior to the new frame that is created for
use in servicing the new interrupt. See Figure 11-3.

On the return from the current interrupt handler to the previous interrupt handler, the processor
de-allocates the current stack frame and interrupt record, and stays on the interrupt stack.

11.9 OPTIMIZING INTERRUPT PERFORMANCE
Figure 11-13 depicts the path from interrupt source to interrupt service routine. This section

discusses interrupt performance in general and suggests techniques the application can use to get
the best interrupt performance.

11-33

INTERRUPTS

intel

(Dedicated Interru pD @xpanded Interru pt)
set bit in IPND

get vector from
IMAP register

get vector encoded

on XINT pins
IMSK.eim =1
YES

(Software Interrupt) (Non-Maskable Interrupt (NMI))

get vector in field 1

set corresponding
pending bits in
interrupt table

|

SIPR =
interrupt priority

(Test for external
interrupts enabled)

is
ICON.gie
=0?

continue normal

vector = 248

YES Servicing
NMI

already

NO

operation

in interrupt table,
read pending interrupt bits;
clear pending interrupt bits

next highest priority

]

(See if
interrupt
priority is is
greater than int.prio
process >PCpr NO
priority OR a1
at interrupt or =317
riority=31
priority=31) VES i
signal core to +
process interrupt
‘ update SIPR with
(Test for
interrupted
state)
PCs=1 NO
?
YES

S errupt
stack pointer

PFP = FP
PFP[3:0] = 0111

FP = SP aligned to
next 16 byte boundary
+16

f

store interrupt
record at FP - 16

i

clear trace fault pending bit (TC.tfp)
clear trace enable bit (TC.te)

state = interrupted (PC.s = 1)
mode = supervisor (PC.em = 1)

New PC =
Priority = INT.PRIO

]

get interrupt vector number
SP=FP + 64
IP = interrupt vector number3

11-34

Figure 11-13. Interrupt Service Flowchart

u
I I‘el INTERRUPTS

11.9.1 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
activation of an interrupt source and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed
at the time of the interrupt. The processor aso has a number of cache options that reduce interrupt
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock
cycles, and reflects differences between the 80960JA/JF, the 80960JD due to the 80960JD
processor’s clock-doubled core, and the 80960JT due to the processor’s clock-tripled core.

11.9.2 Features to Improve Interrupt Performance

The 1960 Jx processor implementation employs four methods to reduce interrupt latency:
e Caching interrupt vectors on-chip

e Caching of interrupt handling procedure code

* Reserving register frames in the local register cache

e Caching the interrupt stack in the data cache

11.9.2.1 Vector Caching Option

To reduce interrupt latency, the i960 Jx processors allow some interrupt table vector entriciigl
cached in internal data RAM. When the vector cache option is enabled and an interrupt req
a cached vector to be serviced, the controller fetches the associated vector from internal RAM
rather than from the interrupt table in memory.

Interrupts with a vector number with the four least-significant bits equal to,@@it0be cached.

The vectors that can be cached coincide with the vector numbers that are selected with the mapping
registers and assigned to dedicated-mode inputs. The vector caching option is selected when
programming the ICON register; software must explicitly store the vector entries in internal RAM.

Since the internal RAM is mapped to the address space directly, this operation can be performed
using the core’s store instructionBable 11-2shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on.

The NMl vector is also shown ifiable 11-2 This vector is always cached in internal data RAM at
location 0000H. The processor automatically loads this location at initialization with the value of
vector number 248 in the interrupt table.

11-35

int
INTERRUPTS I ‘el

Table 11-2. Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

NMI 248 0000H
0001 0010, 18 0004H
0010 0010, 34 0008H
0011 0010, 50 000CH
0100 0010, 66 0010H
0101 0010, 82 0014H
0110 0010, 98 0018H
0111 0010, 114 001CH
1000 0010, 130 0020H
1001 0010, 146 0024H
1010 0010, 162 0028H
1011 0010, 178 002CH
1100 0010, 194 0030H
1101 0010, 210 0034H
1110 0010, 226 0038H
1111 0010, 242 003CH

11.9.2.2 Caching Interrupt Routines and Reserving Register Frames

Thetime required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The user can reduce this fetch time by caching interrupt procedures
or portions of procedures in the 1960 Jx processor’s instruction cachdcdithéstruction can
load and lock these procedures into the instruction caches&di®n 4.4, “INSTRUCTION
CACHE” (pg. 4-4)for information on the instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit
the number of frames in the local register cache available to code running at a lower priority
(priority 27 and below). This ensures that some number of free frames are available to
high-priority interrupt service routines. Seection 4.2, “LOCAL REGISTER CACHE” (pg. 4-2)

for more details.

11.9.2.3 Caching the Interrupt Stack

By locating the interrupt stack in cacheable memory, the performance of interrupt returns can be
improved. This is because accesses to the interrupt record by the interrupt return can be satisfied
by the data cache. Ssection 13.6, “Programming the Logical Memory Attributes” (pg. 13s8)

details on how to enable data caching for portions of memory.

11-36

intel

1193

Base Interrupt Latency

INTERRUPTS

In many applications, the processor’s instruction mix and cache configuration are known suffi-
ciently well to use typical interrupt latency in calculations of overall system performance. For
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

Single-cycle RISC instruction is interrupted.

Frame flush does not occur.

Bus queue is empty.

Cached interrupt handler.

No interaction of faults and interrupts (i.e., a stable system).

Table 11-3shows the base latencies for all interrupt types, with varying pin sampling and vector
caching options. Note that the 80960JD interrupt latency is approximately 50% less than the
80960JA/JF interrupt latency due to its core clock operating at twice the speed of CLKIN.

The 80960JT is approximately 70% less than the 80960JA/JF and approximately 30% less than the

80960JD, due to its core clock operating at three times the speed of CLKIN.

Table 11-3. Base Interrupt Latency

Vector Typical Typical Typical
Detection A 80960JA/JF 80960JD 80960JT (3x)
Interrupt Type . Caching
Option Enabled Latency Latency Latency
(Bus Clocks) | (Bus Clocks) | (Bus Clocks)
NV Fast Yes 29 14.5 9.7
Debounced Yes 32 155 13.7
Yes 34 17.5 12
Fast
Dedicated Mode No 40+a 21+b 14+c
XINT[7:0], TINT[1:0] Yes 37 215 16.3
Debounced
No 45+a 26+b 18.3+c
Expanded Mode Yes 37 22 16
s Mk ’ Debounced
XINT[7:0], TINT[1:0] No 45+a 26+b 18.7+c
Yes 68 35 20+c+d
Software NA
No 69+a 36.5+b 20+2c+d

Notes:

a=MAX (O,N-7)
b =MAX (O,N - 3.5)
¢ = MAX (0, N-2.3)
d=N

where “N” is the number of bus cycles needed to perform a word load.

11-37

intel

In real-time applications, worst-case interrupt latency must be considered for critical handling of

external events. For example, an interrupt from a mechanica subsystem may need service to
calculate servo loop parameters to maintain directional control. Determining worst-case latency
depends on knowledge of the processor’s instruction mix and operating environment as well as the
interrupt controller configuration. Excluding certain very long, uninterruptable instructions from
critical sections of code reduces worst-case interrupt latency to levels approaching the base latency.

INTERRUPTS

1194 Maximum Interrupt Latency

The following tables present worst-case interrupt latencies based on possible exedlitior{rab
destination)divo (r3 destination)galls orflushreg instructions or software interrupt detection. The
assumptions for these tables are the same dkafe 11-8 except for instruction execution. It is
also assumed that the instructions are already in the cache and that tracing is disabled.

Table 11-4. Worst-Case Interrupt Latency Controlled by divo to Destination r15

Vector Worst Worst Worst
Detection . 80960JA/JF 80960JD 80960JT (3x)
Interrupt Type . Caching
Option Enabled Latency Latency Latency
(Bus Clocks) | (Bus Clocks) | (Bus Clocks)
N Fast Yes 42 23.5 16.7
Debounced Yes 46 26 20.3
Yes 45 23.5 17
Fast
Dedicated Mode No 45+a 23.5+b 17+c
XINT[7:0], TINT[1:0] Yes 49 275 223
Debounced
No 5l+a 27.5+b 22.3+C
Expanded Mode Yes 50 27.5 21
e] Debounced
XINT[7:0], TINT[1:0] No 51+a 27.5+b 21+c

NOTES:

a=MAX (O,N - 11)
b = MAX (O,N - 5)
¢ = MAX (0, N-4.7)

where “N” is the number of bus cycles needed to perform a word load.

11-38

intel

INTERRUPTS

Table 11-5. Worst-Case Interrupt Latency Controlled by divo to Destination r3

Vector Worst Worst Worst
Detection) 80960JA/JF 80960JD 80960JT (3x)
Interrupt Type . Caching
Option Enabled Latency Latency Latency
(Bus Clocks) | (Bus Clocks) | (Bus Clocks)
N Fast Yes 59 30.5 21
Debounced Yes 64 34.5 24
Yes 65 335 23.3
Fast
Dedicated Mode No 72+a 37.5+b 24+c
XINT[7:0], TINT[1:0] Yes 69 37 28
Debounced
No 76+a 42+b 29+c
Expanded Mode Yes 70 37.5 27.7
R] Debounced
XINT[7:0], TINT[1:0] No 76+a 42+b 29.7+c
NOTES:
a=MAX (O,N - 7)
b = MAX (O,N - 3.5)
¢ = MAX (0,N-2.3)
where “N” is the number of bus cycles needed to perform a word load.
Table 11-6. Worst-Case Interrupt Latency Controlled by calls
Vector Worst Worst Worst
Detection) 80960JA/JF 80960JD 80960JT (3x)
Interrupt Type . Caching
Option Enabled Latency Latency Latency
(Bus Clocks) | (Bus Clocks) | (Bus Clocks)
NV Fast Yes 53+a 27+cC 22.6+f
Debounced Yes 56+a 32+c 26.7+f
Fast Yes 58+a 29.5+c 25.3+f
as
Dedicated Mode No 66+a+b 33.5+c+d 27.3+e+f
XINT[7:0], TINT[1:0] Yes 62+a 33+c 29.3+f
Debounced
No 69+a+b 38+b+c 30.6+e+f
Expanded Mode Yes 63+a 32.5+C 29.7+f
o] Debounced
XINT[7:0], TINT[1:0] No 70+a+b 38+c+d 31+etf

NOTES:

a=MAX (O,N - 4)

b = MAX (O,N - 7)

c= MAX (ON - 2.5)
d= MAX (O,N - 3.5)
e = MAX (0, N-2.7)
f= MAX (0, N-1.3)

where “N” is the number of bus cycles needed to perform a word load.

11-39

INTERRUPTS

intel

Table 11-7. Worst-Case Interrupt Latency When Delivering a Software Interrupt

Vector Worst Worst Worst
Detection) 80960JA/JF 80960JD 80960JT (1x)
Interrupt Type . Caching
Option Enabled Latency Latency Latency
(Bus Clocks) | (Bus Clocks) | (Bus Clocks)
o Fast Yes 96 47 31.7+2c+d
NMI
Debounced Yes 97 47 35.7+2c+d
Yes 99 48 34+2c+d
Fast
Dedicated Mode No 107+a 53+b 34.7+3c+d
XINT[7:0], TINT[L:0] Yes 100 48 38+2c+d
Debounced
No 107+a 53+b 38.7+3c+d
Expanded Mode Debounced Yes 96 48 38.3+2c+d
XINT[7:0], TINT[L:0] No 105+a 53+b 39.3+2c+d

NOTES:

a=MAX (O,N - 7)
b = MAX (O,N - 3.5)
¢ = MAX (0, N-2.3)
d=N

where “N” is the number of bus cycles needed to perform a word load.

11-40

u
I l‘el INTERRUPTS

Table 11-8. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame

Vector Worst Worst Worst
Detection) 80960JA/JF 80960JD 80960JT (1x)
Interrupt Type . Caching
Option Enabled Latency Latency Latency
(Bus Clocks) | (Bus Clocks) | (Bus Clocks)
o Fast Yes 77+atb 41+d+e 28.3+A
NMI
Debounced Yes 8l+a+b 43+d+e 32.3+A
Yes 82+a+b 43+d+e 30+A
Fast
Dedicated Mode No 89+a+b+c 47 5+d+e+f 32+A+k
XINT[7:0], TINT[1:0] Yes 86+a+b 47+d+e 34+A
Debounced
No 93+a+b+c 51+d+e+f 35.3+A+k
Expanded Mode bebounced Yes 88+a+b 47 5+d+e 34+A
XINT[7:0}, TINT[1:0] No 93+a+b+c 52+d+e+f 37+A+k
Notes:
a=MAX (0, M - 15) A = g+h+i
b = MAX (0, M - 28) g =MAX (O,M -4.7)
c=MAX (0, N - 7) h = MAX (0,2M - [7.3+g])
d=MAX (0, M - 7.5) i = MAX (0,3M - [13.7+g+h])
e = MAX (0, M - 15) j = MAX (0,4M+h - 53)
f=MAX (0, n - 3.5) k = MAX (O,N - [7-])
stg_cycles = number of cycles to execute stq instruction.
g, h, i account for scoreboarding due to the possibility of long memory access latencies.
jand k account for long STQ time affecting the loading of the interrupt vector from the Interrupt Table.
where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus
cycles needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack
frames increases.

11-41

int
INTERRUPTS I ‘el

11.9.4.1 Avoiding Certain Destinations for MDU Operations

Typically, when delivering an interrupt, the processor attempts to push the first four local registers
(pfp, sp, rip, and r3) onto the local register cache as early as possible. Because of
register-interlock, this operation is stalled until previous instructions return their results to these
registers. In most cases, thisis not aproblem; however, in the case of instructions performed by the
Multiply/Divide Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for
many cycles waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four loca registers as the destination for a
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided for general
operations as these are used for procedure linking.)

11.9.4.2 Masking Integer Overflow Faults for syncf

The 1960 core architecture requires an implicit syncf before delivering an interrupt so that a fault
handler can be dispatched first, if necessary. The syncf can require a number of cycles to
complete if a multi-cycle multiply or divide instruction was issued previousy and
integer-overflow faults are unmasked (allowed to occur). Interrupt latency can be improved by
masking integer-overflow faults, which allows the implicit syncf to complete in much shorter
time.

11-42

intel
12

INITIALIZATION AND SYSTEM
REQUIREMENTS

intel
CHAPTER 12

INITIALIZATION AND SYSTEM REQUIREMENTS

This chapter describes the steps that the 1960 Jx processor performs during initialization.
Discussed are the RESET pin, the reset state and built-in self test (BIST) features. This chapter

also describes the processor’s basic system requirements — including power, ground and clock —
and concludes with some general guidelines for high-speed circuit board design.

121 OVERVIEW

During the time that the RESHJin is held asserted, the processor is in a quiescent reset state. All
external pins are inactive and the internal processor state is forced to a known condition. The
processor begins initialization when the RES#T is deasserted.

When initialization begins, the processor uses an Initial Memory Image (IMI) to establish its state.
The IMI includes:

e Initialization Boot Record (IBR) — contains the addresses of the first instruction of the user’s
code and the PRCB.

¢ Process Control Block (PRCB) — contains pointers to system data structures; also contains
information used to configure the processor at initialization.

e System data structures — the processor caches several data structure pointers internally at
initialization.

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and reini-
tialization instruction pointer are specified. Reinitialization is useful for relocating data structures

from ROM to RAM after initialization.
The 1960 Jx processor supports several facilities to assist in system testing and start-up dia '

ONCE mode electrically removes the processor from a system. This feature is useful for
system-level testing where a remote tester exercises the processor system. The i960 Jx processor
also supports JTAG boundary scan (E&6APTER 15, TEST FEATURBSDuring initialization,

the processor performs an internal functional self test and external bus self test. These features are
useful for system diagnostics to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. It requires an input
clock (CLKIN) and clean power and ground connectiong;@&hd \.¢). Since the processor can
operate at a high frequency, the external system must be designed with considerations to reduce
induced noise on signals, power and ground.

12-1

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

12.2 INITIALIZATION

Initialization describes the mechanism that the processor uses to establish itsinitial state and begin
instruction execution. Initialization begins when the RESET pin is deasserted. At this time, the
processor automatically configures itself with information specified in the IMI and performs its
built-in self test based on the sampling of the STEST pin. The processor then branches to the first
instruction of user code. See Figure 12-1 for aflow chart of 1960 Jx processor initialization.

Hardware Reset Software Reinitialization

Reset State -«

Executing Program

RESET
Asserted
?

SYSCTL
Reinitialize
?

NO

Assert FAIL Pin

Process PRCB
Contents
—>
STEST
Asserted On l
Rising Edge Of
Cache NMI Vector from
? Vector Location 248 in
Interrupt Table
Perform Internal ‘ i
Self-Test - Load Control Registers
STOP with the Data in the
Control Table
Internal . . ¢
Self-Test Pass NO_, | Drive Fail Code) Execute User Code
2 on Address/Data Pins Branch to Start-up

L Deassert FAIL Pin

v

Configure Registers
Setup Bus Controller

}

Assert FAIL Pin

v

Bus Confidence Self-
Test: compute Checksum

<G

| Deassert FAIL Pin '7

Figure 12-1. Processor Initialization Flow

12-2

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

The objective of the initialization sequence is to provide a complete, working initial state when the
first user instruction executes. The user’s startup code needs only to perform several basic
functions to place the processor in a configuration for executing application code.

12.2.1 Reset State Operation

The RESETpin, when asserted (active low), causes the processor to enter the reset state. All
external signals go to a defined staftalfle 12-2, internal logic is initialized, and certain registers

are set to defined valuegdble 12-3. When the RESEPin is deasserted, the processor initializes

as described isection 12.5, “Startup Code Example” (pg. 12-:2BRESETIis a level-sensitive,
asynchronous input. If HOLD is asserted while the processor is in reset, the processor will
acknowledge the request. All external pins will assume their ugpéidid state) states while the

bus is in the hold state.

The RESETpin must be asserted when power is applied to the processor. The processor then
stabilizes in the reset state. This power-up reset is referred dolchseset. To ensure that all
internal logic has stabilized in the reset state, a valid input clock (CLKIN) gaanst be present

and stable for a specified time before RESfR be deasserted.

The processor may also be cycled through the reset state after execution has started. This is
referred to asvarm reset. For a warm reset, the RESEIn must be asserted for a minimum
number of clock cycles. If a warm reset is asserted during a bus hold, the processor continues to
drive HOLDA until HOLD is deasserted. However, the processor will begin the internal initial-
ization process. Refer tgection 1.4, “Related Documents” (pg. 1-18pecifications for a cold

and warm reset can be found in these documents.

While the processor's RESHiin is asserted, output pins are driven to the states as indicated in
Table 12-2 The reset state cannot be entered under direct control from user code. No reset
instruction — or other condition that forces a reset — exists on the i960 Jx processors. The RESET
pin must be asserted to enter the reset state. The processor does, however, provide a
re-enter the initialization process. Seection 12.4.1, “Reinitializing and Relocating D
Structures” (pg. 12-22)

12-3

intel

INITIALIZATION AND SYSTEM REQUIREMENTS

"1S9)-4|8S UI-)|INg pue 19sal Bulinp palouoy aq |jim sisanbal pjoy ‘a|p! Sl SNg 8y} 2UIS '€

v8Z0IX o “aIn|re 1581-18s 40 1uod BU3 B1RIIPUI [IM SSBIPPR PRO| YL
'$S9908 SNQ Peo| AWwWNp U0 areniul [[IM)l ‘1S31-4|8S Ul-}Ing s|re} 10ssadoid ayl § ‘2

"uonnaaxa weibo.d Jasn suiBag J0ssav0.d BU) pue pauRsSEap S| I ‘sassed 15a) 9IUBPYUOI SNQ Y} J| "ISS) BIUBPLUOD SNg day) Buunp
7l suasse osfe 10ss320id oy | 'pauasseap si uld 11y ay) ‘sassed 1sa) -Jjas J| '1sal-jlas g Bulinp 14 suesse Jossadoid ayL T
, , , :S310N
Aoy | , o :
I

I
I I ' I 0
' uoneziigels T1d Jo} ‘spouad NIMTD 000‘0T
Mﬂm (pa103j8s J1) 1S81-49S [eulBIU| ! uwinwiuiw ‘ybiH 13S3Y 01 3|geIs NIM1D pue Uu>
! _ ! | L

< !
|

|
(pren) s ”
il

- H_ 1s31s

30NO
MO0OT

BB

|

B
HE

I
LT
LT
rr_.m-_ I I I
| ”93939 (nduj) (19say Bunng aAndy dn-lind feussiur)
et i Al e
IS} [i ' 0 L T T
o o g LT
i
LT

HE HEGDE

H_ VYAT10H

H - = H_n_._o_._

I 13S34

(g210N) INAINO pIfeA

L

{ - b
é/ﬁ
T

(€ @10N) 1nduj pirea

, o 2/ ‘0:TALTH
== [HLdIM
Z’evy '0:TEQY

H_ qvd

f# w/i1a
MY
— 1svig
‘N3Q ‘0:£39
‘sav IV

, i]

H_ NIYTD

LT

L

LT LT
/ Lt

&

Figure 12-2. Cold Reset Waveform

12-4

INITIALIZATION AND SYSTEM REQUIREMENTS

Table 12-1. Reset States

Pins Reset State Pins Reset State

AD31:0 Floating W/R Low (read)

ALE Low (inactive) DT/R Low (receive)
ALE High (inactive) DEN High (inactive)
ADS High (inactive) BLAST High (inactive)
A3:2 Floating LOCK/ ONCE High (inactive)
BE3:0 High (inactive) HOLDA Valid Output
WIDTH/HLTD1:0 Floating FAIL Low (Active)

D/C Floating TDO Valid Output

Table 12-2. Register Values After Reset (Sheet 1 of 2)

Register Value After Cold Reset Value After Software Re-Init
AC AC initial image in PRCB AC initial image in PRCB
PC 001F2002H 001F2002H
TC initial image in Control Table, offset 68H | initial image in Control Table, offset 68H
FP (g15) interrupt stack base & (~0xF) interrupt stack base & (~0xF)
PFP (r0) undefined undefined
SP (1) FP+64 FP+64
RIP (r2) undefined undefined
IPND undefined value before software re-init
IMSK O00H value before software re-init
LMARO-1 undefined value before software re-init
LMMRO-1 bit 0 = O; bits 1 -31 = undefined bit 0 = 0, bits 1-31 = undefined
DLMCON bit 0 = bit 7 of byte at FEFF FF3CH b?t 0= valu_e before softwa_re re-init,

bit 1 = 0; bits 2 -31 = undefined bit 1 = 0, bits 2-31 = undefined

TRRO-1 undefined value before software re-init
TCRO-1 undefined value before software re-init
TMRO-1 bits 1-5 = 0; bits 0, 6-31 = undefined bits 1-5 = 0; bits 0, 6-31 = undefined
IPBO 0000.0000H 0000.0000H
IPB1 0000.0000H 0000.0000H
DABO 0000.0000H 0000.0000H
DAB1 0000.0000H 0000.0000H

12-5

INITIALIZATION AND SYSTEM REQUIREMENTS

intel

Table 12-2. Register Values After Reset (Sheet 2 of 2)

Register Value After Cold Reset Value After Software Re-Init
IMAPO initial image in Control Table, offset 10H | initial image in Control Table, offset 10H
IMAP1 initial image in Control Table, offset 14H | initial image in Control Table, offset 14H
IMAP2 initial image in Control Table, offset 18H | initial image in Control Table, offset 18H
ICON initial image in Control Table, offset 1CH | initial image in Control Table, offset 1CH
PMCONO_1 initial image in Control Table, offset 20H | initial image in Control Table, offset 20H
PMCON2_3 initial image in Control Table, offset 28H | initial image in Control Table, offset 28H
PMCON4_5 initial image in Control Table, offset 30H | initial image in Control Table, offset 30H
PMCONG6_7 initial image in Control Table, offset 38H | initial image in Control Table, offset 38H
PMCONS8_9 initial image in Control Table, offset 40H | initial image in Control Table, offset 40H
PMCONZ10_11 |initial image in Control Table, offset 48H | initial image in Control Table, offset 48H
PMCONZ12_13 | initial image in Control Table, offset 50H | initial image in Control Table, offset 50H
PMCONZ14_15 | initial image in Control Table, offset 58H | initial image in Control Table, offset 58H
BPCON 0000 0000H setto 0
BCON initial image in Control Table, offset 6CH | initial image in Control Table, offset 6CH
DEVICEID initialized by reset process initialized by reset process
12.2.2 Self Test Function (STEST, FAIL)

As part of initialization, the i960 Jx processor executes a bus confidence self test, an alignment
check for data structures within the initial memory image (IM1), and optionally, an built-in self
test program. The self test (STEST) pin enables or disables built-in self test. The FAIL pin
indicates that the self tests passed or failed by asserting FAIL. During normal operations the FAIL
pin can be asserted if a System Error is detected. The following subsections further describe these

pin functions.

Internal self test checks basic functionality of internal data paths, registers and memory arrays
on-chip. Internal self test is not intended to be a full vaidation of processor functionality; it is

intended to detect catastrophic internal failures and complement a user’'s system diagnostics by
ensuring a confidence level in the processor before any system diagnostics are executed.

12-6

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

12.2.2.1 The STEST Pin

The STEST pin enables and disables Built-In Self Test (BIST). BIST can be disabled if the initial-
ization time needs to be minimized or if diagnostics are simply not necessary. The STEST pin is
sampled on the rising edge of the RESET input:

« If STEST is asserted (high), the processor executes the built-in self test.
e If STEST is deasserted, the processor bypasses built-in self test.

12.2.2.2 External Bus Confidence Test
The external bus confidence test is always performed regardless of STEST pin value.

The external bus confidence test checks external bus functionality; it reads eight words from the
Initialization Boot Record (IBR) and performs a checksum on the words and the constant FFFF
FFFFH. The test passes only when the processor calculates a sum of zero (0). The external bus
confidence test can detect catastrophic bus failures such as external address, data or control lines
that are stuck, shorted or open.

12.2.2.3 The Fail Pin (FAIL)
The FAIL pin signals errors in either the built-in self test or bus confidence self test. iFAIL
asserted (low) for each self tebidure 12-3:

« When any test fails, the FAlpin remains asserted, a fail code message is driven onto the
address bus, and the processor stops execution at the point of failure.

* When a system error occurs, FAI& also asserted. Seection 12.2.2.4, “IMI Alignment
Check and System Error” (pg. 128y detalils.

¢ When the test passes, FAK. deasserted.

If FAIL stays asserted, the only way to resume normal operation is to perform a reset op
When the STEST pin is used to disable the built-in self test, the test does not execute; hd

FAIL still asserts at the point where the built-in self test would occur. Adleasserted after the

bus confidence test passesHigure 12-3 all transitions on the FAllpin are relative to CLKIN.

Refer tosection 1.4, “Related Documents” (pg. 1-1Burther timing information can be found in
these documents.

12-7

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

RESET____ |
Bus Confidence
Internal Self-Test Status Test Status
PASS PASS
AL Internal Self-Test FAIL Bus Confidence Test FAIL _

Figure 12-3. FAIL Sequence

12.2.2.4 IMI Alignment Check and System Error

The alignment check during initialization for data structures within the IMI ensures that the
PRCB, control table, interrupt table, system-procedure table, and fault table are aligned to word
boundaries. Normal processor operation is not possible without the alignment of these key data
structures. The alignment check is one case where a System Error could occur.

The other case of System Error can occur during regular operation when generation of an override
fault incurs afault. The sequence of events leading up to this case is quite uncommon.

When a System Error is detected, the FAIL pin is asserted, a fail code message is driven onto the
address bus, and the processor stops execution at the point of failure. The only way to resume normal
operation of the processor is to perform a reset operation. Because System Error generation can
occur sometime after the BUS confidence test and even after initialization during normal processor
operation, the FAIL pinwill be at alogic one before the detection of a System Error.

12.2.25 FAIL Code

The processor uses only one read bus transaction to signal the fail code message; the address of the
bus transaction is the fail code itself. The fail code is of the form: Oxfeffffnn; bits 6 to O contain a
mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown
in Table 12-3 and Table 12-4.

12-8

u I
I ‘d“ INITIALIZATION AND SYSTEM REQUIREMENTS

Table 12-3. Fail Codes For BIST (bit 7 = 1)

Bit When set:

6 On-chip Data-RAM failure detected by BIST

5 Internal Microcode ROM failure detected by BIST
4 I-cache failure detected by BIST

3 D-cache failure detected by BIST

Local-register cache or processor core (RF, EU,
MDU, PSQ) failure detected by BIST

Always Zero.

0 Always Zero.

Table 12-4. Remaining Fail Codes (bit 7 =0)

Bit When set:

6 Always One; this bit does not indicate a failure.

5 Always One; this bit does not indicate a failure.

A data structure within the IMI is not aligned to a
word boundary.

A System Error during normal operation has
occurred.

2 The Bus Confidence test has failed.

Always Zero.

0 Always Zero.

12.3 Architecturally Reserved Memory Space

The 1960 Jx microprocessor contains 232 bytes of address space. Portions of this address space are
architecturally reserved and must not be used. Section 3.5, "MEMORY ADDRESS SPACE”

(pg. 3-13)shows the reserved address space. The 1960 Jx suppresses all external bus cycles from O
to 3FFH and from FFOO 0000H to FFFF FFFFH.

Addresses FEFF FF60H through FFFF FFFFH are reserved for implementation-specific functions.
This address range is termed “reserved” since i960 architecture implementations may use these
addresses for functions such as memory-mapped registers or data structures. Therefore, to ensure
complete object level compatibility, portable code must not access or depend on values in this region.

12-9

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘d““

The 960 Jx microprocessor uses the reserved address range 0000 0000H through 0000 03FFH for
interna data RAM. Thisinternal data RAM is used for storage of interrupt vectors plus general
purpose storage availabl e for application software variable allocation or data structures. Loads and
stores directed to these addresses access internal memory; instruction fetches from these addresses
are not adlowed for the 1960 Jx microprocessor. See CHAPTER 4, CACHE AND ON-CHIP
DATA RAM, for more details.

12.3.1 Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize its
system. As shown in Figure 12-4, these structures are: the initiaization boot record (IBR), process
control block (PRCB) and system data structures. The IBR is located at a fixed address in memory.
The other components are referenced directly or indirectly by pointersin the IBR and the PRCB.
The IMI performsthree functions for the processor:

* Provides initial configuration information for the core and integrated peripherals.

¢ Provides pointers to the system data structures and the first instruction to be executed after
processor initialization.

* Provides checksum words that the processor uses in its self test routine at startup.
Several data structures are typically included as part of the IMI because values in these data
structures are accessed by the processor during initialization. These data structures are usually

programmed in the systems’s boot ROM, located in memory region 14_15 of the address space.
The required data structures are:

« PRCB

« IBR

e System procedure table

« Control table

e Interrupt table

¢ Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt
table, and fault table must not be located in architecturally reserved memory -- addresses reserved
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of these

structures must start at a word-aligned address; a System Error occurs if any of these structures are
not word-aligned (segection 12.2.2.3

12-10

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

At initialization, the processor |oads the Supervisor Stack Pointer (SSP) from the system procedure

table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-mapped control

register (see section 3.3, “MEMORY-MAPPED CONTROL REGISTERS” (pg. 3-6)The
supervisor stack pointer is located in the preamble of the system procedure table at byte offset 12
from the base address. The system procedure table base address is programmed in the PRCB. See
section 7.5.1, “System Procedure Table” (pg. 7fbb}the format of the system procedure table.

At initialization, the NMI vector is loaded from the interrupt table and saved at location
0000 0O000H of the internal data RAM. The interrupt table is typically programmed in the boot
ROM and then relocated to internal RAM by reinitializing the processor.

The fault table is typically located in boot ROM. If it is necessary to locate the fault table in RAM,
the processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. These stacks must be located in a system’s RAM.

At initialization, the processor loads the interrupt stack pointer in the ISP memory-mapped
register. It then zeroes-out the low order four bits of the ISP, to align it to a 16 byte boundary, and
places it in the FP. To ensure correct operation, the value needed for ISP from the PRCB must be
quad-word aligned.

12-11

INITIALIZATION AND SYSTEM REQUIREMENTS

intel

Fixed Data Structures

Relocatable Data Structures

User Code:

>

Init. Boot Record (IBR):

Address

PMCON
Byte 0 FEFF FF30H
PMCON
Byte 1 FEFF FF34H
PMCON
Byte 2 FEFF FF38H
PMCON
Byte 3 FEFF FF3CH
First Instruction FEFF FF40H
Pointer
PRCB Pointer FEFF FF44H
FEFF FF48H
6 Check Words
(For Bus Confidence
Self-Test)
FEFF FF5CH

Process Control Block (PRCB):

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

System Procedure
Table Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Configuration Word

Register Cache
Configuration Word

Control Table

< <
Interrupt Table
< <
System Procedure Table
< <

Other Architecturally
Defined Data

Structures (Not
Required As Part Of IMI)

12-12

Figure 12-4. Initial Memory Image (IMI) and Process Control Block (PRCB)

u I
I ‘d“ INITIALIZATION AND SYSTEM REQUIREMENTS

12.3.1.1 Initialization Boot Record (IBR)

The initialization boot record (IBR) is the primary data structure required to initiaize the 1960 Jx
processor. The IBR is a 12-word structure which must be located at address FEFF FF30H (see
Table 12-5). The IBR is made up of four components. the initial bus configuration data, the first
instruction pointer, the PRCB pointer and the bus confidence test checksum data.

Table 12-5. Initialization Boot Record

Byte Physical Address Description
FEFF FF30H PMCON14_15, byte 0
FEFF FF31 to FEFF FF33 Reserved
FEFF FF34H PMCON14_15, byte 1
FEFF FF35 to FEFF FF37 Reserved
FEFF FF38H PMCON14_15, byte 2
FEFF FF39 to FEFF FF3B Reserved
FEFF FF3CH PMCON14_15, byte 3
FEFF FF3D to FEFF FF3F Reserved
FEFF FF40 to FEFF FF43 First Instruction Pointer
FEFF FF44 to FEFF FF47 PRCB Pointer
FEFF FF48 to FEFF FF4B Bus Confidence Self-Test Check Word 0
FEFF FFAC to FEFF FF4F Bus Confidence Self-Test Check Word 1
FEFF FF50 to FEFF FF53 Bus Confidence Self-Test Check Word 2
FEFF FF54 to FEFF FF57 Bus Confidence Self-Test Check Word 3
FEFF FF58 to FEFF FF5B Bus Confidence Self-Test Check Word 4
FEFF FF5C to FEFF FF5F Bus Confidence Self-Test Check Word 5

12
When the processor reads the IMI during initiaization, it must know the bus characteristics of -

external memory wherethe IMI islocated. Specificaly, it must know the bus width and endianism

for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit

bus width. The processor then needs to form the initidl DLMCON and PMCON14 15 registers so

that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of

the IBR’s first 4 words are used to form the register values. On the i960 Jx processor, the bytes at
FEFF FF30 and FEFF FF34 are not needed, so the processor starts fetching at address FEFF FF38.
The loading of these registers is shown in the pseudo-code flewaimple 12-1

12-13

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

Example 12-1. Processor Initialization Flow

Processor_Initialization_flow()

{ FAIL_pin = true;
restore_full _cache_node; disable(l_cache); invalidate(l_cache);
di sabl e(D_cache); invalidate(D_cache);
BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */
PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/
if (STEST_ON_RI SI NG_EDGE_OF_RESET)

status = BI ST(); /* BI ST does not return if it fails */

FAIL_pin = fal se;

PC = 0x001f 2002; /* PC. Priority = 31, PC.em = Supervisor, */
/* PC.te = 0; PC State = Interrupted */

ibr_ptr = Oxfeffff30; /* ibr_ptr used to fetch | BR words */

/** Read PMCON14_15 immge in IBR **/
FAIL_pin = true; | MSK = 0;
DLMCON. dcen = O; LMVRO. I nte = O; LMVRL. I nte = O;

PMCON14_15[byte2] = 0OxcO & menmory[ibr_ptr + 8];
DLMCON. be = (nmenory[ibr_ptr + Oxc] >> 7);

/** Conput e CheckSum on Boot Record **/
carry = 0; CheckSum = Oxffffffff;
for (i=0; i<8; i++) /* carry is carry out from previous add*/
CheckSum = menory[ibr_ptr + 16 + i*4] + CheckSum + carry;
if (CheckSum!= 0)
{ fail_nmsg = Oxfeffff64; /* Fail BUS Confidence Test */
dummy = menory[fail_nsg]; /* Do load with address = fail _nsg */
for (1)
/* loop forever with FAIL pin true */
el se FAI L_pin = fal se;

/** Process PRCB **/
prcb_ptr = menory[i br_ptr+0x14];
Process_PRCB(prch_ptr); /* See Process PRCB Section for Details */
I P = menory[ibr_ptr+0x10];
g0 = DEVI CE_I D
return;/* Execute First Instruction */

Bit 31 of the assembled PMCON word loaded from the IBR is written to DLMCON.be to
establish the initial endianism of memory; the processor initializes the DLMCON.dcen bit to 0 to
disable data caching. The remainder of the assembled word is used to initialize PMCON14 _15. In
conjunction with this step, the processor clears the bus control table valid bit (BCON.ctv), to
ensure for the remainder of initialization that every bus request issued takes configuration
information from the PMCON 14 _15 register, regardless of the memory region associated with the
request. At alater point in initialization, the processor loads the remainder of the memory region

12-14

u I
I ‘d“” INITIALIZATION AND SYSTEM REQUIREMENTS

configuration table from the external control table. The Bus Configuration (BCON) register is also
loaded at this time. The control table valid (BCON.ctv) bit is then set in the control table to
validate the PMCON registers after they are loaded. In this way, the bus controller is completely
configured during initialization. (See CHAPTER 14, EXTERNAL BUS for a complete discussion
of memory regions and configuring the bus controller.)

After the bus configuration datais loaded and the new bus configuration isin place, the processor
loads the remainder of the IBR which consists of thefirst instruction pointer, the PRCB pointer and
six checksum words. The PRCB pointer and the first instruction pointer are internally cached. The

six checksum words — along with the PRCB pointer and the first instruction pointer — are used in
a checksum calculation which implements a confidence test of the external bus. The checksum
calculation is shown in the pseudo-code flovEiample 12-1If the checksum calculation equals

zero, then the confidence test of the external bus passes.

Figure 12-4further describe the IBR organization.

Boot Bit Endian (BBGE)
(0) Little Endian
(1) Big Endian
Bus Width (BW)
(00) 8-bit
(01) 16-bit
(10) 32-bit
(11) Reserved
byte 3 byte 2 byte 1 byte 0

28 24 20 16 12 8 4 0
PMCON14_15 Register

Reserved
(Initialize to 0)

Figure 12-5. PMCON14_15 Register Bit Description in IBR

12-15

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

12.3.1.2 Process Control Block (PRCB)

The PRCB contains base addresses for system data structures and initial configuration information
for the core and integrated peripherals. The base addresses are accessed from these internal
registers. The registers are accessible to the users through the memory mapped interface. Upon
reset or reinitialization, the registers are initialized. The PRCB format is shown in Table 12-6.

Table 12-6. PRCB Configuration

Physical Address Description
PRCB POINTER + 00H Fault Table Base Address
PRCB POINTER + 04H Control Table Base Address
PRCB POINTER + 08H AC Register Initial Image
PRCB POINTER + OCH Fault Configuration Word
PRCB POINTER + 10H Interrupt Table Base Address
PRCB POINTER + 14H System Procedure Table Base Address
PRCB POINTER + 18H Reserved
PRCB POINTER + 1CH Interrupt Stack Pointer
PRCB POINTER + 20H Instruction Cache Configuration Word
PRCB POINTER + 24H Register Cache Configuration Word

Theinitial configuration information is programmed in the arithmetic controls (AC) initial image,
the fault configuration word, the instruction cache configuration word, and the register cache
configuration word. Figure 12-6 shows these configuration words.

12-16

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

AC Register Initial Image Offset 08H

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow
Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults
No-Imprecise-Faults Bit - AC.nif
(0) allow imprecise fault conditions

(1) prevent imprecise fault conditions
31 28 24 20 16

i clclc
f m f 2] 1]o0

12 8 4 0
Offset 0CH

Fault Configuration Word
31 28 24 20 16 12 8 4 0

T Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault

Instruction Cache Configuration Word Offset 20H

Disable Instruction Cache
(0) enable cache
(1) disable cache

31 28 24 20 16 12 8 4 0

Register Cache Configuration Word Offset 24H

Programmed Limit

Abort Flushreg: 0 = Disabled
1 =Enabled

31 28 24 20 16 12 8 4

Reserved
(Initialize to 0) F_CRO76A

Figure 12-6. Process Control Block Configuration Words

12-17

12

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

12.3.2 Process PRCB Flow

The following pseudo-code flow illustrates the processing of the PRCB. Note that thisflow is used
for both initialization and reinitialization (through sysctl).

Example 12-2. Process PRCB Flow

Process_PRCB(prcb_ptr)
{ PRCB_nmr = prcb_ptr;

reset _state(data_ran); /* It is unpredictable whether the */
/* Data RAM keeps its prior contents */
menory[PRCB_mt] ;
menor y[PRCB_mmt +0x4] ;

fault_table
ctrl _table

AC menor y[PRCB_mmt +0x8] ;

fault_config = nmenory[PRCB_mmt +0xc] ;
if (1 & (fault_config >> 30)) generate_fault_on_unaligned_access = fal se;
el se generate_fault_on_unal i gned_access = true;

/** Load Interrupt Table and Cache NM Vector Entry in Data RAM*/
Reset _bl ock_NM ;
interrupt_table = nmenory[PRCB_nmr +0x10] ;
menory[0] = nenory[interrupt_table + (248*4) + 4];

/** Process System Procedure Table **/

sysproc = nenory[PRCB_mmr +0x14] ;
tenp = menory[sysproc+0xc];
SSP_mmr = (~0x3) & tenp;

SSP.te =1 & tenp;

/** Initialize ISP, FP, SP, and PFP **/

ISP_mmr = nmenory[PRCB_mmr +0x1c] ;
FP = (~0xF) & | SP_mr;

SP = FP + 64,

PFP = FP;

/** Initialize Instruction Cache **/
| CCW = nenor y[PRCB_mmr +0x20] ;
if (1 & (ICCW>> 16)) disable(l_cache);

/** Configure Local Register Cache **/
progranmed_linmt = (7 & (nmenory[PRCB_mmt +0x24] >> 8));
config_reg _cache(programed_|limt);

/** Load_control _table. **/
| oad_control _table(ctrl _tabl e+tOx10 , ctrl _tabl e+0x58);
| oad_control _table(ctrl_tabl e+tOx68 , ctrl _tabl e+0x6¢c);
I BPO = 0x0; IBP1 = 0x0; DABO = 0x0; DABl1 = 0x0; BPCON = 0x0

/[** |nitialize Timers **/
TVMRO. tc = 0; TMRL.tc
TMRO. sup 0; TMRL. sup
TMRO. csel = 0; TMRL. csel
DLMCON. dcen = 0
LMVROO. I nt e 0
LMWRL.Inte =0
return;

0; TMRO. enabl e
0; TMRO.rel oad
0;

0; TMR1l.enable =
0; TMR1.rel oad

I
L

I
L

12-18

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

12.3.2.1 AC Initial Image

The AC initia image is loaded into the on-chip AC register during initialization. The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization.

The AC initial image condition code bits can be used to specify the source of an initialization or
reinitialization when a single instruction entry point to the user startup code is desirable. Thisis
accomplished by programming the condition code in the AC initial image to a different value for

each different entry point. The user startup code can detect the condition code values — and thus
the source of the reinitialization — by using the compare or compare-and-branch instructions.

12.3.2.2 Fault Configuration Word

The fault configuration word allows the operation-unaligned fault to be masked when an unaligned
memory request is issued. (Ssection 14.2.5, “Data Alignment” (pg. 14-2&)r a description of
unaligned memory requests.) Whenever an unaligned access is encountered, the ptoagssor
performs the access. After performing the access, the processor determines whether it should
generate a fault. If bit 30 in the fault configuration word is set, a fault is not generated after an
unaligned memory request is issued. If bit 30 is clear, a fault is generated after an unaligned
memory request is performed. An application may elect to generate a fault to detect unwanted
unaligned access. Note that unaligned accesses to MMR space are not affected by bit 30, are never
performed and always causes an operation.unimplemented fault.

12.3.2.3 Instruction Cache Configuration Word

The instruction cache configuration word allows the instruction cache to be enabled or disabled at
initialization. If bit 16 in the instruction cache configuration word is set, the instruction cache is
disabled and all instruction fetches are directed to external memory. Disabling the instruction
cache is useful for tracing execution in a software debug environment. The instruction
remains disabled until one of three operations is performed:

e The processor is reinitialized with a new value in the instruction cache configuration wor
e icctl is issued with the enable instruction cache operation

e sysctl is issued with the configure instruction cache message type and a cache configuration
mode other than disable cache

12.3.2.4 Register Cache Configuration Word

The register cache configuration word specifies the number of free frames in the local register
cache that can be used by non-critical code — code that is either in the executing state (non-inter-
rupted) or code which is in the interrupted state, but, has a process priority less than 28 — must
reserve for critical code (interrupted state and process priority greater than or equal to 28).

12-19

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

The register cache and the configuration word are explained further in section 4.2, “LOCAL
REGISTER CACHE” (pg. 4-2)

12.3.3 Control Table

The control table is the data structure that contains the on-chip control registers values. It is
automatically loaded during initialization and must be completely constructed in the IMI.
Figure 12-7shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:

¢ IMAP — Section 11.7.5, "Interrupt Mapping Registers (IMAPO-IMAP2)” (pg. 11-23)

¢ ICON — Section 11.7.4, "Interrupt Control Register (ICON)” (pg. 11-22)

¢ PMCON —Section 13.5.3, "Modifying the PMCON Registers” (pg. 13-7)

e TC —Section 9.1.1, "Trace Controls (TC) Register” (pg. 9-2)

¢ BCON —Section 13.4.1, "Bus Control (BCON) Register” (pg. 13-6)

12-20

® INITIALIZATION AND SYSTEM REQUIREMENTS

31 0
00H
04H
08H
OCH
Interrupt Map 0 (IMAPO) 10H
Interrupt Map 1 (IMAP1) 14H
Interrupt Map 2 (IMAP2) 18H
Interrupt Configuration (ICON) 1CH
Physical Memory Region 0:1 Configuration (PMCONO_1) 20H
24H
2CH
34H
3CH
44H
4CH
54H
5CH
60H
64H
Trace Controls (TC) 68H
Bus Configuration Control (BCON) 6CH

Figure 12-7. Control Table

12-21

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

12.4 DEVICE IDENTIFICATION ON RESET

A number characterizing the microprocessor type and stepping is programmed during
manufacture into the DEVICEID memory-mapped register. During initialization, the value is also
placed in gO.

Part Number
Product
Version Type Gen Model Manufacturer ID
ofofofojo]o|of1fjo]o]1]1
28 24 20 16 12 8 4 0

Figure 12-8. IEEE 1149.1 Device Identification Register

The value for device identification is compliant with the IEEE 1149.1 specification and Intel
standards. For specific DEVICEID, refer to the appropriate data sheet. Refer to section 1.4, “Related
Documents” (pg. 1-10)Specific information on DEVICEIDs can be found in these documents.

124.1 Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The
processor is reinitialized by issuing thgsctl instruction with the reinitialize processor message
type. (Seesection 6.2.67, “sysctl” (pg. 6-114pr a description okysctl.) The reinitialization
instruction pointer and a new PRCB pointer are specified as operandsstgsthieinstruction.

When the processor is reinitialized, the fields in the newly specified PRCB are loaded as described
in section 12.3.1.2, “Process Control Block (PRCB)” (pg. 12-16)

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt
table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate
the control table to RAM: it must be in RAM if the control register values are to be changed by
user code. In some systems, it is necessary to relocate other data structures (fault table and system
procedure table) to RAM because of unsatisfactory load performance from ROM.

12-22

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

After initialization, the software is responsible for copying data structures from ROM into RAM.
The processor isthen reinitialized with anew PRCB which contains the base addresses of the new
data structuresin RAM.

Reinitialization is required to relocate any of the data structures listed below, since the processor
caches the pointers to the structures.

The processor caches the following pointers during its initialization. To modify these data
structures, a software re-initialization is needed.

¢ Interrupt Table Address

e Fault Table Address

e System Procedure Table Address

e Control Table Address

12.5 Startup Code Example

After initialization is complete, user start-up code typically copies initialized data structures from
ROM to RAM, reinitializes the processor, sets up the first stack frame, changes the execution state
to non-interrupted and calls therai n routine. This section presents an example start-up routine
and associated header file. This simplified start-up file can be used as a basis for more complete
initialization routines.

The examples in this section are useful for creating and evaluating startup code. The following lists

the example’s number, name and page.

* Example 12-3. Initialization Header File (init.h) (pg. 12-24)

« Example 12-4., Startup Routine (init.s) (pg. 12-25)

* Example 12-5., High-Level Startup Code (initmain.c) (pg. 12-28)

*« Example 12-6., Control Table (ctltbl.c) (pg. 12-29)
* Example 12-7., Initialization Boot Record File (rom_ibr.c) (pg. 12-30)

* Example 12-8., Linker Directive File (init.Id) (pg. 12-31)
« Example 12-9., Makefile (pg. 12-33)

12-23

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

Example 12-3. Initialization Header File (init.h)

2 */
/* init.h */
% o e e e */

#define BYTE_N(n,data) (((unsigned)(data) >> (n*8)) & OxFF)
typedef struct
{
unsi gned char bus_byte_ O0;
unsi gned char reserved_O[3];
unsi gned char bus_byte 1;
unsi gned char reserved_1[3];
unsi gned char bus_byte_ 2;
unsi gned char reserved_2[3];
unsi gned char bus_byte_3;
unsi gned char reserved_3[3];
voi d (*first_inst)();
unsi gned *prch_ptr;
int check_suni 6] ;
} BR;

/* PMCON Bus Wdth can be 8,16 or 32, default to 8

* PMOONL4_15 BOOT_BI G ENDIAN O=little endian, 1=big endian
*/
#define BUS_WDTHbw) ((bws=16) ?2(1<<22):(0)) | ((bw==32)?(2<<22):(0))

#define BOOT_BI G ENDIAN (on) ((on)?(1<<31:0))

/* Bus configuration */

#define DEFAULT (BUS W DTH(8) | BOOT_BI G ENDI AN(0))

#define | _O (BUS_ W DTH(8) | BOOT_BI G_ENDI AN(0))
#defi ne DRAM (BUS_W DTH(32)| BOOT_BI G_ENDI AN(0))
#defi ne ROM (BUS_ W DTH(8) | BOOT_BI G_ENDI AN(0))

12-24

intel

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 12-4. Startup Routine (init.s) (Sheet 1 of 4)

/* __ */
/* init.s */
/* __ */

/* initial PRCB */

. gl obl

.align 4 /* or

_romprch
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

_rom_prchb

boot _flt_table

boot _control _table

0x00001000
0x40000000

boot _intr_table
rom.sys_proc_table

0
_intr_stack
0x00000000
0x00001200

.align 2 */

/* ROM system procedure table */

0 - Fault Table

4 - Control Table

8- ACreg nask overflow fault
12 - FIt CFG

16 - Interrupt Table

20 - System Procedure Tabl e
24 - Reserved

28 - Interrupt Stack Pointer
32 - Inst. Gache - enabl e cache
36 - Register Gache onfiguration

.equ supervi sor_proc, 2
.text
.align 6 /* or .align 2 or .align 4 */
romsys_proc_table:
.Space 12 # Reserved
.wor d _supervisor_stack # Supervisor stack pointer
.Space 32 # Preserved
.wor d _defaul t_sysproc # sysproc O
.wor d _defaul t_sysproc # sysproc 1
.wor d _defaul t_sysproc # sysproc 2
.wor d _defaul t_sysproc # sysproc 3
.wor d _defaul t_sysproc # sysproc 4
.wor d _defaul t_sysproc # sysproc 5
.wor d _defaul t_sysproc # sysproc 6
.wor d _fault_handl er + supervisor_proc # sysproc 7
.wor d _defaul t_sysproc # sysproc 8
.Space 251*4 # sysproc 9-259
/* Fault Table */
.equ syscall, 2
.equ fault_proc, 7
.text
.align 4
boot _flt_table:
.wor d (fault_proc<<2) + syscall # O-Parallel Fault
.wor d 0x27f
.wor d (fault_proc<<2) + syscall # 1-Trace Fault
.wor d 0x27f
.wor d (fault_proc<<2) + syscall # 2-Qperation Fault
.wor d 0x27f

12-25

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

Example 12-4. Startup Routine (init.s) (Sheet 2 of 4)

.wor d (faul't _proc<<2) + syscall # 3-Arithmetic Fault
.word 0x27f
.word 0 # 4- Reserved
.word 0
.wor d (fault_proc<<2) + syscall # 5-Constraint Fault
.word 0x27f
.word 0 # 6- Reserved
.word 0
.wor d (fault_proc<<2) + syscall # 7-Protection Fault
.word 0x27f
.word 0 # 8- Reserved
.word 0
.word 0 # 9- Reserved
.word 0
.wor d (fault_proc<<2) + syscall # Oxa- Type Fault
.word 0x27f
.Space 21*8 # reserved

/* Boot Interrupt Table */
. text

boot _intr_tabl e:
.wor d 0 # Pending Priorities
.wor d 0o, 0,0 00 0b O, O, O, O # Pending Interrupts Vectors
.wor d _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 8
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 10
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 18
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 20
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 28
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 30
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 38
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 40
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 48
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 50
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 58
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 60
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 68
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 70
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 78
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 80
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 88
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 90
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # 98
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # a0
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # a8
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # bO
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # b8
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # cO
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # c8
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # dO
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # d8
.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # e0

12-26

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

Example 12-4. Startup Routine (init.s) (Sheet 3 of 4)

.word _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx # e8
.wor d _intx, _intx, _intx, _intx, 0, 0, 0, 0 #fO
.word _nm , 0, o, 0, _intx, _intx, _intx, _intx # f8
/* START */
/* Processor starts execution here after reset. */
.text
.globl _start_ip
.globl _reinit
_start _ip:
nmv 0, gl14 /* gl4 nmust be O for ic960 C conpiler */

/* MON960 requires copying the .data areainto RAM |f a user application
* does not require this it is not necessary.

* Copy the .data into RAM The . data has been packed in the ROMafter the
* code area. If the copy is not needed (RAM based nonitor), the synbol
* rom. data can be defined as O in the linker directives file.

*/

| da romdata, gl # | oad source of copy
cnpobe 0, g1, 1f
| da __Bdata, g2 # | oad destination
| da __Edata, g3
init_data:
I dq (gl), r4
addo 16, g1, gl
stq r4, (g2)

addo 16, 92, g2
cnpobl g2, g3, init_data

1:
/* Initialize the BSS area of RAM */
| da __Bbss, g2 # start of bss
| da __Ebss, g3 # end of bss
mov(q 0,r4
bss_fill:
stq r4, (g2)
addo 16, g2, g2
cnpobl g2, g3, bss_fill
_reinit:
| dconst 0x300, r4 # reinitialize sys control
| da 1f, r5
| da _ramprch, ré6
sysctl r4, r5, r6
1:
| da _user_stack, pfp
| da 64(pfp), sp
nmv pfpf, fp /* new pfp */
flushreg
| dconst 0x001f 2403, r3 /* PC mask */
I dconst 0x000f 0003, r4 /* PC val ue */
modpc r3, r3, r4 /* Lower interrupt priority */

12-27

INITIALIZATION AND SYSTEM REQUIREMENTS

intel

Example 12-4. Startup Routine (init.s) (Sheet 4 of 4)

| da
nov
st

cal | x

. gl obl
. gl obl
. gl obl
. bss
. bss
. bss

. text

| dconst
call
ret

ret

_intx:
| dconst
call
ret

/* Clear the | PND register */

Oxf f 008500, g0
0, gl

91, (90)
_main

_intr_stack
_user_stack
_supervisor_stack
_user_stack, 0x0200, 6
_intr_stack, 0x0200, 6

_supervisor_stack, 0x0600, 6

_faul t_handl er:

"F, g0
_co

_default_sysproc:

17, g0
_co

#to main routine

defadt godicaion stack
interrupt stack
falt (supervisor) stack

Example 12-5. High-Level Startup Code (initmain.c)

unsi gned conmponentid = 0;

mai n()

{ /* system or board-specific code goes here */

} /* this code is called by init.s */

co()

{ /* system or board-specific output routine goes here */
}

12-28

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

Example 12-6. Control Table (ctltbl.c)

/* __ */
/* ctltbl.c */
/* __ */

#include "init.h"

typedef struct
{
unsi gned control _reg[28];
} CONTROL_TABLE;
const CONTROL_TABLE boot _control _table = {
/* Reserved */
o, 0, 0, O,
/* Interrupt Map Registers */
0, 0, O0,/* Interrupt Map Regs (set by code as needed) */
0x43bc, /* 1 CON

* - dedi cated node,

* - enabl ed

* systeminit 0 - falling edge activated,
* systeminit 1 - falling edge activated,
* systeminit 2 - falling edge activated,
* systeminit 3 - falling edge activated,
* systeminit 4 - level-low activated,

* systeminit 5 - falling edge activated,
* systeminit 6 - falling edge activated,
* systeminit 7 - falling edge activated,
* - mask unchanged,

* - not cached,

* - fast,

*/

/* Physical Menory Configuration Registers */

DEFAULT, O, /* Region 0_1 */
DEFAULT, O, /* Region 2_3 */
DEFAULT, O, /* Region 4.5 */
I_O 0, /* Region 6_7 */
DEFAULT, O, /* Region 8_9 */
DEFAULT, O, /* Region 10_11 */
DRAM O, /* Region 12_13 */
ROM O, /* Region 14_15 */

/* Bus Control Register */

0, /* Reserved */

0, /* Reserved */

1 /* BCON Register (Region config.

val i d)

12-29

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

Example 12-7. Initialization Boot Record File (rom_ibr.c) (Sheet 1 of 2)

#include "init.h"

| *

* NOTE: The ibr nust be |ocated at OXFEFFFF30. Use the |inker to
* |ocate this structure.

* The boot configuration is always region 14_15, since the IBR
* nmust be located there

*/

extern void start_ip();
extern unsi gned rom prcb;

extern unsi gned checksum

#define CS_6 (int) &checksum /* value calculated in |inker */

#defi ne BOOT_CONFI G ROM

const IBR init_boot_record =

{ BYTE_N(0, BOOT_CONFI G , /* PMCON14_15 byte 1 */
0, 0,0, /* reserved set to 0 */

BYTE_N(1, BOOT_CONFI G , /* PMCON14_15 byte 2 */
0, 0,0, /* reserved set to 0 */

BYTE_N(2, BOOT_CONFI G , /* PMCON14_15 byte 3 */
0, 0,0, /* reserved set to 0 */

12-30

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

Example 12-7. Initialization Boot Record File (rom_ibr.c) (Sheet 2 of 2)

BYTE_N(3, BOOT_CONFI G , /* PMCON14_15 byte 4 */
0, 0,0, /* reserved set to 0 */
start_ip,

& om prch,

-2,

0,

0,

0,

0,

CS_6

s

Example 12-8. Linker Directive File (init.ld) (Sheet 1 of 2)

/* __ */
/* init.ld */
/* __ */
VEMORY
{

/*

Enough space nust be reserved in ROM after the text
section to hold the initial values of the data section.
*/
rom 0=0xf ef e0000, | =0x1f c00

rom dat: o=0xfefffc00,|=0x0300 /* placehol der for .data image */

i br: o=0xfeffff30,1=0x0030
dat a: 0=0xa0000000, | =0x0300
bss: 0=0xa0000300, 1=0x7d00

12-31

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

Example 12-8. Linker Directive File (init.ld) (Sheet 2 of 2)

SECTI ONS

{
Libr

{
rom.ibr.o
} >ibr

. text

{

} > rom

.data :

{

} > data

.bss :
{
} > data

}

romdata = __Etext; /* used ininit.s as source of .data
section initial values. ROW60
"move" command pl aces the .data
section right after the .text section */

_checksum = -(_rom_prchb + _start_ip);
HLL()

/*Romer script enbedded here: the following creates a ROM i nmage
#*move $0 .text O

#*move $0

#*nmove $0 .ibr Ox1ff 30

#* ki mage $0 $0.imm

#*i hex $0.ima $0. hex nodel6

#*map $0

#*qui t

*/

12-32

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

Example 12-9. Makefile

| * o o C e o e e e e e e e e e eeeeeooo. * [
[* makefile */
| * o o o o e e e e e e e e e eeeeeooo. * [

LDFILE = init

FINALOBJ = init

BJS = init.o ctltbl.o initmain.o
IBR = rom.ibr.o

LDFLAGS = - AJF -Fcoff -T$(LDFILE) -m
ASFLAGS = -AJF -V
CCFLAGS = -AJF -Fcoff -V -c

init.inm: $(FlI NALOBJ)
ron®60 $(LDFI LE) $(FI NALOBJ)

init: $(0BJS) $(1BR)
gl d960 $(LDFLAGS) -0 $< $(OBJIS)

.S.0:
gas960c $(ASFLAGS) $<

.C.0:
gcc960 $(CCFLAGS) $<

12-33

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘d““

12.6 SYSTEM REQUIREMENTS

The following sections discuss generic hardware requirements for a system built around the 960

Jx processor. This section describes electrical characteristics of the processor’s interface to the
external circuit. The CLKIN, RESETSTEST, FAIL ONCE Vg and V¢ pins are described in

detail. Specific signal functions for the external bus signals and interrupt inputs are discussed in
their respective sections in this manual.

12.6.1 Input Clock (CLKIN)

The clock input (CLKIN) determines processor execution rate and timing. It is designed to be
driven by most common TTL crystal clock oscillators. The clock input must be free of noise and
conform with the specifications listed in the data sheet. CLKIN input capacitance is minimal; for
this reason, it may be necessary to terminate the CLKIN circuit board trace at the processor to
reduce overshoot and undershoot.

12.6.2 Power and Ground Requirements (Vcc, Vss)

The large number of & and V¢ pins effectively reduces the impedance of power and ground
connections to the chip and reduces transient noise induced by current surges. The i960 Jx
processor is implemented in CHMOS IV technology. Unlike NMOS processes, power dissipation
in the CHMOS process is due to capacitive charging and discharging on-chip and in the
processor’s output buffers; there is almost no DC power component. The nature of this power
consumption results in current surges when capacitors charge and discharge. The processor’s
power consumption depends mostly on frequency. It also depends on voltage and capacitive bus
load (see appropriate data sheet listed below).

To reduce clock skew on the i960 Jx processor, thesM pin for the Phase Lock Loop (PLL)
circuit is isolated on the pinout. A lowpass filter reduces noise induced clock jitter and its effects
on timing relationships in system designs. Refesdotion 1.4, “Related Documents” (pg. 1-10)
These documents contain specific circuit examples for thgy pin.

12-34

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

12.6.3 Vccs Pin Requirements

In 3.3 V-only systems and systems that drive the i960 Jx processor pinsfrom 3.3 V logic, connect
the V s pin directly to the 3.3V V¢ plane.

In mixed voltage systems that drive the i960 Jx Processor inputs in excess of 3.3V, the Vcg pin
must be connected to the system’s 5 V supply. To limit current flow intohe pin, there is a limit

to the voltage differential between thed4 pin and other ¥ pins. The voltage differential §)gr)
between the 80960Jx3¢s5 pin and its 3.3 V ¥ pins should never exceed 2.25 V. This limit applies
to power up, power down and steady-state operation. Refactmon 1.4, “Related Documents”
(pg. 1-10) Further information can be found for thgd4 pin requirements in these documents.

If the voltage difference requirements cannot be meet due to system design limitations, an alternate
solution may be employed. As shown in Figure, a minimum of &1<KY¥ies resistor may be used

to limit the current into the Y5 pin. This resistor ensures that current drawn by iggsin does

not exceed the maximum rating for this pin.

5V VCC VCC5 Pin
O ANN—
(BOARD PLANE) 100 Q

(£5%, 0.5 W)

Figure 12-9. Vg Current-Limiting Resistor

This resistor is not necessary in systems that can guaranteg,gpespecification.

12.6.4 Power and Ground Planes

Power and ground planes are recommended to be used in i960 Jx processor systems to mini
Justification for these power and ground planes is the same as for muli@@d/\c pins. Power
and ground lines have inherent inductance and capacitance; therefore, an impedancé(ZZ:(L/C)

Total characteristic impedance for the power supply can be reduced by adding more lines. This effect
is illustrated inFigure 12-1Qwhich shows that two lines in parallel have half the impedance of one.
Ideally, a plane — an infinite number of parallel lines — results in the lowest impedance. Fabricate
power and ground planes with a 1 oz. copper for outer layers and 0.5 oz. copper for inner layers.

All power and ground pins must be connected to the planes. Ideally, the i960 Jx processor should
be located at the center of the board to take full advantage of these planes, simplify layout and
reduce noise.

12-35

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘é““

F_CAO079A

Figure 12-10. Reducing Characteristic Impedance

12.6.5 Decoupling Capacitors

Decoupling capacitors placed across the processor between V. and V 4 reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to the device
because connection line inductance negates their effect. Also, for thisreason, the capacitors should
be low inductance. Chip capacitors (surface mount) exhibit lower inductance.

12.6.6 I/O Pin Characteristics

The 1960 Jx processor interfaces to its system through its pins. This section describes the general
characteristics of the input and output pins.

12-36

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

12.6.6.1 Output Pins

All output pins on the 1960 Jx processor are three-state outputs. Each output can drive alogic 1
(low impedance to V ¢); alogic 0 (low impedance to V gg); or float (present a high impedance to
Ve and Vgg). Each pin can drive an appreciable external load. Refer to section 1.4, “Related
Documents” (pg. 1-10)Specific information on drive capability, timing and derating information,
to calculate output delays based on pin loading, can be found in these documents.

12.6.6.2 Input Pins

All 1960 Jx processor inputs are designed to detect TTL thresholds, providing compatibility with
the vast amount of available random logic and peripheral devices that use TTL outputs.

Most i960 Jx processor inputs are synchronous infdakl¢ 12-F. A synchronous input pin must
have a valid level (TTL logic O or 1) when the value is used by internal logic. If the value is not
valid, it is possible for a metastable condition to be produced internally resulting in undetermined
behavior. Refer tesection 1.4, “Related Documents” (pg. 1-1@pecific information on input

valid setup and hold times relatives to CLKIN can be found in the documents.

Table 12-7. Input Pins

Synchronous Inputs Asynchronous Inputs Asynchronous Inputs
(sampled by CLKIN) (sampled by CLKIN) (sampled by RESET)
AD31:0 RESET STEST
RDYRCV XINT7:0 LOCK\ONCE
HOLD NMI

TDI
T™MS

i960 Jx processor inputs which are considered asynchronous are internally synchronize
rising edge of CLKIN. Since they are internally synchronized, the pins only need to be held long
enough for proper internal detection. In some cases, it is useful to know if an asynchronous input
will be recognized on a particular CLKIN cycle or held off until a following cycle. The i960 Jx
microprocessor data sheet provides setup and hold requirements relative to CLKIN which ensure
recognition of an asynchronous input. The data sheets also supply hold times required for detection
of asynchronous inputs.

The ONCEand STEST inputs are asynchronous inputs. These signals are sampled and latched on
the rising edge of the RESEfput instead of CLKIN.

12-37

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘d“"

12.6.7 High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal
pathsin acircuit must be considered. Transmission line effects and crosstalk become significant in
comparison to the signals. These errors can be transient and therefore difficult to debug. In this
section, some high-frequency design issues are discussed; for more information, consult a
reference on high-frequency design.

12.6.8 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels can
cause excess current on input gates, resulting in permanent damage to the device. Even if no damage
occurs, many devices are not guaranteed to function as specified if input voltage level s are exceeded.

Signal lines are terminated to minimize signa reflections and prevent overshoot and undershoot.
Terminate the line if the round-trip signal path delay is greater than signal rise or fall time. If the
line is not terminated, the signal reaches its high or low level before reflections have time to
dissipate and overshoot or undershoot occurs.

For the i960 Jx processor, two termination methods are attractive: AC and series. An AC
termination matches the impedance of the trace, there by eliminating reflections due to the
impedance mismatch.

Series termination decreases current flow in the signal path by adding a series resistor as shown in
Figure 12-11. The resistor increases signal rise and fall times so that the change in current occurs
over alonger period of time. Because the amount of voltage overshoot and undershoot depends on
the change in current over time (V = L di/dt), the increased time reduces overshoot and
undershoot. Place the series resistor as close as possible to the signal source. AC termination is
effective in reducing signal reflection (ringing). This termination is accomplished by adding an
RC combination at the signal’s farthest destinatleigire 12-12. While the termination provides
no DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as output
buffer impedance, board trace impedance and input impedance.

12-38

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

Source F_CAO080A

Figure 12-11. Series Termination

Source

v
F_CAO81A

Figure 12-12. AC Termination

12.6.9 Latchup

Latchup isacondition ina CM OS circuit in which V. becomes shorted to V¢s. Intel's CMOS IV
processes are immune to latchup under normal operation conditions. Latchup can be triggered
when the voltage limits on I/O pins are exceeded, causing internal PN junctions to become forward
biased. The following guidelines help prevent latchup:

¢ Observe the maximum rating for input voltage on I/O pins.

12-39

int
INITIALIZATION AND SYSTEM REQUIREMENTS I ‘d““

¢ Never apply power to an i960 Jx processor pin or a device connected to an i960 Jx processor
pin before applying power to the i960 Jx processor itself.

¢ Prevent overshoot and undershoot on I/O pins by adding line termination and by designing to
reduce noise and reflection on signal lines.

12.6.10 Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

¢ Frequency Interference is the result of changing currents and voltages. The more frequent the
changes, the greater the interference.

¢ Closeness-of-conductors Interference is due to electromagnetic and electrostatic fields whose
effects are weaker further from the source.

Two types of interference must be considered in high frequency circuits: electromagnetic inter-
ference (EMI) and electrostatic interference (ESI).

EMI is caused by the magnetic field that exists around any current-carrying conductor. The
magnetic flux from one conductor can induce current in another conductor, resulting in transient
voltage. Several precautions can minimize EMI:

*« Run ground lines between two adjacent lines wherever they traverse a long section of the
circuit board. The ground line should be grounded at both ends.

¢ Run ground lines between the lines of an address bus or a data bus if either of the following
conditions exist:
- The bus is on an external layer of the board.

- Thebusison an internal layer but not sandwiched between power and ground planes
that are at most 10 mils away.

12-40

u I
I ‘d” INITIALIZATION AND SYSTEM REQUIREMENTS

F_CA082A

Figure 12-13. Avoid Closed-Loop Signal Paths

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; acharge built up on one induces the opposite charge on the other.

The following steps reduce ESI:
e Separate signal lines so that capacitive coupling becomes negligible.
¢« Run a ground line between two lines to cancel the electrostatic fields.1

12-41

intel
13

MEMORY CONFIGURATION

intel

CHAPTER 13
MEMORY CONFIGURATION

The Bus Control Unit (BCU) includes logic to control many common types of memory subsystems
directly. Every bus access is “formatted” according to the BCU programming. The i960 Jx
processor’'s BCU programming model differs from schemes used in other i960 processors.

13.1 Memory Attributes

Every location in memory has associated physical and logical attributes. For example, a specific
location may have the following attributes:

¢ Physical: Memory is an 8-bit wide ROM
e Logical: Memory is ordered big-endian and data is nhon-cacheable

In the example above, physical attributes correspond to those parameters that hwhctde
physically access the data. The BCU uses physical attributes to determine the bus protocol and
signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU how
to interpret, format and control interaction of on-chip data caches. The physical and logical
attributes for an individual location are independently programmable.

13.1.1 Physical Memory Attributes

The only programmable physical memory attribute for the i960 Jx microprocessor is the bus width,
which can be 8-, 16- or 32-bits wide.

For the purposes of assigning memory attributes, the physical address space is partitioned into 8,
fixed 512 Mbyte regions determined by the upper three address bits. The regions are numbered as

8 paired sections for consistency with other i960 processor implementations. Region 0_1 rpsassis
addresses 0000 0000H to 1FFF FFFFH and region 14_15 maps to addresses E000 O
FFFF FFFFH. The physical memory attributes for each region are programmable throu

PMCON registersThe PMCON registers are loaded from the Control Table. The i960 Jx micro-

processor provides one PMCON register for each region.The descriptions of the PMCON registers
and instructions on programming them are foun8etion 13.3

13-1

'ntel
MEMORY CONFIGURATION I ¢

13.1.2 Logical Memory Attributes

The 1960 Jx provides a mechanism for defining two logical memory templates (LMTs). AnLMT
may be used to specify the logical memory attributes for a section (or subset) of a physical
memory subsystem connected to the BCU (e.g., DRAM, SRAM). The logical memory attributes
defined by the i960 Jx are byte ordering and whether the information is cacheable or
non-cacheable in the on-chip data cache.

There are typically several different LMTs defined within a single memory subsystem. For
example, data within one area of DRAM may be non-cacheable while data in another area is
cacheable. Figure 13-1 shows the use of the Control Table (PMCON registers) with logical
memory templates for asingle DRAM region in atypical application.

Logical Memory
Templates
(LMCON)
FFFF FFFFH
Physical
Regions 10_11 LMADRO
to 14_15
LMMARO
9FFF FFFFH
PMCON Registers
Region 14_15 Non-Cacheable
Region 12_13
Region 10_11
LMADR1
Region 8_9 i
g _ Physical LMMARL
. Region 8_9
Region 6_7 32-bit wide
Region 4_5 DRAM
Region 2_3
Region 0_1 Non-Cacheable
8000 0000H
Physical
Regions 0_1
t06_7
0000 0000H
Note: DLMCON maps the remaining memory to cacheable.

Figure 13-1. PMCON and LMCON Example

13-2

u
Intdw MEMORY CONFIGURATION

Each logica memory template is defined by programming Logical Memory Configuration
(LMCON) registers. An LMCON Register pair defines a data template for areas of memory that

have common logical attributes. The Jx microprocessor has two pairs of LMCON registers —
defining two separate templates. The extent of each data template is described by an address (on 4
Kbyte boundaries) and an address mask. The address is programmed in the Logical Memory
Address register (LMADR). The mask is programmed in the Logical Memory Mask register
(LMMSK). These two registers constitute the LMCON register pair.

TheDefault Logical Memory Configuration register is used to provide configuration data for areas
of memory that do not fall within one of the two logical data templates. The DLMCON also
specifies byte-ordering (little endian/big endian) for all data accesses in memory, including
on-chip data RAM.

The LMCON registers and their programming are describefeittion 13.6, Programming the
Logical Memory Attributes

13.2 Differences With Previous i960 Processors

The mechanism described in this chapter is not implemented on the 960 Kx or Sx processors.
Although the 1960 Cx processor has a memory configuration mechanism, it is different from the
80960Jx’s in the following ways:

¢ For the purposes of assigning physical and logical memory attributes, the i960 Cx processor
evenly divides physical memory into 16 contiguous regions. When assigning physical
memory attributes, the Jx divides memory into 8 contiguous, 512 Mbyte regions starting on
512 Mbyte boundaries. The logical memory templates of the 1960 Jx processor provide a
programmable association of logical memory addresses, whereas the i960 Cx processor
assigns these attributes to the physical memory regions.

*« The i960 Cx processor provides per-region programming of wait states, address pipelining and
bursting. No such mechanisms exist on the 80960Jx. Bus wait states must be generated using

external logic.

13-3

'ntel
MEMORY CONFIGURATION I ¢

13.3 Programming the Physical Memory Attributes (PMCON Registers)

The layout of the Physical Memory Configuration registers, PMCONO_1 through PMCON14 15,
isshown in Figure 13-2, which gives the descriptions of the individual bits. The PMCON registers
reside within memory-mapped control register space. Each PMCON register controls one
512-Mbyte region of memory according to the mapping shown in Table 13-1

Table 13-1. PMCON Address Mapping

Register (Control Table Entry) Region Controlled

0000.0000H to OFFF.FFFFH
PMCONO_1 and
1000.0000H to 1FFF.FFFFH

2000.0000H to 2FFF.FFFFH
PMCON2_3 and
3000.0000H to 3FFF.FFFFH

4000.0000H to 4FFF.FFFFH
PMCON4_5 and
5000.0000H to SFFF.FFFFH

6000.0000H to 6FFF.FFFFH
PMCONG6_7 and
7000.0000H to 7FFF.FFFFH

8000.0000H to 8FFF.FFFFH
PMCONS8_9 and
9000.0000H to 9FFF.FFFFH

A000.0000H to AFFF.FFFFH
PMCON10_11 and
B000.0000H to BFFF.FFFFH

C000.0000H to CFFF.FFFFH
PMCON12_13 and
D000.0000H to DFFF.FFFFH

E000.0000H to EFFF.FFFFH
PMCON14_15 and
F000.0000H to FFFF.FFFFH

13-4

u
Intdw MEMORY CONFIGURATION

13.3.1 Bus Width

The bus width for aregion is controlled by the BW1:0 bitsin the PMCON register. The operation
of the 1960 Jx processor with different bus width programming options is described in
section 14.2.3.1, “Bus Width” (pg. 14-7)

The bit combination “11” is reserved for the BW1:0 field and can result in unpredictable operation.

31 28 24 20 16 12 8 4 0
B|B
W I|w
10
I
. T Bus Width
00 = 8-hit
01 = 16-bit
Reserved, 10 = 32-bit bus
L1 write to zero 11 = reserved (do not use)
Mnemonic Name Bit # Function
Selects the bus width for a region:
00 = 8-hit,
BW1-0 Bus Width 23-22 |01 = 16-bit,
10 = 32-bit bus
11 = reserved (do not use)
RESERVED - Program to O

Figure 13-2. PMCON Register Bit Description

134 Physical Memory Attributes at Initialization

All eight PMCON registers are loaded automatically during system initialization. The initial v
are stored in the Control Table in the Initialization Boot Record $&stion 12.3.1, “Initial
Memory Image (IMI)” (pg. 12-10)

13-5

'ntel
MEMORY CONFIGURATION I ¢

13.4.1 Bus Control (BCON) Register

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus
Control (BCON) register. Figure 13-3 shows the BCON register and Control Table Valid (CTV)
bit. Whenever the PMCON entries are marked invalid in BCON, the BCU uses the parametersin
PMCON214 15 for all regions. On a hardware reset, PMCON14_15 is automatically cleared. This
operation configures al regions to an 8-bit bus width. Subsequently, the processor loads all
PMCON registers from the Control Table. The processor then loads BCON from the Control
Table. If BCON.ctv is clear, then PMCON14 15 will remain in use for al bus accesses. If
BCON.ctv is set, the region table is valid and the BCU uses the programmed PMCON values for
each region.

Configuration Entries in Control Table Valid (BCON.ctv)
0 = PMCON entries not valid, default to PMCON14_15 setting.
1 =PMCON entries valid

Internal RAM Protection (BCON.irp)
0 = Internal data RAM not protected from user mode writes
1 = Internal data RAM protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp)
0 = First 64-bytes not protected from supervisor mode writes
1 = First 64-bytes protected from supervisor mode writes

oxo—

T 0 —W0
of <=0

31 28 24 20 16 12 8 4

Reserved,
write to zero

Mnemonic Name Bit # Function
0 = first 64 bytes not protected from supervisor
SIRP Supervisor Internal RAM 2 mode writes
Protect 1 = first 64 bytes protected from supervisor
mode writes
0 = internal data RAM not protected from user
mode writes
IRP Internal RAM Protect 1 .
1 = internal data RAM protected from user
mode writes
0 = PMCON table not valid (use
CTV Configuration Table Valid 0 PMCON14_15 for all access)
1 = PMCON table valid

Figure 13-3. Bus Control Register (BCON)

13-6

u
Intdw MEMORY CONFIGURATION

13.5 Boundary Conditions for Physical Memory Regions

The following sections describe the operation of the PMCON registers during conditions other
than “normal” accesses.

135.1 Internal Memory Locations

The PMCON registers are ignored during accesses to internal memory or memory-mapped
registers. The processor performs those accesses over 32-bit buses, except for local register cache
accesses. The register bus is 128 bits wide.

13.5.2 Bus Transactions Across Region Boundaries

An unaligned bus request that spans region boundaries uses the PMCON settings of both regions.
Accesses that lie in the first region use that region’s PMCON parameters, and the remaining
accesses use the second region’s PMCON parameters.

For example, an unaligned quad word load/store beginning at address 1FFF FFFEH would cross
boundaries from region 0_1 to 2_3. The physical parameters for region 0_1 would be used for the first
2-byte access and the physical parameters for region 2_3 would be used for the remaining access.

13.5.3 Modifying the PMCON Registers

An application can modify the value of a PMCON register by usingttloe sysctl instruction. If
a st or sysctl instruction is issued when an access is in progress, the current access is completed
before the modification takes effect.

13-7

'ntel
MEMORY CONFIGURATION I ¢

13.6 Programming the Logical Memory Attributes

The bit/bit field definitions for the LMADR1:0 and LMMRZ1:0 registers are shown in Figure 13-4
and Figure 13-5. LM CON registers reside within the memory-mapped control register space.

Byte Order (read-only)
0 = Little endian
1 = Big endian
Data Cache Enable
0 = Data caching disabled
1 = Data caching enabled
31 28 24 20 16 12
AlA|AJATA|A[AJALTA|AJAIALA|IAIA|ALAIATALA ?;B
31312|2)212|2|2})2)|2|2|21|1f1[1]1)1 (1|1 E|E
1{o|9|8)7|6]|5|4)3|2|1|0})9|8]|7]|6]5|4]3]2 N
| 8 4 0
Template Starting Address
Reserved,
write to zero
. e Bit .
Mnemonic | Bit/Bit Field Name e Function
Position(s)
Defines upper 20 bits for the starting address fq
A31:12 Template Starting 31-12 a logical data template. The lower 12 bits are
’ Address fixed at zero. The starting address is modulo
4 Kbytes.
Controls data caching for the template.
0 = Data caching disabled
DCEN Data Cache Enable 1 1 = Data caching enabled
Instruction caching is never affected by this bit.
BE Big Endian Byte 0 This is a read-only bit reflecting the value of
Order DLMCON.be.

Figure 13-4. Logical Memory Template Starting Address Registers (LMADRO-1)

13-8

u
Intdm MEMORY CONFIGURATION

Logical Memory Template Enabled
0 = LMT disabled
1=LMT enabled

31 28 24 20 16 12
MIMIMIMIM|[M[MIM{IM[M|IMI|M{M|M|M|M{M|M|M|M L
A|lA|JA|AJA|JAJA|AJAIJAJA|AJAIA]JA]IATAIAIALA M
313121222 |2|2f2|2|2|2)1|1]21]1)1]1]|1]|1 T
1{0]9|8)7]|6|5|4|3|2|1|0}f9|8|7|6)J5|4]3]2 E

[8 4 0

Template Address Mask
Reserved,
write to zero

Mnemonic | Bit/Bit Field Name | Bit Position(s) Function

Defines upper 20 bits for the address mask
for a logical memory template. The lower 12

MA31:12 | E€mplate Address 31-12 bits are fixed at zero.
Mask _
0 = Mask
1 = Do not mask
) Enables/disables logical memory template.
LmTe | Logical Memory 0 0 = LMT disabled

Template Enabled

1 = LMT enabled

Figure 13-5. Logical Memory Template Mask Registers (LMMRO-1)

13-9

'ntel
MEMORY CONFIGURATION I ¢

The Default Logical Memory Configuration (DLMCON) register is shown in Figure 13-6. The
BCU uses the parameters in the DLMCON register when the current access does not fall within
one of the two logical memory templates (LMTs). Notice the byte ordering is controlled for the
entire address space by programming the DLMCON register.

Byte Order
0 = Little endian
1 = Big endian

Data Cache Enabled
0 = Data caching disabled
1 = Write-through caching enabled

m w

ZmOoO| «<——

31 28 24 20 16 12 8 4 0

Reserved,
write to zero

Mnemonic | Bit/Bit Field Name | Bit Position(s) Function

Controls data caching for areas not within
other logical memory templates.

0 = Data caching disabled

DCEN Data Cache Enable 1) .
1 = Write-through caching enabled
Instruction caching is never affected by this
bit.
Controls byte order for all accesses, both
BE Big Endian Byte 0 instruction and data, to memory.
Order 0 = Little endian

1 = Big endian

Figure 13-6. Default Logical Memory Configuration Register (DLMCON)

13-10

u
Intdw MEMORY CONFIGURATION

13.6.1 Defining the Effective Range of a Logical Data Template

For each logical datatemplate, an LMADR register sets the base address using the A31:12 field.
The LMMR register sets the address mask using the MA31:12 field. The effective address range
for a logical data template is defined using the A31:12 field in an LMADRKX register and the
MA31:12 field in an LMMRX register. For each access, the upper 20 address bits (A31:12) are
compared against A31:12 in the LMADRKX register. Only address bits with corresponding MA bits
set are compared. Address bits with corresponding MA bits cleared (0) are automatically
considered a “match”. The processor will only use the logical data template when all compared
address bits match. Two examples help clarify the operation of the address comparators.

¢ Create a template 64 Kbytes in length beginning at address 0010 0000H and ending at address
0010 FFFFH. Determine the form of the candidate address to match and then program the
LMADR and LMMR registers:

Candidate Address is of form0010 XXXX
LMADR <31:12> should be: 0010 O. ..
LMMR <31:12> should be: FFFF 0. ..

« Multiple data templates can be created from a single LMADR/LMMR register pair by aliasing
effective addresses. For example, to create sixteen 64 Kbyte templates, each beginning on
modulo 1 Mbyte boundaries starting at 0000 0000H and ending with OOFO O000H, the
registers are programmed as follows:

Candidate Address is of form00X0 XXXX
LMADR <31:12> should be: 0000 O. ..
LMMR <31:12> should be: FFOF 0. ..

13-11

'ntel
MEMORY CONFIGURATION I ¢

13.6.2 Selecting the Byte Order

The BCU can automatically convert aligned big endian datain memory into little endian data for
the processor core. The conversion is done transparently in hardware, with no performance
penaty. The BE bit in the DLMCON register controls the default byte ordering for address regions
of the system including internal data RAM but excluding memory-mapped registers. Instruction
fetches and data accesses are automatically converted to little endian format when they are fetched
from externa memory and the programmed default byte-order (DL M CON.be) is big-endian.

The recommended, portable way to determine the byte-ordering associated with alogical memory
template is to read the appropriate LMADR. The i960 Jx microprocessor supports this method by
aways ensuring that the DLMCON.be bit is reflected in bit zero of LMADRO and LMADR1 (also
labelled as LMADR.be) when they are read. Any attempts to write bit zero of an LMADR are
ignored.

Great care should be exercised when dynamically changing the processor's homogenous byte
order. Seesection 13.6.8, “Dynamic Byte Order Changing” (pg. 13-fiat) an instruction code
example.

Byte-ordering is not applicable to memory-mapped registers since they are always accessed as
words.

13.6.3 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled via the DCEN bit in the LMADR
register. Likewise, the DCEN bit in DLMCON enables and disables data-caching for regions of
memory that are not covered by the LMCON registers. The DCEN bit has no effect on the
instruction cache.

13.6.4 Enabling the Logical Memory Template

The LMTE bit activates the logical data template in the LMMR register for the programmed
range.

13-12

u
Intdw MEMORY CONFIGURATION

13.6.5 Initialization

Immediately following a hardware reset, al LMTs are disabled. The LMTE bit in each of the
LMMR registersis cleared (0) and all other bits are undefined. Immediately after a hardware reset
the Default Logical Memory Control register (DLMCON) has the values shown in Table 13-2.

Table 13-2. DLMCON Values at Reset

. Value Upon Value Upon
DLMCON Bit Hardware Reset Software Re-initialization
DCEN (Data Caching Enable) |0 (Data Caching Disabled) 0 (Data Caching Disabled)
BE (Big-Endian) Initialized from PMCON14_15 | Value before software
9 image in IBR bit 31 re-initialization

Application software may initialize and enable the logical memory template after hardware reset.
After a software re-initialization, the DLMCON.be retainsits value and DLMCON.dcen is cleared.

13.6.6 Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than
“normal” accesses. S&@HAPTER 4, CACHE AND ON-CHIP DATA RAMfor a treatment of
data cache coherency when modifying an LMT.

13.6.6.1 Internal Memory Locations

The LMT registers are not used during accesses to memory-mapped registers. Internal data RAM
locations are never cached; LMT bits controlling caching are ignored for data RAM accesses.
However, the byte-ordering of the internal data RAM is controlled by DLMCON.be.

13.6.6.2 Overlapping Logical Data Template Ranges

13
Logical data templates that specify overlapping ranges are not allowed. When an access is a
that matches more than one enabled LMT range, the operation of the access becomes undefined.

To establish different logical memory attributes for the same address range, program
non-overlapping logical ranges, then use partial physical address decoding.

13-13

'ntel
MEMORY CONFIGURATION I ¢

13.6.6.3 Accesses Across LMT Boundaries

Accesses that cross LM T boundaries should be avoided. These accesses are unaligned and broken
into a number of smaller aligned accesses, which reside in one or the other LMT, but not both.
Each smaller access is completed using the parameters of the LMT in which it resides.

13.6.7 Modifying the LMT Registers

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data
cache coherency and order the modification with previous and subsequent data accesses.

13.6.8 Dynamic Byte Order Changing

Programmed byte order changes take effect immediately. The next instruction fetch will use the
new byte order setting. This byte-swapping usually resultsin errors because the current instruction
stream uses the previous byte order setting.

Dynamically changing the byte order to perform limited operations is possible if the code
sequence is locked in the instruction cache. The application must ensure that code executes from
within the locked region (including faults and interrupts) while the opposite byte order is in effect.
The following exampleillustrates this method:

saf e_addr: | da safe_addr,r4
nmov 1,r5
icctl 0x3,r4,r5 # Lock code in cache.
I d DLMCON_MM r 6
not bi t 0,r6,r7
st r7, DLMCON_W # Toggle byte order.

<Short code sequence>
st r 6, DLMCON_WM # Restore byte order.
icctl 2,0,1r6 # Invalidate cache

to unl ock code.

In most cases, it is safer to retain the original byte order and use the bswap instruction to convert
data between little-endian and big-endian byte order.

13-14

intel

EXTERNAL BUS

14

intel

CHAPTER 14
EXTERNAL BUS

This chapter describes the bus interface of the 1960° Jx processor. It explains the following:
e Bus states and their relationship to each other

¢ Bus signals, which consist of address/data, control/status

¢ Read, write, burst and atomic bus transactions

* Related bus functions such as arbitration

This chapter also serves as a starting point for the hardware designer when interfacing typical
memory and peripheral devices to the i960 Jx processor’s address/data bus.

For information on programmable bus configuration, refer to CHAPTER 12, MEMORY
CONFIGURATION.

141 OVERVIEW

The bus is the data communication path between the various components of an i960 Jx micropro-
cessor hardware system, allowing the processor to fetch instructions, manipulate data and interact
with its I/O environment. To perform these tasks at high bandwidth, the processor features a burst
transfer capability, allowing up to four successive 32-bit data transfers at a maximum rate of one
word every clock cycle.

The address/data path is multiplexed for economy and bus width is programmable to 8-, 16- and
32-bit widths. The processor has dedicated control signals for external address latches, buffers and
data transceivers. In addition, the processor uses other signals to communicate with alternate bus
masters. All bus transactions are synchronized with the processor’'s clock input (CLKIN);
therefore, the memory system control logic can be implemented as state machines.

14.2 BUS OPERATION

Knowing definitions of the termsequest, access andtransfer is essential to understand descrip-
tions of bus operations.

14-1

int
EXTERNAL BUS I ‘el

The processor’s bus control unit is designed to decouple bus activity from instruction execution in
the core as much as possible. When a load or store instruction or instruction prefetch is issued, a
busrequest is generated in the bus control unit. The bus control unit independently processes the
request and retrieves data from memory for load instructions and instruction prefetches. The bus
control unit delivers data to memory for store instructions.

The i960 architecture defines byte, short word, word, double word, triple word and quad word data
lengths for load and store instructions. When a load or store instruction is encountered, the
processor issues a bus request of the appropriate data length: for exampdeguests that four
words of data be retrieved from memaosyob requests that a single byte be delivered to memory.
The processor always fetches instructions using double or quad word bus requests.

A busaccessis defined as a bus transaction bounded by the assertion ofadld&ss/data status)

and de-assertion of BLASTburst last) signals, which are outputs from the processor. A bus
access consists of one to four datasfers. During each transfer, the processor either reads data

or drives data on the bus. The number of transfers per access and the number of accesses per
request is governed by the requested data length, the programmed width of the bus and the
alignment of the address.

14.2.1 Basic Bus States

The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Tw/Td), recovery (Tr), and hold
(Th). During system operation, the processor continuously enters and exits different bus states.

The bus occupies the idle (Ti) state when no address/data transactions are in progress and when
RESETis asserted. When the processor needs to initiate a bus access, it enters the Ta state to
transmit the address.

Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data
lines. Assertion of the RDYRCihput signal indicates completion of each transfer. When data is
not ready, the processor can wait as long as necessary for the memory or I/O device to respond.

After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case
of a burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next
data word. The processor asserts the BLARhal during the last Tw/Td states of an access.
Once all data words transfer in a burst access (up to four), the bus enters the Tr state to allow
devices on the bus to recover.

The processor remains in the Tr state until RDYRiE\Weasserted. When the recovery state
completes, the bus enters the Ti state if no new accesses are required. If an access is pending, the
bus enters the Ta state to transmit the new address.

14-2

u
I I‘el EXTERNAL BUS

(READY AND BURST)
OR NOT READY

~/

RECOVERED
AND REQUEST
PENDING AND

READY AND
NO BURST

OR LOCKED)

RECOVERED AND
HOLD AND NOT
LOCKED

ONCE & RESET

DEASSERTION
NO REQUEST —

AND NO HOLD

HOLD AND /

NOT LOCKED

RESET

HOLD

T, — IDLE STATE READY — RDYRCV ASSERTED

Ta — ADDRESS STATE NOT READY — RDYRCV NOT ASSERTED
Tw/Tp— WAIT/DATA STATE BURST — BLAST NOT ASSERTED

Tr — RECOVERY STATE NO BURST — BLAST ASSERTED

Ty —HOLD STATE RECOVERED — RDYRCV NOT ASSERTED
To — ONCE STATE NOT RECOVERED — RDYRCV ASSERTED

REQUEST PENDING — NEW TRANSACTION

NO REQUEST — NO NEW TRANSACTION

HOLD — HOLD REQUEST ASSERTED

NO HOLD — HOLD REQUEST NOT ASSERTED

LOCKED — ATOMIC EXECUTION (ATADD, ATMOD) IN PROGRESS
NOT LOCKED — NO ATOMIC EXECUTION IN PROGRESS

RESET — RESET ASSERTED

ONCE — ONCE ASSERTED

(NO HOLD OR
LOCKED)
REQUEST PENDING NOT
AND (NO HOLD OR RECOVERED
LOCKED)
REQUEST RECOVERED AND
PENDING NO REQUEST AND
NO REQUEST AND NO HOLD (NOHOLD OR
AND (NO HOLD LOCKED)

Figure 14.1. Bus States with Arbitration

14-3

14

int
EXTERNAL BUS I ‘el

14.2.2 Bus Signal Types

Bus signals consist of three groups: address/data, control/status and bus arbitration. They are listed
in Table 14.1. Refer to Section 1.4, “Related Documents” (pg. 1-18)detailed description of all
signals can be found in these documents.

14.2.2.1 Clock Signal

The CLKIN input signal is the reference for all i960 Jx microprocessor signal timing relationships.
Note that this is true even for the 1960 JD processor, even though the CPU core runs at twice the
CLKIN rate. Transitions on the AD31:2, AD1:0, A3:2, ADBE3:0, WIDTH/HLTD1:0, D/G

WI/R, DEN, BLAST, RDYRCYV, LOCK/ONCE, HOLD/HOLDA and BSTAT bus signal pins are
always measured directly from the rising edge of CLKIN. The processor asserts ALE and ALE
directly from the rising CLKIN edge at the beginning of a Ta state but deasserts them approxi-
mately half way through the state instead of the next rising CLKIN edge. All transitions on DT/R
are also referenced to a point halfway through the Ta state instead of rising CLKIN edges.

14.2.2.2 Address/Data Signal Definitions

The address/data signal group consists of 34 lines. 32 of these signals multiplex within the
processor to serve a dual purpose. During Ta, the processor drives AD31:2 with the address of the
bus access. At all other times, these lines are defined to contain data. A3:2 are demultiplexed
address pins providing incrementing word addresses during burst cycles. AD1:0 denote burst size
during Ta and data during other states.

The processor routinely performs data transfers less than 32 bits wide. If the programmed bus
width is 32 bits and transfers are 16- or 8-bit, then during write cycles the processor will replicate
the data that is being driven on the unused address/data pins. If the programmed bus width is 16 or
8 bits, then during write cycles the processor continues driving the previous address on any unused
address/data pins.

Whenever the programmed bus width is less than 32 bits, additional demultiplexed address bits are
available on unused byte enable pins (Sszion 14.2.3.1, “Bus Width” (pg. 1437)These signals
increment during burst accesses in similar fashion to the A3:2 pins.

14.2.2.3 Control/Status Signal Definitions

The control/status signal group consists of 15 signals. These signals control data buffers and
address latches or furnish information useful to external chip-select generation logic. All output
control/status signals are three-state.

14-4

intel

EXTERNAL BUS

Table 14-1. Summary of 1960 Jx Processor Bus Signals

Signal
Symbol Name (Direction) Signal Function
. . Word address, driven during Ta. Read or write
AD312 Address/Data 31:2 (/O) data, driven or sampled during Tw/Td.
ADL:0 Address/Data 1:0 and Size 1:0 | Number of transfers, driven during Ta. Read or
’ (1/0) write data, driven or sampled during Tw/Td.
. . Incrementing burst address bits, driven during
A3:2 Address 3:2 (O) Ta and Tw/Td.
ALE Address Latch Enable (O) Driven during Ta for demultiplexing AD bus.
ALE Address Latch(lér;able (Inverted) Driven during Ta for demultiplexing AD bus.
ADS Address/Data Status (O) Valid address indicator, driven during Ta.
. . Enable selected data bytes on bus. (16-bit bus)
_ Byte Enables 3:0 and Byte High | 5ra 1 BEG enable high and low bytes. (8-bit
BE3:0 Enable/Byte Low Enable and A1:0 —— . .
(0) bus) BE1:0 are incrementing burst address
bits. Driven during Ta and Tw/Td.
WIDTH/HLT . Physical bus size, driven during Ta and Tw/Td.
D1:0 Width and Processor Halted (O) Can denote Halt Mode.
= Data access or instruction access, driven
p/c Data/Code (0) during Ta and Tw/Td.
= . Indication of data direction, driven during Ta
WIR Write/Read (O) and Tw/Td.
= . . Delayed indication of data direction, driven
DT/R Data Transmit/Receive (O) during Ta and Tw/Td.
EN Data Enable (O) Enables data on bus, driven during Tw/Td.
BLAST Burst Last (O) Last transfer of a bus access, driven during
Tw/Td.
Data transfer edge when sampled low during
RDYRCV Ready/Recover (1) Tw/Td. Bus recovered when sampled high
during Tr.
. - . Atomic operation, driven during Ta and Tw/Td.
LOCKIONCE | - Lock/On-Circuit Emulation (1/O) ONCE floats all pins when sampled at reset.
HOLD Hold (1) Acquisition request from external bus master,
sampled any clock.
HOLDA Hold Acknowledge (O) BL_Js contrc_;l granted to external bus master,
driven during Th.
BSTAT Bus Status (O) Processor may stall unless it can acquire bus,

driven any clock.

14-5

int
EXTERNAL BUS I ‘el

Bus accesses begin with the assertion of ADS (address/data status) during a Ta state. External
decoding logic typically uses ADS to qualify a valid address at the rising clock edge at the end of
Ta The processor pulses ALE (address latch enable) active high for one haf clock during Ta to
latch the multiplexed address on AD31:2 in external address latches. An inverted signal, ALE, is
also present for compatibility with 1960 Kx processor-based companion devices.

The byte enable (BE3:0) signas denote which bytes on the 32-bit data bus will transfer data during
an access. The processor asserts byte enables during Ta and deasserts them during Tr. When the data
busis configured for 16 bits, two byte enables become byte high enable and byte low enable and an
additional address bit Al is provided. When the bus is configured for 8 bits, there are no byte
enables, but additional address bits A1:0 are provided. Note that the processor aways drives byte
enable pins to logical 1's during the Tr state, even when they are used as addresses.

The WIDTH1:0, D/Cand W/Rsignals yield useful bus access information for external memory
and I/O controllers. The WIDTHZ1:0 signals denote programmed physical memory attributes. The
data/code pin indicates whether an access is a data transaction (1) or an instruction transaction (0).
The write/read pin indicates the direction of data flow relative to the 960 Jx processor.
WIDTHL1:0, D/Cand W/Rchange state as needed during the Ta state.

DT/R and DENpins are used to control data transceivers. Data transceivers may be used in a
system to isolate a memory subsystem or control loading on data lines. [IBfA
transmit/receive) is used to control transceiver direction. In the second half of the Ta state, it
transitions high for write cycles or low for read cycles. Dildta enable) is used to enable the
transceivers. DENbs asserted during the first Tw/Td state of a bus access and deasserted during Tr.
DT/R and DENtimings ensure that DT/BRoes not change state when DENsserted.

A bus access may be either non-burst or burst. A non-burst access ends after one data transfer to a
single location. A burst access involves two to four data cycles to consecutive memory locations.
The processor asserts BLASBurst last) to indicate the last data cycle of an access in both burst
and non-burst situations.

All i960 Jx processor wait states are controlled by the RDYR@¥dy/recover) input signal.

14.2.3 Bus Accesses

The 1960 Jx microprocessor uses the bus signals to transfer data between the processor and another
component. The maximum transfer rate is achieved when performing burst accesses at the rate of
four 32-bit data words per six clocks.

14-6

EXTERNAL BUS

intel

14231 Bus Width

Each region’s data bus width is programmed in a Physical Memory Region Configuration
(PMCON) register. The processor allows an 8-, 16- or 32-bit data bus width for each region. The
processor places 8- and 16-bit data on low-order data pins, simplifying the interface to narrow bus
external devices. As shown kigure 14-2 8-bit data is placed on lines AD7:0; 16-bit data is
placed on lines AD15:0; 32-bit data is placed on lines AD31:0. The processor encodes bus width
on the WIDTHZ1:0 pins so that external logic may enable the bus correctly.

AD31:24 /\
AD23:16 /\
AD15:8
AD7:0 A A A
. | |
8 - Bit 16 - Bit 32 - Bit
A0 Al
Al BHE | BLE
BEO BE1 BE1 BE3 BEO BE3 BE2 BE1 BEO
BE3:0 | |

Figure 14-2. Data Width and Byte Encodings

Depending on the programmed bus width, the byte enable signals provide either data enables or
low-order address lines:

8-bit region: BEO:Iprovide the byte address (A0, Al) (Sesble 14-2.

16-bit region: BE1provides the short-word address (Al); BiE3he byte high enable signJagil
(BHE); BEOQis the byte low enable signal (BlLEseeTable 14-3.

32-bit region: byte enables are not encoded as address pins. Byte enableseRiEBilytes O
through 3 of the 32-bit words addressed by AD31:2 (sd®e 14-3.

When the byte enables function as address lines, they increment with each transfer during burst
accesses. Otherwise, byte enables never toggle between transfers of a burst, due to microcode
breakup of unaligned requests.

14-7

EXTERNAL BUS

Table 14-2. 8-Bit Bus Width Byte Enable Encodings

intel

Byte BE3 BE2 BE1 BEO
(Not Used) (Not Used) (Used as Al) (Used as A0)
0 1 1 0 0
1 1 1 0 1
2 1 1 1 0
3 1 1 1 1
Table 14-3. 16-Bit Bus Width Byte Enable Encodings
Byte BE3 BE2 BEI BEO
(Used as BHE) (Not Used) (Used as Al) (Used as BLE)
0,1 0 1 0 0
2,3 0 1 1 0
0 1 1 0 0
1 0 1 0 1
2 1 1 1 0
3 0 1 1 1
Table 14-4. 32-Bit Bus Width Byte Enable Encodings
Byte BE3 BE2 BE1 BEO
0,1,2,3 0 0 0 0
0,1 1 1 0 0
2,3 0 0 1 1
0 1 1 1 0
1 1 1 0 1
2 1 0 1 1
3 0 1 1 1

During initialization, the bus configuration datais read from the Initialization Boot Record (IBR)
assuming an 8-bit bus width; however, the IBR can be in 8-bit, 16-bit, or 32-bit physical memory.

BE3 and BE2 are defined as “1” so that reading the bus configuration data works for all bus
widths. Since these byte enables are ignored for actual 8-bit memory, they can be permanently

defined this way for ease of implementation.

14-8

u
I I‘el EXTERNAL BUS

Intel designed the 1960 Jx processor to drive determinate values on all address/data pins during
Tw/Td write operation states. For an 8-bit bus, the processor continues to drive address on unused
data pins AD31:8. For a 16-hit bus, the processor continues to drive address on unused data pins
AD31:16. However, when the processor does not use the entire bus width because of data width or
misalignment (i.e., 8-bit write on a 16- or 32-bit bus or a 16-bit write on a 32-bit bus), data is
replicated on those unused portions of the bus.

14.2.3.2 Basic Bus Accesses

Thebasic transaction isaread or write of one dataword. Thefirst half of Figure 14-3 shows atypical
timing diagram for a non-burst, 32-bit read transaction. For simplicity, no wait states are shown.

During the Ta state, the 1960 Jx microprocessor transmits the address on the address/data lines. In
the figure, the size bits (AD1.:0) specify a single word transaction and WIDTH1.:0 indicate a 32-bit
wide access. The processor asserts ALE to latch the address and drives ADS low to denote the start
of the cycle. BE3:0 specify which bytes the processor uses to read the data word. The processor
brings W/R low to denote a read operation and drives D/C to the proper state. For data trans-
ceivers, DT/R goes low to define the input direction.

During the Tw/Td state, the 1960 Jx microprocessor deasserts ADS and asserts DEN to enable any
data transceivers. Since thisis a non-burst transaction, the processor asserts BLAST to signify the
last transfer of atransaction. The figure shows RDYRCV assertion by external logic, so this state
is adata state and the processor latches data on arising CLKIN edge.

The Tr dtate follows the Tw/Td state. This alows the system components adequate time to remove
their outputs from the bus before the processor drives the next address on the address/data lines.
During the Tr state, BLAST, BE3:0 and DEN are inactive. W/R and DT/R hold their previous values.
Thefigureindicates alogical high for the RDYRCV pin, so thereis only onerecovery state.

After a read, notice that the address/data bus goes to an invalid state during Ti. The processor
drives vaid logic levels on the address/data bus instead of allowing it to float. See section 14.2.4,
“Bus and Control Signals During Recovery and Idle States” (pg. 14e22he values that are

driven during Ti.

14-9

EXTERNAL BUS

intel

Read Idle —>»> «——Write ——><—|dle —>
| Ta | Td | Tr | Ti | Ti | Ta | Td | Tr | Ti | Ti |
— | | I | |
CLKIN
T | | | | | | | | | |
— |
AD31:0 ADDR E Invalid ADDRX DATA Out
o | T T T T T T T
— | | | | | | | | | | |
ALE | | | | | | | | | | |
— | | | | | | | | | |
— | + + + + | - - -
ADS | \ | ’ | | | | \ | ’ | | | |
— | | | | | | | |
A3:2 :X X
B L L L L L L 1 1 L L +
BE3O | \ ’ | | | \ ’ | | |
L | | | | | |
B | | | | | | | | | .
WIDTH1:0 j:X 10 10
| | | | | | | |
e x / | | | | |
L | | | | |
| | | | | | | | | | |
WIR | \ | | | | | / | | | | |
| . . ! ! | | | | | |
__ | | | | | | | | | |
BLAST | | _L/ | | | | MI | |
| | | | | | | | |
— | | | | | - - + t
DT/R I \ I I I I I / I I I I I
— | t t t t t | | | | |
S— - ! | | ! | e | L I
DEN | | \ | , | | | | \ | ’ | | |
— | | | | | | | |
] | | | | | | | | | |
RDYRCV \'/,'\ \'//'\
L - + | + |

F_JFO30A

Figure 14-3. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus

14-10

u
I I‘el EXTERNAL BUS

Figure 14-3 also shows a typical timing diagram for a non-burst, 32-bit write transaction. For the
write operation, W/R and DT/R are high to denote the direction of the data flow. The D/C pin is
high since instruction code cannot be written. During the Tw/Td state, the processor drives dataon
the bus, waiting to sample RDYRCV low to terminate the transfer. The figure shows RDYRCV
assertion by external logic, so this state is a data state and the processor enters the recovery state.

At the end of a write, notice that the write data is driven during Tr and any subsequent Ti states.
After a write, the processor will drive write data until the next Ta state. See section 14.2.4, “Bus
and Control Signals During Recovery and Idle States” (pg. 14e22)etails.

14.2.3.3 Burst Transactions

A burst access is an address cycle followed by two to four data transfers. The i960 Jx micropro-
cessor uses burst transactions for instruction fetching and accessing system data structures.
Therefore, a system design incorporating an i960 Jx microprocessor must support burst transac-
tions. Burst accesses can also result from instruction references to data types which exceed the
width of the bus.

Maximum burst size is four data transfers, independent of bus width. A byte-wide bus has a
maximum burst size of four bytes; a word-wide bus has a maximum of four words. For an 8- or
16-bit bus, this means that some bus requests may result in multiple burst accesses. For example, if
a quad word load request (e.g., Idg instruction) is made to an 8-bit data region, it results in four,
4-byte, burst accesses. (Sesble 14-6 (pg. 14-23)

Burst accesses on a 32-bit bus are always aligned to even-word boundaries. Quad-word and
triple-word accesses always begin on quad-word boundaries (A3:2=00); double-word transfers

always begin on double-word boundaries (A2=0); single-word transfers occur on single word
boundariesFigure 14-4shows burst, stop and start addresses for a 32-bit bus.

14-11

EXTERNAL BUS

intel

A3:2
00 | 01 | 10 | 11

32-Bit Burst Bus | | |

! | |

Quad-Word Burst

1 1 |

| | |

| |

Triple-Word Burst

| 1

I I I

| I

I Double-Word Burst
I

T I

I I

I |

I

| Double-Word Burst

I ;

I I I

| | |

Figure 14-4. 32-Bit Wide Data Bus Bursts
A2:1 = (A2, BE])
00 | 01 | 10 | 11

16-Bit Burst Bus

4 Short-Word Burst

2 Short-Word Burst

2 Short-Word Burst

14-12

Figure 14-5. 16-Bit Wide Data Bus Bursts

u
I I‘el EXTERNAL BUS

o0 , o1

[N
o

11

8-Bit Burst Bus 4-Byte Burst

2-Byte Burst

2-Byte Burst

Figure 14-6. 8-Bit Wide Data Bus Bursts

Burst accesses for a 16-bit bus are always aligned to even short-word boundaries. A four
short-word burst access aways begins on a four short-word boundary (A2=0, A1=0). Two
short-word burst accesses aways begin on an even short-word boundary (A1=0). Single
short-word transfers occur on single short-word boundaries (see Figure 14-5).

Burst accesses for an 8-bit bus are aways aigned to even byte boundaries. Four-byte burst
accesses aways begin on a 4-byte boundary (A1=0, A0=0). Two-byte burst accesses always begin
on an even byte boundary (A0=0) (see Figure 14-6).

Figure 14-7 illustrates a series of bus accesses resulting from a triple-word store request to 16-bit

wide memory. The top half of the figure shows the initial location of 12 data bytes contained in
registers g4 through g6. The instruction’s task is to move this data to memory at address OAH. The
top half of the figure also shows the final destination of the data.

Notice that a new 16-byte boundary begins at address 10H. Since the processor stores 6 { il
bytes after this 16-byte boundary, the processor will split the transaction into a number of ag 14

The 1960 Jx processor cannot burst across 16-byte boundaries.

14-13

int
EXTERNAL BUS I ‘el

The processor splits the transaction into the following accesses. It performs the following bus
cycles:

1. Non-burst accessto transfer the first short word (contents 5678H) to address OAH. The short
word at address 08H remains unchanged.

2. Burst access to transfer the second and third short words (contents 1234H and OFACEH) to
address OCH.

3. Burst access to transfer the fourth and fifth short words (contents OFEEDH and OBA98H) to
address 10H.

4, Non-burst access to transfer the last short word (contents OFEDCH) to address 14H. The
short word at address 16H remains unchanged.

Memory
Registers
c3 et Address A
G4 12345678 56 7 8 8
G5 FE EDF FACE EACE
16-Byte 12 3 4 C
Boundary
G6 FEDCBAO938 BA9 8 F E ED 10
G7 .-
FEDcC | 14
31 0
1st Access 2nd Access 3rd Access 4th Access
(Short Word) (Burst 2 Short Words) (Burst 2 Short Words) (Short Word)
56 12 FE FE BA EE
78 34 CE ED 98 DC
Address 0AH Address OCH Address 10H Address 14H

Figure 14-7. Unaligned Write Transaction

14-14

EXTERNAL BUS

intel

T

TrITaITdIleTd|Td

|Ta|Td|Td|

10

10

CLKIN

B
WIDTH1:0

Figure 14-8. Burst Read and Write Transactions w/o Wait States, 32-bit Bus

14-15

intel

EXTERNAL BUS

F_JFO33A

SN P L
. B 30 I O (A AN A A e S HE s S
—
—
=
- lﬁ ||||||| B e TR Y e e
<5 - —
[o =
S Sy -
<3 = o o
° [a) p=] S
C oo~ T I R s - .- .| =g
i DR 8
_ r£«1- - J--3I-tr - --r+---+--F--1++--1- -0 - - _
SO =
= — —
© T B
e CLI R B B I e o I e A e heE ek
Ay 9 8 S _\/\.
- e || =0 I TR I R IR (R e PR e I
- g o
= o
o o "2 D D o 0|||| ||||||||||||| o
| L1 L1 | | | L1 L1 L1 L 11 | L1
z o w %) N =9 =) 0 [= [= >
£ g 2 2 ¢ 55 = 2 s 2 £ A 2
o < _B_B = 0 m
s x

Figure 14-9. Burst Read and Write Transactions w/o Wait States, 8-bit Bus

14-16

u
I I‘el EXTERNAL BUS

14.2.3.4 Wait States

Wait states lengthen the microprocessor’s bus cycles, allowing data transfers with slow memory
and I/O devices. The 80960Jx supports three types of wait staltbgess-to-data, data-to-data

and turnaround or recovery. All three types are controlled through the processor's RDYRCV
(Ready/Recover) pin, a synchronous input.

The processor’s bus states follow the state diagrdfigure 14.1 After the Ta state, the processor
enters the Tw/Td state to perform a data transfer. If the memory (or I/O) system is fast enough to
allow the transfer to complete during this clock (i.e., “ready”), external logic asserts RDYRCV
The processor samples RDYRGMwv on the next rising clock edge, completing the transfer; the
state is a data state. If the memory system is too slow to complete the transfer during this clock,
external logic drives RDYRCWigh and the state is an address-to-data wait state. Additional wait
states may be inserted in similar fashion.

If the bus transaction is a burst, the processor re-enters the Tw/Td state after the first data transfer.
The processor continues to sample RDYR&Veach rising clock edge, adding a data-to-data wait
state when RDYRCMs high and completing a transfer when RDYR®&VIow. The process
continues until all transfers are finished, with RDYR@&36ertion denoting every data acquisition.

Figure 14-10illustrates a quad word burst write transaction with wait states. There are two
address-to-data wait states single data-to-data wait states between transfers.

14-17

intel

EXTERNAL BUS

Tw Tw Td Tw Td Tw Td Tw Td Tr

Ta

DATA
Out

DATA
Out

DATA

DATA
Out

Out

10

F_XL032A

U\

L

CLKIN

D/C
WIR

WIDTH1:0

DT/R
E
RDYRCV

Figure 14-10. Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus

14-18

u
I I‘el EXTERNAL BUS

14.2.3.5 Recovery States

The state following the last data transfer of an access is a recovery (Tr) state. By default, 960 Jx
microprocessor bus transactions have one recovery state. External logic can cause additional
recovery statesto beinserted by driving the RDYRCV pin low at the end of Tr.

Recovery wait states are an important feature for the Jx because it employs a multiplexed bus.
Slow memory and /O devices often need a long time to turn off their output drivers on read
accesses before the microprocessor drives the address for the next bus access. Recovery wait states
are also useful to force a delay between back-to-back accesses to 1/0 devices with their own
specific access recovery requirements.

System ready logic is often described as normally-ready or normally-not-ready. Normally-ready

logic asserts a microprocessor’s input pin during all bus states, except when wait states are desired.
Normally-not-ready logic deasserts a processor’s input pin during all bus states, except when the
processor is ready. The subtle nomenclature distinction is important for i960 Jx microprocessor
systems because the active sense of the RDYRi@Veverses for recovery states. During the Tr
state, logic 0 means “continue to recover” or “not ready”; for Tw/Td states, logic 0 means “ready”.
Logic must assure “ready” and “not recover” are generated to terminate an access properly. Be
certain to not hang the processor with endless recovery states. Conventional ready logic implemented
as normally-not-ready will operate correctly (but without adding turnaround wait states).

Figure 14-12is a timing waveform of a read cycle followed by a write cycle, with an extra
recovery state inserted into the read cycle.

14-19

int
EXTERNAL BUS I ‘el

"ra w ' P e P w e e !
— [[| [[| [| | [
CLKIN |
_ I I I I I | I | l I |
B ' ' ' DATA DATA |

AD31:0 ADDR F— T T ADDRX out X out
T [[| [[[[| | [|
ALE _L/—\l | | | | | / \ [| | | [
- : : : : : : : | : ; :

c

A3:2] 00,01,10, or 11 X 00,01,10, or 11
[

[[[[[[| | | | |
— [[[[| [

BEL/AL | \ 0 | ’ I | \ oy |’ o

| [[[[[[[| | [[

BE3/BAE | | | | | | | | | | | |

BEO/BLE | | | I I I I I | | | | I

[| | | | [[| | | | [

WIDTH1:0 :X 01 01

«[L]
wl N T
= [0
L A
A e
oo [(DD QALT WA -

Figure 14-11. Burst Read/Write Transactions with 1,0 Wait States - Extra Tr State on Read,
16-Bit Bus

14-20

u
I l‘el EXTERNAL BUS

| Ta | Tw | Td | Td | Tr | Tr | Ta | Tw | Td | Td | Tr |
B | | | | | | | | |
CLKIN | |
_ | | | | | | | | | | | |
| | | |

ADSLO)ﬁ I . . I I (ADDRX DéﬁA X D&TtA
| | | | | | | | | |

| |

WO

c

[
A3:2] 00,01,10, or 11 X 00,01,10, or 11
[

WIDTH1:0 :X 01 01

) —r—
LA
=L
L A S
o [AR T O RAT -

Figure 14-12. Burst Read/Write Transactions with 1,0 Wait States, Extra Tr State on Read,
16-Bit Bus

14-21

int
EXTERNAL BUS I ‘el

14.2.4 Bus and Control Signals During Recovery and Idle States

Valid bus transactions are bounded by ADS going active at the beginning of Ta statesand BLAST
going inactive at the beginning of Tr states. During Tr and Ti states, bus and control pin logic
levels are defined in such a way as to avoid unnecessary pin transitions that waste power. In al
cases, the bus and control pins are completely quiet for instruction fetches and data |oads that are
cache hits.

If thelast bus cycleisaread, the address/data bus floats during all Tr states. If the last bus cycleis
a write, the address/data bus freezes during Tr states. The processor drives control pins such as
ALE, ADS, BLAST and DEN to their inactive states during Tr. Byte enables BE3:0 are dways
driven to logic high during Tr, even when the processor uses them under aternate definitions.
Outputs without clearly defined active/inactive states such asA3:2, WIDTH/HLTD1:0, D/C, W/R
and DT/R freeze during Tr.

When the bus enters the Ti state, the bus and control pins will likewise freeze to inactive states.
The exact states of the address/data pins depend on how the processor enters the Ti state. If the
processor enters Ti from a Tr ending a write cycle, the processor continues driving data on
AD3L.:0. If the processor enters Ti from a read cycle or from a Th state, AD31:4 will be driven
with the upper 28 bits of the read address. AD3:2 will be driven identically as A3:2 (the word
address of the last read transfer). The processor will usualy drive AD1:0 with the last SIZE infor-
mation. In cases where the core cancels a previously issued bus request, AD1:0 are indeterminate.

14.2.5 Data Alignment

The 1960 Jx microprocessor's Bus Control Unit (BCU) directly supports both big-endian and
little-endian aligned accesses. The processor also transparently supports both big-endian and
little-endianunaligned accesses but with reduced performance. Unaligned accesses are broken down
into a series of aligned accesses with the assistance of microcode executing on the processor.

Alignment rules for loads and stores are based on address offsets from natural data boundaries.
Table 14-Sists the natural boundaries for the various data widthg aht 14-6through 14-8 list all
possible combinations of bus accesses resulting from aligned and unaligned réigesisl4-13
and Figure 14-14also depict all the combinations for 32-bit budeigure 14-15is a functional
waveform for a series of four accesses resulting from a misaligned double word read request.

The fault configuration word in the Process Control Block (PRCB), can configure the processor to
handle unaligned accesses non-transparently by generating an OPERATION.UNALIGNED fault after
executing any unaligned access. Seetion 12.3.1.2, “Process Control Block (PRCB)” (pg. 12-16)

14-22

intel

EXTERNAL BUS

Table 14-5. Natural Boundaries for Load and Store Accesses

Data Width Natural Boundary (Bytes)
Byte 1
Short Word 2
Word 4
Double Word 8
Triple Word 16
Quad Word 16

Table 14-6. Summary of Byte Load and Store Accesses

Address Offset from
Natural Boundary
(in Bytes)

Accesses on 8-Bit
Bus (WIDTH1:0=00)

Accesses on 16 Bit
Bus (WIDTH1:0=01)

Accesses on 32 Bit
Bus (WIDTH1:0=10)

+0 (aligned)

byte access

byte access

byte access

Table 14-7. Summary of Short Word Load and Store Accesses

Address Offset from
Natural Boundary
(in Bytes)

Accesses on 8-Bit
Bus (WIDTH1:0=00)

Accesses on 16 Bit
Bus (WIDTH1:0=01)

Accesses on 32 Bit
Bus (WIDTH1:0=10)

+0 (aligned)

burst of 2 bytes

short-word access

short-word access

+1

2 byte accesses

2 byte accesses

2 byte accesses

14-23

EXTERNAL BUS

intel

Table 14-8. Summary of n-Word Load and Store Accesses (n=1, 2, 3, 4)

Address Offset
from Natural
Boundary in

Accesses on 8-Bit
Bus (WIDTH1:0=00)

Accesses on 16 Bit Bus
(WIDTH1:0=01)

Accesses on 32 Bit

Bus
(WIDTH1:0=10)

Bytes
+0 (aligned) * nburst(s) of 4 bytes case n=1: » burst of n word(s)
(n=1,2,3,4 burst of 2 short words
case n=2:
burst of 4 short words
case n=3:

burst of 4 short words
burst of 2 short words
case n=4:

2 bursts of 4 short words

+1(n=1, 2, 3, 4)

+5(n=2,3,4)
+9 (n=3, 4)
+13 (n=3, 4)

¢ byte access

¢ burst of 2 bytes

¢ n-1 burst(s) of 4 bytes
¢ byte access

byte access

short-word access

n-1 burst(s) of 2 short words
byte access

byte access
short-word access
n-1 word
access(es)

byte access

+2 (n=1, 2, 3, 4)

¢ burst of 2 bytes

short-word access

short-word access

+6(n=2,3,4) * n-1 burst(s) of 4 bytes n-1 burst(s) of 2 short words |* n-1 word

+10 (n=3, 4) * burst of 2 bytes short-word access access(es)

+14 (n=3, 4) « short-word access

+3(n=1,2,3,4) |+ byteaccess byte access * byte access

+7(n=2,3,4) e n-1 burst(s) of 4 bytes n-1 burst(s) of 2 short words |» n-1 word

+11 (n=3, 4) ¢ burst of 2 bytes short-word access access(es)

+15 (n= 3, 4) + byte access byte access * short-word access
’ + byte access

+4(n=2,3,4) * nburst(s) of 4 bytes n burst(s) of 2 short words |+ nword access(es)

+8(n=3,4)

+12 (n=3,4)

14-24

intel

EXTERNAL BUS

Byte Offset 0 4 8 12 16 20 24
LI T 1 T 1 T 1 T 1 T
Word Offset 0 1 2 3 4 5 6
B | | \ \ \ \
Short Access (Aligned) | | | |
\ ‘ ‘ \ \ \ \
Byte, Byte Accesses
Shogt/—Word ! ‘ : ! ! ! !
Load/Store ‘ Short Access (Aligned) ‘ ‘ ‘ ‘
\ \ \ \ \ \
‘ Byte, Byte Accesses ‘ ‘ ‘ ‘
e \ \ \ \
Word Access (Aligned)
I \ \ \ \
‘ Byte, Short, Byte, Accesses ‘ ‘ ‘
Word
Load/Store ‘ \ \ | \ \
[Short, Short Accesses [[[
\ \ \ \ \ \
| Byte, Short, Byte Accesses | | |
One Double-Word Burst (Aligned) \ \
\ \ \ \
‘ Byte, Short, Word, Byte Accesses ‘
\ ‘ ‘ \ \
Short, Word, Short Accesses
\ \ \
Double-Word ‘ ‘ ‘
Load/Store ‘ Byte, Word, Short, Byte Accesses ‘
\ \ \ \
[Word, Word Accesses [[
\ \ : \
| | One Double-Word
Burst (Aligned) F XL028A
\ \ \ \ \ \

Figure 14-13. Summary of Aligned and Unalighed Accesses (32-Bit Bus)

14-25

14

EXTERNAL BUS

intel.

Byte Offset

Word Offset

Triple-Word
Load/Store

Quad-Word
Load/Store

®
=
N
=
o
N
=]
N
~

One Three-Word | |
Burst (Allgned)

| |
Byte Short Word,
Word, Byte Accesses | |

Short, Word, Word, |
Short Accesses |

Byte, Word, Word, |
Short, Byte Accesses

Word, Word
Word Accesses |

Word. Word,
Word Accesses

Word,

Word,

Word

Accesses
| | | |

One Four-Word |
Burst (Allgned) |

Byte, Short, Word, Word,
Word, Byte Accesses

Short Word, Word, Word,
Short Accesses

Byte Word, Word Word,
Short, Byte Accesses

Word, Word, Word,
Word Accesses
Word,
Word,
Word,
Word,

| Accesses

F_XL029A

Figure 14-14. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)

14-26

EXTERNAL BUS

intel

14

Td Tr Ta Td Tr Ta Td Tr Ta Td Tr

Ta

o3 B U U
o T I R O I R ISR A SR M 3
— o \
) ittt -
o ﬂ -~ 1 | 1l —
A J 3=
RCEEEE E TR O B e R &
o
o
RGO B A A N A -
A /\ ||||.|||||\||
T N — | R N R
~——_ -~ >
e AT B UW
—
—
O 3 UYL -
o
o --ﬂ e I N A —
N SRR B D~ | | T | ——
8 s il
n e I sl I B B o S & -
g e e e | I =
[e e)) e e e)
: s 4 B ¥ B T ¢ T B =T B 3
W [hd

F_XL027A

Figure 14-15. Accesses Generated by Double Word Read Bus Request, Misaligned One Byte

From Quad Word Boundary, 32-Bit Bus, Little Endian

14-27

int
EXTERNAL BUS I ‘el

14.2.6 Byte Ordering and Bus Accesses

The default byte-order for both instruction and data accesses is programmed in the DLMCON
register to be either little- or big-endian. On the 1960 Jx processor, DLMCON.be controls the
default byte order for interna (on-chip data ram and data cache) accesses as well as external
accesses. The programming of DLMCON is discussed in section 13.6.2, “Selecting the Byte
Order” (pg. 13-12)

The processor handles the byte data type the same regardless of byte ordetentj4-11shows
byte data OxDD being transferred on 8, 16 and 32 bit buses.

For the short word data type, assume that a hexadecimal value of OXCCDD is stored in one of the
processor’s internal registefBable 14-10shows how this short word is transferred on the bus to
either a little endian or big endian memory region. Note that the short word goes out on different
data lines on a 32-bit bus depending upon whether address line Al is odd or even. In this example,
the transfer is assumed to be aligned.

For the word data type, assume that a hexadecimal value of OXAABBCCDD is stored in an
internal processor register, where OxAA is the word’s most significant byte and OxDD is the least
significant byteTable 14-9shows how this word is transferred on the bus to an aligned address in
either little endian or big endian memory.

The 1960 Jx processor supports multi-word big endian data types with individual word accesses.
Bytes in each word are stored in big-endian order; however, words are stored in little-endian order.
Considerrigure 14-16which illustrates a double word store to big endian memory.

Table 14-9. Byte Ordering on Bus Transfers, Word Data Type

Word Data Type Bus Pins (AD31:0)
Addr Little Endian Big Endian
Bus .
Width Bits Xfer
! A1, AO 31:24 | 23:16 | 15:8 7:0 31:24 | 23:16 | 15:8 7:0
32 bit 00 1st AA BB CcC DD DD CcC BB AA
. 00 1st -- - CcC DD - -- BB AA
16 bit
10 2nd -- - AA BB - -- DD CcC
00 1st -- - -- DD - -- - AA
. 01 2nd -- - -- CcC - -- - BB
8 bit
10 3rd -- - -- BB - -- - CcC
11 4th -- - -- AA - -- - DD

14-28

intel

EXTERNAL BUS

Table 14-10. Byte Ordering on Bus Transfers, Short-Word Data Type

Short-Word Data Type Bus Pins (AD31:0)
Addr Little Endian Big Endian
Bus .
Width Bits Xfer
! A1, AO 31:24 | 23:16 | 15:8 7:0 31:24 | 23:16 | 15:8 7:0
. 00 1st -- - CcC DD - -- DD CcC
32 bit
10 1st CcC DD -- - DD CcC - -
16 bit X0 1st -- - CcC DD - -- DD CcC
. X0 1st -- - -- DD - -- - CcC
8 hit
X1 2nd -- CcC - -- - DD

Table 14-11. Byte Ordering on Bus Transfers, Byte Data Type

Byte Data Type

Bus Pins (AD31:0)

Bus Addr Bits wier Little and Big Endian
Width AL, A0 31:24 ‘ 23:16 ‘ 15:8 ‘ 7:0
00 Ist - - - DD
, 01 1st -- - DD -
32 bit
10 1st -- DD - -
11 1st DD - - -
_ X0 1st - - - DD
16 bit
X1 1st - - DD -
8 bit XX 1st -- -- - DD
Registers Memory
R3 _
R4| BB AA 99 88 ii ﬁ+1
stl r4,A 99| A+2
Rs| FF EE DD CC g8s| A+3
FF| A+4
R6 EE| A+5
DD| A+6
CC| A+7

Figure 14-16. Multi-Word Access to Big-Endian Memory Space

14-29

int
EXTERNAL BUS I ‘el

14.2.7 Atomic Bus Transactions

The atomic instructions, atadd and atmod, consist of aload and store reguest to the same memory
location. Atomic instructions require indivisible, read-modify-write access to memory. That is,
another bus agent must not access the target of the atomic instruction between read and write
cycles. Atomic instructions are necessary to implement software semaphores.

For atomic bus accesses, the 80960Jx processor asserts the LOCK pin during the first Ta of the
read operation and deasserts LOCK in the last data transfer of the write operation. LOCK is
deasserted at the same clock edge that BLAST is asserted. The i960Jx processor does not assert
LOCK except while a read-modify-write operation is in progress. While LOCK is asserted, the
processor can perform other, non-atomic, accesses such as fetches. However, the 80960Jx
processor will not acknowledge HOLD requests. This behavior is an enhancement over earlier
1960 microprocessors. Figure 14-17 illustrates locked read/write accesses associated with an
atomic instruction.

14-30

u
I I‘el EXTERNAL BUS

Ta Td Tr Ti Ti Ti Ta Td Tr
e /—_/__/__/__/—\ /—_/__/—_/—\—/
— !
— 41
AD3L:0 Invalid ><Addr>< Data
Out
—)).

/\
=\ HAY
A

ALE

Wl T S
=
o[I /U

3
2
|
1
)

Figure 14-17. The LOCK Signal

14.2.8 Bus Arbitration

The 1960 Jx processor can share the bus with other bus masters, using its built-in arbitration 14
protocol. The protocol assumes two bus masters. a default bus master (typically the 80960Jx) that

controls the bus and another that regquests bus control when it performs an operation (e.g., a DMA
controller). More than two bus masters may exist on the bus, but this configuration requires
external arbitration logic

Three processor signal pins comprise the bus arbitration pin group.

14-31

int
EXTERNAL BUS I ‘el

14.2.8.1 HOLD/HOLDA Protocol

In most cases, the 1960 Jx processor controls the bus; an 1/O periphera (e.g., a communications
controller) requests bus control. The processor and 1/0 periphera device exchange bus control
with two signals, HOLD and HOLDA.

HOLD is an i960 Jx processor synchronous input signal which indicates that the aternate master

needs the bus. HOLD may be asserted at any time so long as the transition meets the processors

setup and hold requirements. HOLDA (hold acknowledge) is the processor’s output which
indicates surrender of the bus. When the 1960 Jx processor asserts HOLDA, it enters the Th (hold)
state (se€igure 14.). If the last bus state was Ti or the last Tr of a bus transaction, the processor
is guaranteed to assert HOLDA and float the bus on the same clock edge in which it recognizes
HOLD. Similarly, the processor deasserts HOLDA on the same edge in which it recognizes the
deassertion of HOLD. Thus, bus latency is no longer than it takes the processor to finish any bus
access in progress.

If the bus is in hold and the 80960Jx needs to regain the bus to perform a transaction, the processor
does not deassert HOLDA. In many cases, however, it will assert the BSTAT pin (see section
14.2.8.2, BSTAT Signl

Unaligned load and store bus requests are broken into multiple accesses and the processor can
relinquish the bus between those transactions. When the alternate bus master gives control of the bus
back to the 80960Jx, the processor will immediately enter a Ta state to continue those accesses and
respond to any other bus requests. If no requests are pending, the processor will enter the idle state.

Figure 14-18llustrates a HOLD/HOLDA arbitration sequence.

14-32

u
I I‘el EXTERNAL BUS

TiorTr Th Th TiorTa
AT atavaVvata
\ \ \ \ \ \
Outputs: ‘ ‘ ‘ ‘ ‘ ‘
AD3L:0, \ \ \ \ \ \
ALE, ALE, | Lo | | \
ADS, A3:2, o -
BE3:0, Valid | Valid
WIDTH/HLTDL:0, 1! | ‘
DIC, WIR, \ | \ \
DT/R, DEN,
BLAST, LOCK
| \ \ V 1 \
— | —ES 1 \ \
HOLD _'ﬁ \ \ | | |
- | | \ i 1
\ \ \ | | \
| \ \ \ \
HOLDA | | | ‘ ‘
| | | | |
\ [= \ \ |
‘ ‘ ‘ ‘ ‘ ‘ F_XLO13A

Figure 14-18. Arbitration Timing Diagram for a Bus Master

The HOLD/HOLDA arhitration functions during processor reset. The bus controller acknowledges
HOLD while RESET is asserted because the busisidle. If RESET is asserted while HOLDA is asserted
(the processor has acknowledged the HOL D), the processor remainsin the HOL DA state. The processor
does not continue reset activities until HOLD isremoved and the processor removes HOLDA.

14.2.8.2 BSTAT Signal

The 1960 Jx microprocessor extends the HOLD/HOLDA protocol with a bus status (BSTAT)
signal. In simplest terms, assertion of the BSTAT output pin indicates that the CPU may soon stall

unlessit obtains (or retains) control of the bus. Thisindication isa useful input to arbitration logic,
whether or not the 80960 Jx is the primary bus master.
The processor asserts BSTAT when one or more of the following conditions are true;

¢ The bus queue in the bus control unit (BCU) becomes full for any reason.

« Aninstruction fetch request is pending or being serviced on the bus. This behavior promotes
performance by supporting instruction cache fills.

14-33

int
EXTERNAL BUS I ‘el

e A load request has been issued to the BCU. This behavior promotes performance by
supporting early data loading.

* A special operation is underway that requires emptying the bus queue. Examples of such
operations are execution of the HALT instruction and register stores that control logical or
physical memory configuration.

The processor can assert BSTAT on any rising CLKIN edge. Although BSTAT activation
suggests bus starvation, it does not necessarily imply that the processor definitely stall or that it is
currently stalled.

When the 80960Jx is the primary bus master and asserts BSTAT, arbitration logic can work more
intelligently to anticipate and prevent processor bus stalls. Depending on the importance of the
alternate bus master’s task, ownership of the bus can be modulated. If the bus is in hold, control
can be relinquished back to the microprocessor immediately or after an optimal delay. Of course,
BSTAT can be ignored completely if the loss in processor bandwidth can be tolerated.

When the 80960Jx is not the primary bus master, the BSTAT signal becomes the means to request
the bus from the primary master. As described above, BSTAT will be activated for all loads and
fetches, but store requests do not activate BSTAT unless they fill the bus queue. If the processor
needs priority access to the bus to perform store operations, replace store instructions with the
atomic modify atmod) instruction, using a mask operand of all onedmod is a
read-modify-write instruction, so the processor will assert BSTAT when the load transaction is
posted to the bus queue. When the load begins, LOCK# is asserted, which blocks recognition of
hold requests until the store portionadfnod completes.

143 BUS APPLICATIONS

The i960Jx microprocessor is a cost-effective building block for a wide spectrum of embedded systems.
This section describes common interfaces for the 80960Jx to external memory and I/O devices.

14.3.1 System Block Diagrams

Block diagrams inFigure 14-19 through Figure 14-21 are generalized diagrams with bus
topologies representative of a number of potential 80960Jx systems. These diagrams do not
represent any particular i960Jx processor- based applications.

In most i960Jx processor systems, the 80960Jx is the primary master of the local bus. A number of
memory and 1/O devices typically interface to the processor, either directly or through buffers and
transceivers. An example of such a system might be a laser beam printer.

14-34

u
I I‘el EXTERNAL BUS

Systems with multiple 1/0 channels frequently use dual-ported memory to link several identical

I/0O devicesto theloca bus, asin Figure 14-19. These systems are more complex, but performance

and flexibility improve because bus traffic is partitioned away from the i960 Jx processor’s local
bus. An example of such a system might be a network hub.

960 Jx Local Base Dual Port High-Perf
Processor Memory l[e} Memory lfe}

80960 Local Bus

Figure 14-19. Generalized 80960Jx System with 80960 Local Bus

A more elaborate system would connect the 80960Jx’s bus to a backplane through bus interface
logic as shown irFigure 14-20 The backplane bus (or system bus) connects to multiple high
performance I/O devices (often with DMA) and large buffer memory for caching packets of data
from disk drives or LANs. Backplane buses can connect to other microprocessor local buses, too,
creating a loosely coupled multiprocessor system for resource sharing.

960 Jx Local Base
Processor Memory 110

80960 Local Bus

Bus Cache High-Perf
Interface Memory 1/0

Backplane Bus

Figure 14-20. Generalized 80960Jx System with 80960 Local Bus and Backplane Bus

14-35

int
EXTERNAL BUS I ‘el

Buses such as the PCI (Peripheral Component Interconnect) local bus connect to the 80960 bus
through a bridge chip, which employs DMA, FIFOs and mailboxes for bus-to-bus communication.
The PCI locd bus can connect shared buffer memory and high performance 1/0 devices. The
bandwidth of the PCI local bus is particularly appropriate for bridge interfacing to high-end
processors such as the Pentium (R) microprocessor, asillustrated in Figure 14-21. In this way, the
i960Jx can improve the performance of complex systems such as servers by sparing the main
system CPU and itslocal memory the task of buffering low-level 1/0.

960 Jx Local Base
Processor Memory lfe}

80960 Local Bus

. Cache High-Perf
Bridge Memory 110
PCI Local Bus
: High-End Local Base
Bridge CPU Memory 110

Microprocessor Local Bus

Figure 14-21. 80960Jx System with 80960 Local Bus, PCI Local Bus and Local Bus for High
End Microprocessor

14-36

u
I I‘el EXTERNAL BUS

14.3.1.1 Memory Subsystems

Memory systems for the 1960 Jx processor include a mix of non-volatile and volatile devices
including ROM, DRAM, SRAM or flash memory. The circuit designer may take advantage of
programmable bus width to optimize the number of devices in each memory array. For example,
the processor can boot from a single, slow, 8-bit ROM device, then execute from code loaded to a
faster, wider and larger RAM array.

All systems must contain burstable memory, since the processor employs burst transactions for
instruction fetches and stack operations. Bursting cannot be turned off on the i960Jx processor.

14.3.1.2 I/O Subsystems

I/0O subsystems vary widely according to the needs of specific applications. Individua peripheral
devices may be as generic as discrete logic 1/0 ports or as speciaized as an ISDN controller.

Typical peripherals for desktop/server intelligent 1/0 applications are Small Computer System
Interface controllers supporting SCSI-1 (8-bit) or SCSI-2 (8/16/32-bit) standards.

For network applications such as ATM adapters, smart hubs and routers, typical peripherals
include controllers for older protocols such as Ethernet and FDDI and controllers for newer
protocols such as ATM (Asynchronous Transfer Mode) and Fibre Channel.

Typical peripherals for non-impact printer controllers include printer video ports, engine
command/status ports, asynchronous serial controllers, IEEE 1284 paralel ports, Loca Talk(TM)
ports and PCMCIA memory card controllers.

14-37

intel

TEST FEATURES

15

intel

CHAPTER 15
TEST FEATURES

This chapter describes the i960% Jx processor’s test features, including ONCE (On-Circuit
Emulation) and Boundary Scan (JTAG). Together these two features create a powerful
environment for design debug and fault diagnosis.

151 ON-CIRCUIT EMULATION (ONCE)

On-circuit emulation aids board-level testing. This feature allows a mounted i960 Jx processor to
electrically “remove” itself from a circuit board. This allows for system-level testing where a
remote tester exercises the processor system. In ONCE mode, the processor presents a high
impedance on every pin, except for the JTAG Test Data Output (TDO). All pullup transistors
present on input pins are also disabled and internal clocks stop. In this state the processor’s power
demands on the circuit board are nearly eliminated. Once the processor is electrically removed, a
functional tester such as an In-Circuit Emulator (ICE) system can emulate the mounted processor
and execute a test of the 1960 Jx processor system.

15.1.1 Entering/Exiting ONCE Mode

The 1960 Jx processor uses the dual function LAINKCE pin for ONCE. The LOCKONCE pin
is an input while RESETs asserted. The i960 Jx processor uses this pin as an output when the
ONCE mode conditions are not present.

ONCE mode is entered by asserting (low) the LOQKCE pin while the processor is in the reset
state, or by executing the HIGHZ JTAG private instruction. The L@MNCE pin state is latched
on the RESEBignal’s rising edge.

e« To enter ONCE mode, an external tester drives the ONiB@How (overcoming the internal
pull-up resistor) and initiates a reset cycle.

e To exit ONCE mode, perform a hard reset with the ON\@Edeasserted (high) prior to the
rising edge of RESETIt is not necessary to cycle power when exiting ONCE mode.

For specific timing of the LOCKONCE pin and the characteristics of the on-circuit emulatigs
mode, see related documentsattion 1.4, “Related Documents” (pg. 1-10)

15-1

int
TEST FEATURES I ‘é““

152 BOUNDARY SCAN (JTAG)

The 1960 Jx processor provides test features compatible with |EEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Std. 1149.1). JTAG ensures that components function
correctly, connections between components are correct, and components interact correctly on the
printed circuit board.

15.2.1 Boundary Scan Architecture

Boundary scan test logic consists of a Boundary-Scan register and support logic. These are
accessed through a Test Access Port (TAP). The TAP provides asimple serial interface that allows
al processor signal pins to be driven and/or sampled, thereby providing the direct control and
monitoring of processor pins at the system level.

This mode of operation is valuable for design debugging and fault diagnosis since it permits
examination of connections not normally accessible to the test system. The following subsections
describe the boundary scan test logic elements. TAP controller, Instruction register, Test Data
registers and TAP elements.

15.2.1.1 TAP Controller

The TAP controller is a 16 state machine, which provides the internal control signals to the
instruction register and the test data registers. The state of the TAP controller is determined by the
logic present on the Test Mode Select (TMS) pin on the rising edge of TCK. See Figure 15-2 for
the state diagram of the TAP controller.

15.2.1.2 Instruction Register

Theinstruction register (IR) holds instruction codes shifted through the Test Data Input (TDI) pin.
The instruction codes are used to select the specific test operation to be performed and the test data
register to be accessed.

15.2.1.3 Test Data Registers

The four test data registers are:

« Device ID register (segection 15.3.2.1, “Device Identification Register” (pg. 15-6)
* Bypass register (sexction 15.3.2.2, “Bypass Register” (pg. 19-6)

* RUNBIST register (sesection 15.3.2.3, “RUNBIST Register” (pg. 15:7)

* Boundary-Scan register (seection 15.3.2.4, “Boundary-Scan Register” (pg. 1p-7)

15-2

u
I I‘el TEST FEATURES

15.2.1.4 TAP Elements

The Test Access Port (TAP) contains a TAP controller, an instruction register, a group of test data
registers, and the TAP pins as shown in the block diagram in Figure 15-1. The TAP is the
general -purpose port that provides access to the test data registers and instruction registers through
the TAP controller.

DI B g8 Q0————0
> IR
10 ~~
T™™MS ©o— ->| Boundary Scan Chain
Tap PN

TCK Controller
> _,l ID Reg I

TRST u—* [

N | Bypass Reg | 3 DO

>

—| Runbist Reg

Control And Clock Signals

Figure 15-1. Test Access Port Block Diagram

15-3

TEST FEATURES

intel

10 TRST
30
1C TEST - LOGIC -
RESET
10
0 O RUN - TEST/ SELECT- 1 SELECT- 1
IDLE DR - SCAN IR - SCAN
10 10
H caPTURE-DR CAPTURE - IR
10 10
SHIFT - DR OO SHIFT - IR Oo
] |
EXIT1- DR L EXIT1- IR L
40 40
PAUSE - DR OO PAUSE - IR OO
41 i1
0
—1 EXIT2-DR EXIT2 - IR
V1 i1
UPDATE - DR UPDATE - IR
1] 0 1) 0
NOTE: ALL STATE TRANSITIONS ARE BASED ON THE VALUE OF TMS.

Figure 15-2. TAP Controller State Diagram

15-4

u
I I‘el TEST FEATURES

The 1960 Jx processor’'s TAP is composed of four input connections (TMS, TCK, aRETDI)
and one output connection (TDO). These pins are describeabie 15-1

Table 15-1. TAP Controller Pin Definitions

Pin Name Mnemonic | Type Definition
Clock input for the TAP controller, the instruction register, and the test
Test Clock TCK Input |data registers. The JTAG unit will retain its state when TCK is stopped at
“0” or “1".
Test Mode ™S Inbut Controls the operation of the TAP controller. The TMS input is pulled
Select P high when not being driven. TMS is sampled on the rising edge of TCK.

Serial date input to the instruction and test data registers. Data at TDI is
sampled on the rising edge of TCK. Like TMS, TDI is pulled high when
not being driven. Data shifted from TDI through a register to TDO
appears non-inverted at TDO.

Test Data In TDI Input

Used for serial data output. Data at TDO is driven at the falling edge of
TCK and provides an inactive (high-Z) state when scanning is not in
progress. The non-shift inactive state is provided to support parallel
connection of TDO outputs at the board or module level.

Test Data Out TDO Output

Provides asynchronous initialization of the test logic. TRST is pulled high
Asynchronous TRST Input when not being driven. Assertion of this pin puts the TAP controller in the
Reset Test_Logic_Reset (initial) state. For minimum pulse width specifications,
see related documents in section 1.4, “Related Documents” (pg. 1-10).

15.3 TAP REGISTERS

The instruction and test data registers are separate shift-register paths connected in parallel. The TAP
controller determines which one of these registers is connected between the TDI and TDO pins.

15.3.1 Instruction Register (IR)

The Instruction Register (IR) is a parallel-loadable, master/slave-configured 4-bit wide, serial-shift
register with latched outputs. Data is loaded into the IR serially through the TDI pin clocked by the
rising edge of TCK when the TAP controller is in the Shift_IR state. The shifted-in instruction
becomes active upon latching from the master-stage to the slave-stage in the Update_IR state. At
that time the IR outputs along with the TAP finite state machine outputs are decoded to select and
control the test data register selected by that instruction. Upon latching, all actions causedgg
previous instructions must terminate.

The instruction determines the test to be performed, the test data register to be accessed, or both
(seeTable 15-2. The IR is four bits wide. When the IR is selected in the Shift_IR state, the most
significant bit is connected to TDI, and the least significant bit is connected to TDO. TDI is shifted
into IR on each rising edge of TCK, as long as TMS remains asserted. When the processor enters

15-5

int
TEST FEATURES I ‘d““

the Capture_IR TAP controller state, fixed parallel data (0001,) is captured. During Shift_IR,
when a new instruction is shifted in through TDI, the value 0001, is always shifted out through
TDO least significant bit first. This helps identify instructions in a long chain of serial data from
several devices.

Upon activation of the TRST reset pin, the latched instruction will asynchronously change to the
idcode instruction. If the TAP controller moved into the Test_Logic_Reset state other than by
reset activation, the opcode will change as TDI is shifted, and will become active on the falling
edge of TCK. See Figure 15-4 for an example of loading the instruction register.

15.3.2 TAP Test Data Registers

The 1960 Jx processor contains a device identification register and three test data registers
(Bypass, Boundary-Scan and RUNBIST). Each test data register selected by the TAP controller is
connected serially between TDI and TDO. TDI is connected to the test data register's most
significant bit. TDO is connected to the least significant bit. Data is shifted one bit position within
the register towards TDO on each rising edge of TCK. The following sections describe each of the
test data registers. SEgure 15-5for an example of loading the data register.

15.3.2.1 Device Identification Register

The Device Identification register is a 32-bit register containing the manufacturer’s identification
code, part number code and version code in the format shoWwigume 12-8 (pg. 12-22)The

format of the register is discussed S$®ection 12.4, DEVICE IDENTIFICATION ON RESET

(pg. 12-22) The identification register is selected only by the idcode instruction. When the TAP
controller's Test_Logic_Reset state is entered, idcode is automatically loaded into the instruction
register. The Device Identification register has a fixed parallel input value that is loaded in the
Capture_DR state. For specific device identification numbers, ssstion 1.4, “Related
Documents” (pg. 1-10)

15.3.2.2 Bypass Register

The required Bypass Register, a one-bit shift register, provides the shortest path between TDI and
TDO when aypass instruction is in effect. This allows rapid movement of test data to and from
other components on the board. This path can be selected when no test operation is being
performed. While the bypass register is selected, data is transferred from TDI to TDO without
inversion.

Any instruction that does not make use of another test data register may select the Bypass register
as its active TDI to TDO path.

15-6

u
I I‘el TEST FEATURES

15.3.2.3 RUNBIST Register

The RUNBIST register is a one-bit register that contains the result of the execution of the runbist
instruction execution. The runbist instruction runs the built-in self-test (BIST) program resident
inside the processor. After the built-in self-test completes, the processor must be recycled through
the reset state to begin normal operation. See section 12.2.2, “Self Test Function (STEST, FAIL)”
(pg. 12-6)for details of the Built-In-Self-Test algorithm.

15.3.2.4 Boundary-Scan Register

The Boundary-Scan register is a required set of serial-shiftable register cells, configured in
master/slave stages and connected between each of the 1960 Jx processor’s pins and on-chip
system logic. Pins NOT in the Boundary-Scan chain are power, ground and JTAG pins.

The Boundary-Scan register cells are dedicated logic and do not have any system function. Data
may be loaded into the Boundary-Scan register master-cells from the device input pins and output
pin-drivers in parallel by the mandatosgmple/preload andextest instructions. Parallel loading

takes place on the rising edge of TCK in the Capture_DR state.

Data may be scanned into the Boundary-Scan register serially via the TDI serial-input pin, clocked
by the rising edge of TCK in the Shift DR state. When the required data has been loaded into the
master-cell stages, it is driven into the system logic at input pins or onto the output pins on the
falling edge of TCK in the Update_DR state. Data may also be shifted out of the Boundary-Scan
register by means of the TDO serial-output pin at the falling edge of TCK.

15-7

int
TEST FEATURES I ‘é““

15.3.3 Boundary Scan Instruction Set

The 1960 Jx processor supports three mandatory boundary scan ingructions bypass,
sample/preload and extest. The 1960 Jx processor also contains two additiona public ingtructions
idcode and runbist. Table 15-2 lists the i960 Jx processor’s boundary scan instruction codes.

Table 15-2. Boundary Scan Instruction Set

Instruction Code Instruction Name Instruction Code Instruction Name
0000, extest 1000, private
0001, sampre 1001, not used
0010, idcode 1010, not used
0011, not used 1011, private
0100, private 1100, private
0101, not used 1101, not used
0110, not used 1110, not used
0111, runbist 11115 bypass

15.3.4 IEEE Required Instructions

Instruction _—
/ Requisite Opcode Description
extest initiates testing of external circuitry, typically board-level interconnects
and off chip circuitry. extest connects the Boundary-Scan register between TDI
test and TDO in the Shift_IR state only. When extest is selected, all output signal pin
extes

values are driven by values shifted into the Boundary-Scan register and may
IEEE 1149.1 0000, change only on the falling-edge of TCK in the Update_DR state. Also, when
extest is selected, all system input pin states must be loaded into the

Required . - .
Boundary-Scan register on the rising-edge of TCK in the Capture_DR state.
Values shifted into input latches in the Boundary-Scan register are never used
by the processor’s internal logic.
sample/preload performs two functions:
¢« When the TAP controller is in the Capture-DR state, the sample instruction
occurs on the rising edge of TCK and provides a snapshot of the
component’s normal operation without interfering with that normal operation.
sampre The instruction causes Boundary-Scan register cells associated with outputs
IEEE 1149.1 0001, to sample the value being driven by or to the processor.
Required * When the TAP controller is in the Update-DR state, the preload instruction

occurs on the falling edge of TCK. This instruction causes the transfer of
data held in the Boundary-Scan cells to the slave register cells. Typically the
slave latched data is then applied to the system outputs by means of the
extest instruction.

15-8

u
I I‘el TEST FEATURES

I/ns;rquucitsliotg Opcode Description
idcode is used in conjunction with the device identification register. It connects
the identification register between TDI and TDO in the Shift_DR state. When
idcode selected, idcode parallel-loads the hard-wired identification code (32 bits) on
|EEE 1149.1 0010, TDO into the identification register on the rising edge of TCK in the Capture_DR
. state.
Optional

NOTE: The device identification register is not altered by data being shifted in
on TDI.

bypass instruction selects the Bypass register between TDI and TDO pins while
in SHIFT_DR state, effectively bypassing the processor’s test logic. 05 is
bypass captured in the CAPTURE_DR state. This is the only instruction that accesses
IEEE 1149.1 1111, the Bypass register. While this instruction is in effect, all other test data registers
have no effect on the operation of the system. Test data registers with both test
and system functionality perform their system functions when this instruction is
selected.

Required

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and
connects itto TDO. It also initiates the processor’s built-in self test (BIST) feature
which is able to detect approximately 82% of the stuck-at faults on the device.
The processor AC/DC specifications for V¢ and CLKIN must be met and
RESET must be de-asserted prior to executing runbist.

. After loading runbist instruction code into the instruction register, the TAP
runbist controller must be placed in the Run-Test/Idle state. bist begins on the first
1960 Jx 0111, rising edge of TCK after the Run-Test/Idle state is entered. The TAP controller
Processor must remain in the Run-Test/Idle state until bist is completed. runbist requires
Optional approximately 414,000 core cycles to complete bist and report the result to the
RUNBIST register’s. The results are stored in bit 0 of the RUNBIST register.
After the report completes, the value in the RUNBIST register is shifted out on
TDO during the Shift-DR state. A value of 0 being shifted out on TDO indicates
bist completed successfully. A value of 1 indicates a failure occurred. After bist
completes, the processor must be recycled through the reset state to begin
normal operation.

15.3.5 TAP Controller

The TAP controller is a 16-state synchronous finite state machine that controls the sequence of test
logic operations. The TAP can be controlled via a bus master. The bus master can be either
automatic test equipment or a component (i.e. PLD) that interfaces to the Test Access Port (TAP).
The TAP controller changes state only in response to arising edge of TCK or power-up. The value
of the test mode state (TMS) input signal at a rising edge of TCK controls the sequence of state
changes. The TAP controller is automatically initialized on powerup. In addition, the TAP
controller can beinitiaized by applying ahigh signal level onthe TMSinput for five TCK periods.

Behavior of the TAP controller and other test logic in each controller state is described in the
following subsections. For greater detail on the state machine and the public instructions, refer to
IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture Document.

int
TEST FEATURES I ‘d“"

15.3.5.1 Test Logic Reset State

In this state, test logic is disabled to allow normal operation of the i960 Jx processor. Test logic is
disabled by loading the IDCODE register. No matter what the state of the controller, it enters
Test-Logic-Reset state when the TM S input is held high (1) for at least five rising edges of TCK.
The controller remainsin this state while TMSis high. The TAP controller is also forced to enter
this state by enabling TRST.

If the controller exits the Test-L ogic-Reset controller states as a result of an erroneous low signal
on the TMS line at the time of arising edge on TCK (for example, a glitch due to external inter-
ference), it returns to the test logic reset state following three rising edges of TCK with the TMS
line at the intended high logic level. Test logic operation is such that no disturbance is caused to
on-chip system logic operation as the result of such an error.

15.3.5.2 Run-Test/ldle State

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains
in this state as long as TMS is held low. In the Run-Test/Idle state the runbist instruction is
performed; the result is reported in the RUNBIST register. Instructions that do not call functions
generate no activity in the test logic while the controller isin this state. The instruction register and
al test dataregisters retain their current state. When TMS is high on the rising edge of TCK, the
controller moves to the Select-DR-Scan state.

15.3.5.3 Select-DR-Scan State

The Select-DR-Scan state is a temporary controller state. The test data registers selected by the
current instruction retain their previous state. If TMSis held low on the rising edge of TCK when
the controller isin this state, the controller moves into the Capture-DR state and a scan sequence
for the selected test data register isinitiated. If TMS is held high on the rising edge of TCK, the
controller moves into the Select-1R-Scan state.

The instruction does not change while the TAP controller isin this state.

15.3.5.4 Capture-DR State

When the controller is in this state and the current instruction is sample/preload, the
Boundary-Scan register captures input pin data on the rising edge of TCK.Test data registers that
do not have parallel input are not changed. Also if the sample/preload instruction is not selected
whilein this state, the Boundary-Scan registers retain their previous state.

The instruction does not change while the TAP controller isin this state.

15-10

u
I I‘el TEST FEATURES

If TMSishigh ontherising edge of TCK, the controller enters the Exit1-DR. If TMSislow on the
rising edge of TCK, the controller enters the Shift-DR state.

15355 Shift-DR State

In this controller state, the test data register, which is connected between TDI and TDO as a result
of the current instruction, shifts data one bit position nearer to its seria output on each rising edge
of TCK. Test data registers that the current instruction selects but does not place in the serial path,
retain their previous value during this state.

The instruction does not change while the TAP controller isin this state.

If TMSishigh on the rising edge of TCK, the controller enters the Exitl-DR state. If TMSis low
on therising edge of TCK, the controller remainsin the Shift-DR state.

15.3.5.6 Exit1l-DR State

Thisis atemporary controller state. When the TAP controller isin the Exitl-DR state and TMSis
held high on the rising edge of TCK, the controller enters the Update-DR state, which terminates
the scanning process. If TMS is held low on the rising edge of TCK, the controller enters the
Pause-DR state.

The instruction does not change while the TAP controller is in this state. All test data registers
selected by the current instruction retain their previous value during this state.

15.3.5.7 Pause-DR State

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the
test data register in the serial path between TDI and TDO. The test data register selected by the
current instruction retains its previous value during this state. The instruction does not change in
this state.

The controller remainsin this state aslong as TMSis low. When TM S goes high on the rising edge
of TCK, the controller moves to the Exit2-DR state.

15.35.8 Exit2-DR State

Thisisatemporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-DR state, which terminates the scanning process. If TMSis held low on the rising edge of
TCK, the controller enters the Shift-DR state.

The instruction does not change while the TAP controller is in this state. All test data registers
selected by the current instruction retain their previous value during this state.

15-11

int
TEST FEATURES I ‘d“"

15.3.5.9 Update-DR State

The Boundary-Scan register is provided with a latched parallel output. This output prevents
changes at the parallel output while data is shifted in response to the extest, sample/preload
instructions. When the Boundary-Scan register is selected while the TAP controller is in the
Update-DR state, data is latched onto the Boundary-Scan register’'s parallel output from the
shift-register path on the falling edge of TCK. The data held at the latched parallel output does not
change unless the controller is in this state.

While the TAP controller is in this state, all of the test data register’s shift-register bit positions
selected by the current instruction retain their previous values.

The instruction does not change while the TAP controller is in this state.

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the
controller enters the Select-DR-Scan state. If TMS is held low on the rising edge of TCK, the
controller enters the Run-Test/Idle state.

15.3.5.10 Select-IR Scan State

This is a temporary controller state. The test data registers selected by the current instruction retain
their previous state. In this state, if TMS is held low on the rising edge of TCK, the controller
moves into the Capture-IR state and a scan sequence for the instruction register is initiated. If TMS
is held high on the rising edge of TCK, the controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

15.3.5.11 Capture-IR State

When the controller is in the Capture-IR state, the shift register contained in the instruction
register loads the fixed value 0Q0dn the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state. While in this state, holding TMS high on the rising
edge of TCK causes the controller to enter the Exit1-IR state. If TMS is held low on the rising
edge of TCK, the controller enters the Shift-IR state.

15.3.5.12 Shift-IR State

When the controller is in this state, the shift register contained in the instruction register is
connected between TDI and TDO and shifts data one bit position nearer to its serial output on each
rising edge of TCK. The test data register selected by the current instruction retains its previous
value during this state. The instruction does not change.

15-12

u
I I‘el TEST FEATURES

If TMSis held high on the rising edge of TCK, the controller enters the Exitl-IR state. If TMSis
held low on the rising edge of TCK, the controller remainsin the Shift-IR state.

15.3.5.13 Exitl-IR State

Thisisatemporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controller enters the Pause-IR state.

Thetest data register selected by the current instruction retains its previous val ue during this state.

The instruction does not change and the instruction register retains its state.

15.3.5.14 Pause-IR State

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the
instruction register. The test data registers selected by the current instruction retain their previous
values during this state.

The instruction does not change and the instruction register retains its state.

The controller remainsin this state aslong as TM Sis held low. When TM S goes high on the rising
edges of TCK, the controller moves to the Exit2-IR state.

15.3.5.15 Exit2-IR State

Thisisatemporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controller enters the Shift-IR state.

This test dataregister selected by the current instruction retains its previous value during this state.
The instruction does not change and the instruction register retains its state.
15.3.5.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parale output from the
shift-register path on the falling edge of TCK. Once latched, the new instruction becomes the current
instruction. Test data registers selected by the current instruction retain their previous values.

If TMSis held high on the rising edge of TCK, the controller enters the Select-DR-Scan state. If
TMSis held low on the rising edge of TCK, the controller enters the Run-Test/Idle state.

15-13

TEST FEATURES

15.3.6

Boundary-Scan Register

intel

The Boundary-Scan register contains a cell for each pin as well as cells for control of I/O and
HIGHZ pins.

Table 15-2 shows the bit order of the i960 Jx processor Boundary-Scan register. All table cells that

contain “CTL” select the direction of bidirectional pins or HIGHZ output pins. If a “1” is loaded

into the control cell, the associated pin(s) are HIGHZ or selected as input.

Table 15-3. Boundary Scan Register Bit Order

Bit Signal (I)nurt);L/t Bit Signal (Ijnurt);ltft Bit Signal (I)Tﬁ:ltft
0 | RDYRCV (TDI) [24 DEN o 48 AD17 e}
HOLD [25 HOLDA o 49 AD16 I/0
2 XINTO [26 ALE o 50 AD15 I/0
3 XINT1 [27 LOC%NCE Enable cell' | 51 AD14 I/0
XINT2 [28 | LOCK/ONCE I/0 52 AD13 e}
5 XINT3 I 29 BSTAT (o] 53 AD12 I/O
6 XINT4 I 30 BEO o 54 | AD cells Eggf’l'e
XINTS [31 BE1 o 55 AD11 e}
XINT6 [32 BE2 o 56 AD10 I/0
XINT7 I 33 BE3 (o] 57 AD9 I/O
10 NMI [34 AD31 I/0 58 AD8 e}
11 FAIL [35 AD30 I/0 59 AD7 e}
12 ALE (o] 36 AD29 I/0 60 AD6 I/O
13 | WIDTH/HLTD1 1 37 AD28 I/0 61 AD5 I/0
14 | WIDTH/HLTDO 1 38 AD27 I/0 62 AD4 110
15 A2 o} 39 AD26 110 63 AD3 I/0
16 A3 o} 40 AD25 110 64 AD2 e}
17 CONTROL1 | Enable cell! | 41 AD24 I/0 65 AD1 I/0
18 CONTROL2 | Enable cell* | 42 AD23 I/0 66 ADO I/0
19 BLAST o 43 AD22 I/0 67 CLKIN [
20 D/C o 44 AD21 110 68 | RESET [
21 ADS (o] 45 AD20 I/0 69 S(TTE(S))T I
22 W/R (o] 46 AD19 I/0
23 DT/R o 47 AD18 I/0

1. Enable cells are active low.

15-14

u
I I‘el TEST FEATURES

15.3.6.1 Example

In the example that follows, two command actions are described. The example starts in the reset
state, a new instruction is loaded and executed. See Figure 15-3 for a JTAG example. The steps
are:
1. Loadthesample/preload instruction into the Instruction Register:

1.1. Select the Instruction register scan.

1.2. Usethe Shift-IR state four timesto read the least through most significant instruction
bitsinto the instruction register (we do not care that the old instruction is being shifted
out of the TDO pin).

1.3. Enter the Update-IR state to make the instruction take effect.
1.4. Exit the Instruction register.

2. Capture and shift the data onto the TDO pin:
2.1. Select the Dataregister scan state.
2.2. Capture the pin information into the n-stage Boundary-Scan register.

2.3. Enter and stay in the shift-DR state for n times while recording the TDO values as the
inputs sampled. Asthe data sampled were shifting in the TDI was being read into the
Boundary-Scan register. This could later be written the output pins.

2.4. Passthrough the Exitl-DR and Update-DR to continue.

This example does not make use of the pause states. Those states would be more useful where we do
not control the clock directly. The pause states let the clock tick without affecting the shift registers.

The old instruction was abcd in the example. It is known that the original vaue will bethe ID code
since the exampl e starts from the reset state. Other times it will represent the previous opcode. The
new instruction opcode is 0001, (sample/preload). All pins are captured into the serial
Boundary-Scan register and the values are output to the TDO pin.

The clock signal drawn at the top of the diagram is drawn as a stable symmetrical clock. Thisis not
in practice the most common case. Instead the clocking is usually done by a program writing to a
port bit. The TM'S and TDI signals are written by software and then the software makes the clock
go high. The software typically will often lower the clock input quickly. The program can then
read the TDO pin.

15-15

intel

.:1:0:0|0|

N
|

0 0]1

| ,

'

Ly TR

-~ N7 .
| 1

:: NI Y
NN

10,00 0,080 00O
T T T
]

I e
4 bits long

Inst = 0001,

E E szm glglglglmlglz|g|glglglglglglglImlmlglglglggﬂlﬂlﬂlﬂl
- -)

m|m|9|6|0|gé|t|t|t|t|;‘|'ﬂj|o||_u||—||—||—||—||—||—||—||—||— & - alwlelalal g

—pozLLLet o L L EL L L LLNEEFESEE S

ol 2 P55 5515 121Z F ZIEIT 55 I e & 5T S

wwwwwwwwwwwww

oyl w
hhhhh

intel

TEST FEATURES

TCK

T™MS

Controller State

TDI

Data input to IR

IR shift-register
Parallel output of IR
Data input to TDR

TDR shift-register
Parallel output of TDR
Register selected

TDO enable

TDO

)

32880 2
T |58 O o | m 5 m w ol S 7
5 ! . =3 =) -3 c X = - =3 !
a ol o £ = 59 2 N = 59 % P4
& |0 o L '] ! — i 2
| =] - ™ |3 3 T o T| = =
B a2 g™ ® 3 =
[0] @ Y (1)
- =)

IDCODE NEW INSTRUCTION

X OLDDATA

\ D< INSTRUCTION REGISTER >q

INACTIVE ACT INACTIVE ACTIVE INACTIVE

l:| = Don't care or undefined

Figure 15-4. Timing diagram illustrating the loading of Instruction Register

15-17

15

int
TEST FEATURES I ‘d““

TCK
T™S ’—
Y DY ~
. 2o %) m 5 m o) m| s 7 29 jod
¢ lol2 28 & |3 2 |BE =2 |95 2
Controller State 2 g5 - = 8 N : BlE 2 2| = g
= lg/g 3 |3 8 |3 % 89 3z |28 %
) o A o o | @
=] SAS tad
TDI
Data input to IR ‘ ‘
IR shift-register ‘ ‘
Parallel output of IR INSTRUCTION ID CODE
Data input to TDR ‘ m ‘
ToRsnitregser [)OO0 OO0 A |
Parallel output of TDR OLD DATA NEW DATA
Register Selected \ D< TEST DATA REGISTER >q ‘
TDO enable INACTIVE ACT. INACTIVE ACTIVE INACTIVE
TDO
l:l = Don't care or undefined

Figure 15-5. Timing diagram illustrating the loading of Data Register

15.3.7 Boundary Scan Description Language Example

Boundary-Scan Description Language (BSDL) Example 15-1 meets the de facto standard means
of describing essential features of ANSI/IEEE 1149.1-1993 compliant devices.

15-18

u
I I‘el TEST FEATURES

Example 15-1. Boundary Scan Description Language Example (Sheet 1 of 4)

-- 1960® Jx Processor BSDL Model
-- The following list describes all of the pins that are contained in the i960 Jx
-- microprocessor.
entity JX_Processor is
generic(PHYSICAL_PIN_MAP : string := "PGA_14x14");
port(TDI 1 in bit;
RDYRCVBAR 1 in bit;
Reserved 1 in bit;
Reserved 1 in bit;
Reserved 1 in bit;
TRSTBAR 1 in bit;
TCK s in bit;
TMS s in bit;
HOLD 2 in bit;
XINTBARX :in bit_vector(0 to 7);
NMIBAR 2 in bit;
Reserved 1 in bit;
Reserved 1 in bit;
Reserved 1 in bit;
LODRVHIDRVBAR : out bit;
FAILBAR : out bit;
ALEBAR : out bit;
TDO : out bit;
WIDTH : out bit_vector(1 downto 0);
A32 . out bit_vector(0 to 1);
Reserved : out bit;
Reserved : out bit;
Reserved : out bit;
Reserved : out bit;
BLASTBAR : out bit;
DCBAR : out bit;
ADSBAR : out bit;
WRBAR : out bit;
DTRBAR : out bit;
DENBAR : out bit;
HOLDA : out bit;
ALE : out bit;
LOCKONCEBAR : inout bit;
BSTAT : out bit;
BEBAR : out bit_vector(0 to 3);
Reserved 1 in bit;
Reserved 1 in bit;
Reserved 1 in bit;
Reserved :inout bit_vector(7 downto 0);
AD : inout bit_vector(31 downto 0);
CLKIN 2 in bit;
Reserved 1 in bit;
Reserved 1 in bit;
Reserved 1 in bit;
RESETBAR 1 in bit;
Reserved 1 in bit;
STEST 2 in bit;
VCC : linkage bit_vector(0 to 28);
VSS : linkage bit_vector(0 to 28);

15-19

TEST FEATURES

intel

Example 15-1. Boundary Scan Description Language Example (Sheet 2 of 4)

AVCC
NC

use STD 1149 1 1990. al |

use i 960JX a.all;
--This list describes th
attribute PI N_ VAP of
constant PGA 14x14 :
"TDI :
" RDYRCVBAR
" TRSTBAR

"A32

" BLASTBAR
" DCBAR

" ADSBAR
"WRBAR

" DTRBAR

" DENBAR

" HOLDA
"ALE

" LOCKONCEBAR
" BSTAT

" BEBAR

" AD

" CLKI N

" RESETBAR
" STEST
"VCC

"VSS

" AVCC :
attribute Tap_Scan_ln
attribute Tap_Scan_M
attribute Tap_Scan_Qu
attribute Tap_Scan_Re
attribute Tap_Scan_d
attribute Instruction
attribute Instruction

"BYPASS (1111),"
"EXTEST (0000),"
"SAWPLE (0001),"
"1 DCODE (0010),"

[inkage bit;

linkage bit_vector(1l to 3));
e physical pin layout of all signals
JX_Processor entity is PHYSI CAL_PI N_MVAP;
PI N_MAP_STRING : = -- Define PinQut of PGA
F16," &
E15," &
Cl7,"&
Cl6," &
Bl17," &
Cl15,"&
(B16, Cl4, B15, C13, B14, Al5, Al4, Cl2),"&
B12," &
B09, " &
08, " &
Ccor,"&
(C06, BMX),"&
(A04, C05),"&
B3, " &
C02," &
C03,"&
BO1, " &
B02," &
E03," &
D02, " &
01, " &
D01, " &
F03," &
(EO1, EO02, @03, H03),"&
(P03, R02, Q03, RO3, S03, R04, S04, Q5, Q6, Q7,"&
Q08, R09, S09, Q9, QLO, Q1, Q12, S14, R14, Q13,"&
S15, R15, Ql4, R16, Q15, R17, Q16, P15, QL7, P16,"&
ML5, N15),"&
Ji17," &
Gl5," &
F17," &
(813, S12, sS11, S10, S08, S07, S06, S05, Ni7, ML7," &
M1, L17, LO1, K17, KO1, JO1, H17, HO1, Gl7, @01," &
FO01, E17, Al13, Al1l, A10, A08, A07, A06, A05), " &
(R13, R12, R11, R10, R08, R07, R06, R05, N16, N02," &
M2, L16, LO2, K16, K02, J16, J02, H16, HO2, Gl6," &
@02, F02, El6, B13, Bl1l1, B10, B08, B07, B05)," &
L15 ";

of TDI signal is true;

de of TMs signal is true;
t of TDO : signal is true;
set of TRSTBAR signal is true;
ock of TCK signal is (33.0e6, BOTH);
_Length of JX Processor: entity is 4;
_Opcode of JX Processor: entity is

&

&

&

&

15-20

u
I I‘el TEST FEATURES

Example 15-1. Boundary Scan Description Language Example (Sheet 3 of 4)

"RUNBI ST (0111),
"Reserved (1100, 1011)";
attribute Instruction_Capture of JX Processor: entity is "0001"
-- there is no Instruction_Disable attribute for JX Processor
attribute Instruction_Private of JX Processor: entity is "Reserved"
--attribute Instruction_Usage of JX Processor: entity is
-- "RUNBI ST (registers Runbist; " &
-- "result 0;" &
-- "clock CLK in Run_Test_ldle;"&
-- "l ength 524288)";
-- attribute |dcode_Register of JX Processor: entity is

-- "0000" & --version, A-step
-- "0000001010100001" & --part nunber
-- "00000001001" & --manufacturers identity
-- " --required by the standard
-- attrlbute | dcode_Regi ster of JX Processor: entity is
-- "0010" & --version, B-step
-- "0000001010110001" & --part nunber BOprineprinme
-- "00000001001" & --manufacturers identity
-- " --required by the standard
attrlbute | dcode_Regi ster of JX Processor: entity is
" 0000" & --version,
"1000100000100000" & --part nunmber ??
" 00000001001" & --manufacturers identity
" --required by the standard
attribute Register_Access of JX Processor: entity is
"Runbi st[1] (RUNBI ST) ,
"Bypass";
_{***}
--{ The first cell, cell 0, is closest to TDO }

--{ BC.4:lnput BC_1: Qutput3, Bidirectiona

***}

attribute Boundary_Cells of JX Processor: entity is "CBSC 1, BC 1";
attribute Boundary_Length of JX Processor: entity is 70
attribute Boundary_Register of JX Processor: entity is

"0 (BC_1, STEST, input, X),

"1 (BC_1, RESETBAR, i nput, X)

"2 (BC_1, CLKIN, input, X),"

"3 (CBSC_ 1, ADO0), bidir, X, 15, 1, 2)," &

"4 (CBSC 1, AD(1), bidir, X, 15, 1, 2)," &

"5 (CBSC 1, AD(2), bidir, X, 15, 1, 2)," &

"6 (CBSC_ 1, AD(3), bidir, X, 15, 1, 2)," &

"7 (CBSC 1, AD(4), bidir, X, 15, 1, 2)," &

"8 (CBSC 1, AD(5), bidir, X, 15, 1, 2)," &

"9 (CBSC 1, AD(6), bidir, X, 15, 1, 2)," &

"10 (CBSC 1, A7), bidir, X 15, 1, 2)," &
"11 (CBSC 1, AX(8), bidir, X, 15, 1, 2),

"12 (CBSC 1, AX9), bidir, X 15 1, 2)," &
"13 (CBSC 1, AD(10), bidir, X, 15, 1, 2)," &
"14 (CBSC 1, AD(11), bidir, X, 15, 1, 2)," &
"15 (BC_.1, *, control, 1)," &

"16 (CBSC 1, AD(12), bidir, X, 15, 1, 2)," &
"17 (CBSC 1, AD(13), bidir, X, 15, 1, 2)," &
"18 (CBSC 1, AD(14), bidir, X, 15, 1, 2)," &
"19 (CBSC 1, AD(15), bidir, X, 15, 1, 2)," &
"20 (CBSC 1, AD(16), bidir, X, 15, 1, 2)," &

15-21

int
TEST FEATURES I ‘é““

Example 15-1. Boundary Scan Description Language Example (Sheet 4 of 4)

"21 (CBSC 1, AD(17), bidir, X, 15, 1, 2)," &
“22 (CBSC 1, AD(18), bidir, X, 15 1, 2)," &
"23 (CBSC 1, AD(19), bidir, X, 15, 1, 2)," &
“24 (CBSC 1, AD(20), bidir, X, 15, 1, 2)," &
"25 (CBSC 1, AD(21), bidir, X, 15, 1, 2)," &
“26 (CBSC 1, AD(22), bidir, X, 15, 1, 2)," &
"27 (CBSC 1, AD(23), bidir, X, 15, 1, 2)," &
"28 (CBSC 1, AD(24), bidir, X, 15, 1, 2)," &
"29 (CBSC 1, AD(25), bidir, X, 15, 1, 2)," &
“30 (CBSC 1, AD(26), bidir, X, 15 1, 2)," &
"31 (CBSC 1, ADX(27), bidir, X, 15, 1, 2)," &
“32 (CBSC 1, AD(28), bidir, X, 15 1, 2)," &
"33 (CBSC 1, AD(29), bidir, X, 15, 1, 2)," &
“34 (CBSC 1, AD(30), bidir, X, 15, 1, 2)," &
"35 (CBSC 1, AD(31), bidir, X, 15, 1, 2)," &
“36 (BC 1, BEBAR(3), output3, X, 51, 1, 2)," &
“37 (BC_1, BEBAR(2), output3, X, 51, 1, 2)," &
“38 (BC 1, BEBAR(1), output3, X, 51, 1, 2)," &
“39 (BC 1, BEBAR(0), output3, X, 51, 1, 2)," &
“40 (BC 1, BSTAT, output3, X, 52, 1, 2)," &

"41 (CBSC 1, LOCKONCEBAR, bidir, X, 42, 1, 2)," &
"42 (BC_.1, *, control, 1)," &

"43 (BC_1, ALE, output3, X 51, 1, 2)," &

"44 (BC_1, HOLDA, output3, X, 52, 1, 2)," &
"45 (BC_1, DENBAR output3, X, 51, 1, 2)," &
"46 (BC_1, DTRBAR output3, X, 51, 1, 2)," &
"47 (BC_1, WRBAR output3, X, 51, 1, 2)," &
"48 (BC_1, ADSBAR output3, X, 51, 1, 2)," &
"49 (BC_1, DCBAR output3, X, 51, 1, 2)," &
"50 (BC_1, BLASTBAR, output3, X, 51, 1, 2)," &
"51 (BC.1, *, control, 1)," &

"52 (BC.1, *, control, 1)," &

"53 (BC 1, A32(1), output3, X, 51, 1, 2)," &
"54 (BC 1, A32(0), output3, X, 51, 1, 2)," &
"55 (BC_1, WDTH(0), output3, X 51, 1, 2)," &
"56 (BC_1, WDTH(1), output3, X 51, 1, 2)," &
"57 (BC_1, ALEBAR output3, X, 51, 1, 2)," &
"58 (BC 1, FAILBAR output3, X, 52, 1, 2)," &
"59 (BC_1, NMBAR input, X)," &

“60 (BC 1, XINTBARX(7), input, X)," &
“61 (BC_ 1, XINTBARX(6), input, X)," &
“62 (BC 1, XINTBARX(5), input, X)," &
“63 (BC_ 1, XINTBARX(4), input, X)," &
“64 (BC 1, XINTBARX(3), input, X)," &
“65 (BC_1, XINTBARX(2), input, X)," &
“66 (BC 1, XINTBARX(1), input, X)," &
“67 (BC_1, XINTBARX(0), input, X)," &

"68 (BC_1, HOLD, input, X)," &
"69 (BC_1, RDYRCVBAR, input, X)";
end JX Processor;

15-22

intel

CONSIDERATIONS FOR
WRITING PORTABLE CODE

intel

APPENDIX A A
CONSIDERATIONS FOR

WRITING PORTABLE CODE

This appendix describes the aspects of the microprocessor that are implementation-dependent. The
following information is intended as a guide for writing application code that is directly portable to
other 1960° architecture i mplementations.

A.1 CORE ARCHITECTURE

All 1960 microprocessor family products are based on the core architecture definition. An 1960
processor can be thought of as consisting of two parts. the core architecture implementation and
implementation-specific features. The core architecture defines the following mechanisms and
structure:

« Programming environment: global and local registers, literals, processor state registers,
data types, memory addressing modes, etc.

* Implementation-independent instruction set.

e Procedure call mechanism.

¢ Mechanism for servicing interrupts and the interrupt and process priority structure.

* Mechanism for handling faults and the implementation-independent fault types and
subtypes.

Implementation-specific features are one or all of:

« Additions to the instruction set beyond the instructions defined by the core architecture.

« Extensions to the register set beyond the global, local and processor-state registers that
are defined by the core architecture.

e On-chip program or data memory.
« Integrated peripherals that implement features not defined explicitly by the core archi-
tecture.

Code is directly portable (object-code compatible) when it does not depend on
implementation-specific instructions, mechanisms or registers. The aspects of this microprocessor
that are implementation dependent are described below. Those aspects not described below are
part of the core architecture.

A-1

int
CONSIDERATIONS FOR WRITING PORTABLE CODE I ‘d““

A.2 ADDRESS SPACE RESTRICTIONS

Address space properties that are implementation-specific to this microprocessor are described in
the subsections that follow.

A.2.1 Reserved Memory

Addresses in the range FFO0 0000H to FFFF FFFFH are reserved by the 1960 architecture. The
1960 Jx processor cannot access this memory, so any use of reserved memory by other i960
processor code is not portable to the 1960 Jx processor.

A.2.2 Initialization Boot Record

The 1960 Jx processor uses a section just below the reserved address space for the initiaization

boot record; see section 12.3.1.1, “Initialization Boot Record (IBR)” (pg. 12-1Bhis differs from

the 1960 Cx processor, which requires that user to place the Initialization Boot Record (IBR) in a
section of reserved memory.

The initialization boot record may not exist or may be structured differently for other
implementations of the 1960 architecture.

A.2.3 Internal Data RAM

Internal data RAM — an i960 Jx processor implementation-specific feature — is mapped to the first

1 Kbytes of the processor’'s address space (0000H — 03FFH). The on-chip data RAM may be used to
cache interrupt vectors and may be protected against user and supervisor mode writes. Code that
relies on these special features is not directly portable to all i960 processor implementations.

A.2.4 Instruction Cache

The 1960 architecture allows instructions to be cached on-chip in a non-transparent fashion. This

means that the cache may not detect modification of the program memory by loads, stores or

alteration by external agents. Each implementation of the i960 architecture that uses an integrated
instruction cache provides a mechanism to purge the cache or some other method that forces
consistency between external memory and internal cache.

This feature is implementation dependent. Application code that supports modification of the code
space must use this implementation-specific feature and, therefore, is not object-code portable to
all i960 processor implementations.

A-2

u I
I ‘d” CONSIDERATIONS FOR WRITING PORTABLE CODE

cache; the 80960JT has a 16-Kbyte instruction cache. The instruction cache is purged using the
system control (sysctl) or instruction cache control (icctl) instruction. These instructions are not
available on all 1960 processors.

The 1960 JA processor has a 2-Khbyte instruction cache; the JF and JD have a 4-Kbyte instruction -
A

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction.

The instruction cache supports locking code into half of the cache. The unlocked portion functions
as a direct-mapped cache. Refer to section 4.4, “INSTRUCTION CACHE” (pg. 4-4jor a
description of cache configuration.

The 1960 JA processor has a 1-Kbyte data cache; the i960 JF and JD processors have a 2-Kbyte
data cache and the 80960JT has a 4-Kbyte data cache. With respect to data accesses on a
region-by-region basis, external memory is configured as either cacheable or non-cacheable. A bit
in the memory region table entry defines whether or not data accesses are cacheable. This makes it
very easy to partition a system into non-cacheable regions (for I/O or shared data in a
multiprocessor system) and cacheable regions (local system memory) with no external hardware
logic. To maintain data cache coherency, the 1960 Jx processor implements a simple single
processor coherency mechanism. Also, by software control, the data cache can be globally
enabled, globally disabled or globally invalidated. A data access is either:

« Explicitly defined as cacheable or non-cacheable—through the memory region table

« Implicitly defined as non-cacheable—by the nature of the access; all atomic accesses
(atmod, atadd) are implicitly defined as non-cacheable data accesses

The data cache indirectly supports unaligned accesses. Microcode execution breaks unaligned
accesses into aligned accesses that are cacheable or non-cacheable according to the same rules as
aligned accesses. An unaligned access could be only partially in the data cache and be a combination
of hits and misses. The data cache supports both big-endian and little-endian data types.

A.3 Data and Data Structure Alignment

The 1960 architecture does not define how to handle loads and stores to non-aligned addresses.
Therefore, code that generates non-aligned addresses may not be compatible with all i960
processor implementations. The 960 Jx processor automatically handles non-aligned load and
store requests in microcode.

The address boundaries on which an operand begins can affect processor performance. Operands
that span more word boundaries than necessary suffer a cost in speed due to extra bus cycles.

A-3

int
CONSIDERATIONS FOR WRITING PORTABLE CODE I ‘d““

Alignment of architecturaly defined data structures in memory is implementation dependent. See
section 3.4, “ARCHITECTURALLY DEFINED DATA STRUCTURES” (pg. 3-11Lode that
relies on specific alignment of data structures in memory is not portable to every i960 processor type.

Stack frames in the i960 architecture are aligned on (SALIGN*16)-byte boundaries, where
SALIGN is an implementation-specific parameter. For the i960Jx processors, SALIGN =1, so
stack frames are aligned on 16-byte boundaries. The low-order N bits of the Frame Pointer are
ignored and are always interpreted to be zero. The N parameter is defined by the following
expression: SALIGN*16 = " Thus for the i960 Jx processors, N is 4.

A.4 RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES

Some register and data structure fields are defined as reserved locations. A reserved field may be
used by future implementations of the i960 architecture. For portability and compatibility, code
should initialize reserved locations to zero. When an implementation uses a reserved location, the
implementation-specific feature is activated by a value of 1 in the reserved field. Setting the
reserved locations to 0 guarantees that the features are disabled.

A.5 INSTRUCTION SET

The 1960 architecture defines a comprehensive instruction set. Code that uses only the
architecturally-defined instruction set is object-level portable to other implementations of the i960
architecture. Some implementations may favor a particular code ordering to optimize
performance. This special ordering, however, is never required by an implementation. The
following subsections describe implementation-dependent instruction set properties.

A.5.1 Instruction Timing

An objective of the 1960 architecture is to allow micro-architectural advances to translate directly into

increased performance. The architecture does not restrict parallel or out-of-order instruction execution,
nor does it define the time required to execute any instruction or function. Code that depends on
instruction execution times, therefore, is not portable to all i960 processor architecture implementations.

A-4

u I
I ‘d” CONSIDERATIONS FOR WRITING PORTABLE CODE

A.5.2 Implementation-Specific Instructions -
A

Most of the processor’s instruction set is defined by the core architecture. Several instructi

specific to the 1960 Jx processor. These instructions are either functional extensions to the

instruction set or instructions that control implementation-specific functiGh$APTER 6,
INSTRUCTION SET REFERENCHenotes each implementation-specific instruction.

* dcctl Data cache control « inten Global interrupt enable
o cctl I nstruction cache control e intdis Global interrupt disable
« intctl Interrupt control « sysctl System control

e halt Halt CPU

Application code using implementation-specific instructions is not directly portable to the entire
i960 processor family. Attempted execution of an unimplemented instruction results in an
OPERATION.INVALID_OPCODE fault.

The 1960 Jx and Hx processors introduce several new core instructions. These instructions may or
may not be supported on other i960 processors. The new core instructions include:

* ADD<cc> Conditional add * eshro Extended shift right ordinal
* bswap Byte swap e SEL<cc> Conditional select
+ COMPARE Byteand short compares e SUB<cc> Conditional subtract

A.6 EXTENDED REGISTER SET

The 1960 architecture defines a way to address an extended set of 32 registers in addition to the
16 global and 16 local registers. Some or all of these registers may be implemented on a specific
i960 processor. There are no extended registers implemented on the i960 Jx processors.

A.7 INITIALIZATION

The 1960 architecture does not define an initialization mechanism. The way that an i960-based
product is initialized is implementation dependent. Code that accesses locations in initialization
data structures is not portable to other i960 processor implementations.

The 1960 Jx processors use an initialization boot record (IBR) and a process control block (PRCB)
to hold initial configuration and a first instruction pointer.

A-5

int
CONSIDERATIONS FOR WRITING PORTABLE CODE I ‘d“"

A.8 MEMORY CONFIGURATION

The 1960 Jx processors employ Physical Memory Control (PMCON) and Logical Memory
Control (LMCON) registersto control bus width, byte order and the data cache. This capability is
analogous to the MCON register scheme employed by the i960 Cx processor. Memory
configurations, like the bus control unit, are implementation specific.

A.9 INTERRUPTS

The 1960 architecture defines the interrupt servicing mechanism. This includes priority definition,
interrupt table structure and interrupt context switching that occurs when an interrupt is serviced.
The core architecture does not define the means for requesting interrupts (external pins, software,
etc.) or for posting interrupts (i.e., saving pending interrupts).

The method for requesting interrupts depends on the implementation. The i960 Jx processors have
an interrupt controller that manages nine external interrupt pins. The organization of these pins
and the registers of the interrupt controller are implementation specific. Code that configures the
interrupt controller is not directly portable to other i960 implementations.

On the i960Jx processors, interrupts may also be requested in software with the sysctl instruction.
Thisinstruction and the software request mechanism are implementation specific.

Posting interrupts is also implementation specific. Different implementations may optimize
interrupt posting according to interrupt type and interrupt controller configuration. A pending
priorities and pending interrupts field is provided in the interrupt table for interrupt posting.
However, the 1960 Jx processors post hardware-requested interrupts internally in the IPND
register instead. Code that requests interrupts by setting bits in the pending priorities and pending
interrupts field of the interrupt table is not portable. Also, application code that expects interrupts
to be posted in the interrupt table is not object-code portable to al i960-based products.

The 960 Jx processors do not store a resumption record for suspended instructionsin the interrupt

or fault record. Portable programs must tolerate interrupt stack frames with and without these
resumption records.

A.10 OTHER i960 Jx PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES

Subsections that follow describe additional implementation-specific features of the i960 Jx
processors. These features do not relate directly to application code portability.

A-6

u I
I ‘d” CONSIDERATIONS FOR WRITING PORTABLE CODE

A.10.1 Data Control Peripheral Units

The bus controller and interrupt controller are implementation-specific extensions to the core
architecture. Operation, setup and control of these units is not a part of the core architecture. Other
implementations of thei960 architecture are free to augment or modify such system integration features.

A.10.2 Timers

The 960 Jx processor contains two 32-hit timers that are implementation-specific extensionsto the
1960 architecture. Code involving operation, setup and control of the timers may or may not be
directly portable to other i960 processors.

A.10.3 Fault Implementation

The architecture defines a subset of fault types and subtypes that apply to al implementations of
the architecture. Other fault types and subtypes may be defined by implementations to detect errant
conditions that relate to implementation-specific features. For example, the 1960 Jx microprocessor
provides an OPERATION.UNALIGNED fault for detecting non-aligned memory accesses. Future
1960 processor implementations that generate this fault are expected to assign the same fault type
and subtype numbers to the fault.

A.11 BREAKPOINTS

Breakpoint registers are not defined in the 1960 architecture. The 1960 Jx processor implements
two instruction and two data breakpoint registers.

A-7

intel
B

OPCODES AND EXECUTION
TIMES

intel

B.1

APPENDIX B
OPCODES AND EXECUTION TIMES

INSTRUCTION REFERENCE BY OPCODE

This section lists the instruction encoding for each i960® Jx processor instruction. Instructions are
grouped by instruction format and listed by opcode within each format.

Table B-1.

Miscellaneous Instruction Encoding Bits

M3‘M2‘M1‘52‘Sl‘

il

Description

REG Format

srclis a global or local register

srclis aliteral

reserved

reserved

src2is a global or local register

src2is aliteral

reserved

reserved

srcldstis a global or local register

PO X[X | X|X|[X]|X]|X|X

X|X|P[O|RP|O|X|X]|X|X

X|X[|X[X|X|X|[FR|O|FR|O

X|X|P[P|IO|O|[X|X|X|X

X|X[|X[X|X|[X|[FR|FRP|O|lO

reserved

COBR Format

srcl, src2 and dst are global or local registers

srclis aliteral, src2 and dst are global or local registers

reserved

| O[O

|| O|O

X | X[X|X

reserved

B-1

int
OPCODES AND EXECUTION TIMES I ‘é®

Table B-2. REG Format Instruction Encodings (Sheet 1 of 4)

ot
]
®) 3 ° — - ° _
3 5 a | 8T | €| ¢ 3 8o 5% |3
g 5 g | 83 | g | 5 g ge | 28 | 5
@) § E o n (e} 0
(8]
3
31....... 24 123..19 (18.14| 13 12 11 |10..7| 6 5 (4..0
58:0 notbit 1 01011000 dst src M3 | M2 | M1 | 0000 | S2 | S1 |bitpos
58:1 and 1 0101 1000| dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
58:2 andnot 1 0101 1000| dst src2 | M3 M2 M1 | 0010 | S2 | S1 | srcl
58:3 setbit 1 01011000 dst src M3 | M2 | M1 | 0011 | S2 | S1 |bitpos
58:4 notand 1 0101 1000| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
58:6 xor 1 0101 1000| dst src2 M3 M2 M1 | 0110 | S2 | S1 | srcl
58:7 or 1 0101 1000| dst src2 M3 M2 M1 | 0111 | S2 | S1 | srcl
58:8 nor 1 0101 1000| dst src2 M3 M2 M1 | 1000 | S2 | S1 | srcl
58:9 xnor 1 0101 1000| dst src2 M3 M2 M1 | 1001 | S2 | S1 | srcl
58:A not 1 0101 1000| dst M3 | M2 | M1 | 1010 | S2 | S1 | src
58:B ornot 1 0101 1000| dst src2 | M3 M2 M1 | 1011 | S2 | S1 | srcl
58:C clrbit 1 01011000 dst src M3 | M2 | M1 | 1100 | S2 | S1 |bitpos
58:D notor 1 0101 1000| dst src2 | M3 M2 M1 | 1101 | S2 | S1 | srcl
58:E nand 1 0101 1000| dst src2 M3 M2 M1 | 1110 | S2 | S1 | srcl
58:F alterbit 1 01011000 dst src M3 | M2 | M1 | 1111 | S2 | S1 |bitpos
59:0 addo 1 01011001 | dst src2 | M3 M2 M1 | 0000 | S2 | S1 | srcl
59:1 addi 1 01011001 | dst src2 | M3 | M2 | M1 | 0001 | S2 | S1 | srci
59:2 subo 1 0101 1001| dst src2 | M3 M2 M1 | 0010 | S2 | S1 | srcl
59:3 subi 1 01011001 | dst src2 | M3 | M2 | M1 | 0011 | S2 | S1 | srci
59:4 cmpob 1 0101 1001 sre2 | M3 | M2 | M1 | 0100 | S2 | S1 | srcl
59:5 cmpib 1 0101 1001 src2 | M3 | M2 | M1 | 0101 | S2 | S1 | srcl
59:6 cmpos 1 0101 1001 src2 | M3 | M2 | M1 | 0110 | S2 | S1 | srcl
59:7 cmpis 1 0101 1001 sre2 | M3 | M2 | M1 | 0111 | S2 | S1 | srcl
59:8 shro 1 0101 1001| dst src M3 M2 M1 | 1000 | S2 | s1 len
59:A shrdi 6 01011001 | dst src M3 | M2 | M1 | 1010 | S2 | S1 | len
59:B shri 1 01011001 | dst src M3 M2 M1 | 1011 | S2 | S1 len
59:C shlo 1 01011001 | dst src M3 | M2 | M1 | 1100 | S2 | S1 | len
59:D rotate 1 01011001 | dst src M3 M2 M1 | 1101 | S2 | S1 len
59:E shli 1 01011001 | dst src M3 | M2 | M1 | 1110 | S2 | S1 | len
5A:0 cmpo 1 0101 1010 src2 | M3 | M2 | M1 | 0000 | S2 | S1 | srcl
5A:1 cmpi 1 0101 1010 src2 | M3 | M2 | M1 | 0001 | S2 | S1 | srcl

1. Execution time based on function performed by instruction.

intel

Opcode

5A:2
5A:3
5A:4
5A:5
5A:6
5A:7
5A.C
5A:D
5AE
5B:0
5B:2
5B:4
5B:5
5C:.C
5D:8
5D:C
5E:.C
5F:.C
61:0
61:2
64.0
64:1
64:5
65:0
65:1
65:4
65:5
65:8
65:9
65:B
65:C

1. Execution time based on function performed by instruction.

Table B-2. REG Format Instruction Encodings (Sheet 2 of 4)

Mnemonic

concmpo
concmpi
cmpinco
cmpinci
cmpdeco
cmpdeci
scanbyte
bswap
chkbit
addc
subc
intdis
inten
mov
eshro
movl
movt
movq
atmod
atadd
spanbit
scanbit
modac
modify
extract
modtc
modpc
intctl
sysctl
icctl
dcctl

OPCODES AND EXECUTION TIMES

g
]
8 L —~ — (] -
i =R g | o g 85| 8% | g
o O — 3 = o o ™ o © =
g | 8= | 5|7 . g% &% | °
8
31.... 24 123..19 |18..14| 13 12 11 |10 ...7| 6 5 (4...0
1 0101 1010 src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
1 0101 1010 src2 M3 M2 M1 | 0011 | S2 | S1 | srcl
1 0101 1010| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
1 0101 1010| dst src2 M3 M2 M1 | 0101 | S2 | S1 | srcl
1 0101 1010| dst src2 M3 M2 M1 | 0110 | S2 | S1 | srcl
1 0101 1010| dst src2 M3 M2 M1 | 0111 | S2 | S1 | srcl
1 0101 1010 src2 M3 M2 M1 | 1100 | S2 | S1 | srcl
7 0101 1010| dst M3 | M2 | M1 | 1101 | S2 | S1 | srcl
1 0101 1010 src M3 M2 M1 | 1110 | S2 | S1 |bitpos
1 0101 1011| dst src2 M3 M2 M1 | 0000 | S2 | S1 | srcl
1 0101 1011| dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
1 01011011 M3 | M2 | M1 | 0100 | S2 | S1
1 01011011 M3 | M2 | M1 | 0101 | S2 | S1
1 0101 1100| dst M3 | M2 | M1 | 1100 | S2 | S1 | src
11 0101 1101| dst src2 M3 M2 M1 | 1000 | S2 | S1 | srcl
4 0101 1101| dst M3 | M2 | M1 | 1100 | S2 | S1 | src
5 0101 1110| dst M3 | M2 | M1 | 1100 | S2 | S1 | src
6 0101 1111| dst M3 | M2 | M1 | 1100 | S2 | S1 | src
24 0110 0010| dst src2 M3 M2 M1 | 0000 | S2 | S1 | srcl
24 0110 0010| dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
6 0110 0100| dst M3 | M2 | M1 | 0000 | S2 | S1 | src
0110 0100| dst M3 | M2 | M1 | 0001 | S2 | S1 | src
10 0110 0100 | mask dst M3 M2 M1 | 0101 | S2 | S1 | mask
6 01100101 | src/dst| src M3 M2 M1 | 0000 | S2 | S1 |mask
01100101 | src/dst| len M3 M2 M1 | 0001 | S2 | S1 |bitpos
10 01100101 | mask src M3 M2 M1 | 0100 | S2 | s1 dst
17 01100101 | src/dst| dst M3 M2 M1 | 0101 | S2 | S1 | mask
12-16 |01100101| dst M3 | M2 | M1 | 1000 | S2 | S1 | srcl
10-100% [0110 0101 | src/dst| src2 | M3 M2 M1 | 1001 | S2 | S1 | srcl
10-100% [0110 0101 | src/dst| src2 | M3 M2 M1 | 1011 | S2 | S1 | srcl
10-100% [0110 0101 | src/dst| src2 | M3 M2 M1 | 1100 | S2 | S1 | srcl

int
OPCODES AND EXECUTION TIMES I ‘é®

Table B-2. REG Format Instruction Encodings (Sheet 3 of 4)

QL
]
®) 3 ° — - ° _
3 5 a | 8T | €| ¢ 3 8o 5% |3
g 5 g | 83 | g | 5 g ge | 28 | 5
@) é E o n (e} 0
(8]
3
31...... 24 123..19 (18.14| 13 12 11 |10..7| 6 5 14..0
65:D halt %) 01100101 M3 | M2 | M1 | 1101 | S2 | S1 | srcl
66:0 calls 30 01100110 M3 | M2 | M1 | 0000 | S2 | S1 | src
66:B mark 8 01100110 M3 | M2 | M1 | 1011 | S2 | S1
66:C fmark 8 01100110 M3 | M2 | M1 | 1100 | S2 | S1
66:D flushreg 15 01100110 M3 M2 M1 | 1101 | S2 S1
66:F syncf 4 01100110 M3 M2 M1 | 1111 | S2 S1
67:0 emul 7 01100111 dst src2 | M3 M2 | M1 | 0000 | S2 | S1 | src1
67:1 ediv 40 01100111 dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
70:1 mulo 2-4 0111 0000| dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
70:8 remo 40 0111 0000| dst src2 | M3 M2 | M1 | 1000 | S2 | S1 | srcl
70:B divo 40 0111 0000| dst src2 | M3 | M2 | M1 | 1011 | S2 | S1 | srcl
74:1 muli 2-4 |01110100| dst src2 | M3 | M2 | M1 | 0001 | S2 | S1 | srci
74:8 remi 40 0111 0100| dst src2 | M3 M2 | M1 | 1000 | S2 | S1 | srcl
7419 modi 40 0111 0100| dst src2 | M3 | M2 | M1 | 1001 | S2 | S1 | src1
74:B divi 38 0111 0100| dst src2 | M3 | M2 | M1 | 1011 | S2 | S1 | srcl
78:0 addono 1 0111 1000| dst src2 | M3 M2 | M1 | 0000 | S2 | S1 | srcl
78:1 addino 1 01111000 dst src2 | M3 | M2 | M1 | 0001 | S2 | S1 | srci
78:2 subono 1 0111 1000| dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
78:3 subino 1 01111000 dst src2 | M3 | M2 | M1 | 0011 | S2 | S1 | src1
78:4 selno 1 0111 1000| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
79:0 addog 1 01111001| dst src2 | M3 | M2 | M1 | 0000 | S2 | S1 | srcl
79:1 addig 1 01111001| dst | src2 | M3 | M2 | M1 | 0001 | S2 | S1 | srcl
79:2 subog 1 01111001| dst src2 | M3 | M2 | M1 | 0010 | S2 | S1 | srcl
79:3 subig 1 01111001| dst src2 | M3 | M2 | M1 | 0011 | S2 | S1 | srcl
7914 selg 1 01111001| dst src2 | M3 | M2 | M1 | 0100 | S2 | S1 | srcl
7A:0 addoe 1 0111 1010| dst src2 | M3 M2 | M1 | 0000 | S2 | S1 | src1
7A:1 addie 1 01111010 dst src2 | M3 | M2 | M1 | 0001 | S2 | S1 | srci
7A:2 suboe 1 0111 1010| dst src2 | M3 M2 | M1 | 0010 | S2 | S1 | srcl
7A:3 subie 1 01111010 dst src2 | M3 | M2 | M1 | 0011 | S2 | S1 | srci
7A:4 sele 1 0111 1010| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
7B:0 addoge 1 01111011| dst src2 | M3 | M2 | M1 | 0000 | S2 | S1 | srcl

1. Execution time based on function performed by instruction.

intel

Opcode

7B:1
7B:2
7B:3
7B:4
7C.0
7C1
7C:2
7C:3
7C4
7D:0
7D:1
7D:2
7D:3
7D:4
7E:0
7E:1
7E:2
7E:3
7E:4
7F:0
7F:1
TF:2
7F:3
TF:4

1. Execution time based on function performed by instruction.

Mnemonic

addige
suboge
subige
selge
addol
addil
subol
subil
sell
addone
addine
subone
subine
selne
addole
addile
subole
subile
selle
addoo
addio
suboo
subio
sello

Table B-2. REG Format Instruction Encodings (Sheet 4 of 4)

OPCODES AND EXECUTION TIMES

g
]
8 L —~ — (] -
a | 8T | & | 9 g 85| g8 | T
o O —) = o o ™ o T =
g | 8% | 5 |7 = 7| &% | °
31.... 24 123..19 |18..14| 13 12 11 |10 ...7| 6 5 14...0
1 01111011| dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
1 01111011| dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
1 01111011| dst src2 M3 M2 M1 | 0011 | S2 | S1 | srcl
1 01111011| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
1 01111100| dst src2 M3 M2 M1 | 0000 | S2 | S1 | srcl
1 01111100| dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
1 01111100| dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
1 01111100| dst src2 M3 M2 M1 | 0011 | S2 | S1 | srcl
1 01111100| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
1 01111101| dst src2 M3 M2 M1 | 0000 | S2 | S1 | srcl
1 01111101| dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
1 01111101| dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
1 01111101| dst src2 M3 M2 M1 | 0011 | S2 | S1 | srcl
1 01111101| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
1 01111110| dst src2 M3 M2 M1 | 0000 | S2 | S1 | srcl
1 01111110| dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
1 01111110| dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
1 01111110| dst src2 M3 M2 M1 | 0011 | S2 | S1 | srcl
1 01111110| dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl
1 01111111 dst src2 M3 M2 M1 | 0000 | S2 | S1 | srcl
1 01111111 dst src2 M3 M2 M1 | 0001 | S2 | S1 | srcl
1 01111111 dst src2 M3 M2 M1 | 0010 | S2 | S1 | srcl
1 01111111 dst src2 M3 M2 M1 | 0011 | S2 | S1 | srcl
1 01111111 dst src2 M3 M2 M1 | 0100 | S2 | S1 | srcl

OPCODES AND EXECUTION TIMES

Opcode

20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
38
39
3A
3B
3c
3D
3E
3F

Mnemonic

testno
testg
teste
testge
testl
testne
testle
testo
bbc
cmpobg
cmpobe
cmpobge
cmpobl
cmpobne
cmpoble
bbs
cmpibno
cmpibg
cmpibe
cmpibge
cmpibl
cmpibne
cmpible
cmpibo

Table B-3. COBR Format Instruction Encodings

intel

b
3 £
5 g R N % o
‘3 gL @ @ 4 L
@)
% a
3l 24123 . 19|18...14| 13 |12....... 1 0
4 0010 0000 dst M1 T S2
4 0010 0001 dst M1 T S2
4 0010 0010 dst M1 T S2
4 0010 0011 dst M1 T S2
4 0010 0100 dst M1 T S2
4 0010 0101 dst M1 T S2
4 0010 0110 dst M1 T S2
4 0010 0111 dst M1 T S2
2+1! 0011 0000 | bitpos | src M1 targ T S2
2+1 0011 0001 srcl src2 M1 targ T S2
2+1 0011 0010 srcl src2 M1 targ T S2
2+1 0011 0011 srcl src2 M1 targ T S2
2+1 0011 0100 srcl src2 M1 targ T S2
2+1 0011 0101 srcl src2 M1 targ T S2
2+1 0011 0110 srcl src2 M1 targ T S2
2+1 0011 0111 | bitpos src M1 targ T S2
2+1 0011 1000 srcl src2 M1 targ T S2
2+1 0011 1001 srcl src2 M1 targ T S2
2+1 0011 1010 srcl src2 M1 targ T S2
2+1 0011 1011 srcl src2 M1 targ T S2
2+1 0011 1100 srcl src2 M1 targ T S2
2+1 0011 1101 srcl src2 M1 targ T S2
2+1 0011 1110 srcl src2 M1 targ T S2
2+1 0011 1111 srcl src2 M1 targ T S2

1. Indicates that it takes 2 cycles to execute the instruction plus an additional cycle to fetch the target
instruction if the branch is taken.

u I
I ‘d“ OPCODES AND EXECUTION TIMES

Table B-4. CTRL Format Instruction Encodings

0 §

3 £ 2e 2 S

S o n > b @
o S L9 o Q - o

S N 5

= o ®

S
3l.......... 24 23...e. 2 1 0
08 b 1+11 0000 1000 targ T 0
09 call 7 0000 1001 targ T 0
0A ret 6 0000 1010 T 0
0B bal 1+1 0000 1011 targ T 0
10 bno 1+1 0001 0000 targ T 0
11 bg 1+1 0001 0001 targ T 0
12 be 1+1 0001 0010 targ T 0
13 bge 1+1 0001 0011 targ T 0
14 bl 1+1 0001 0100 targ T 0
15 bne 1+1 0001 0101 targ T 0
16 ble 1+1 0001 0110 targ T 0
17 bo 1+1 0001 0111 targ T 0
18 faultno 13 0001 1000 T 0
19 faultg 13 0001 1001 T 0
1A faulte 13 0001 1010 T 0
1B faultge 13 0001 1011 T 0
1C faultl 13 0001 1100 T 0
1D faultne 13 0001 1101 T 0
1E faultle 13 0001 1110 T 0
1F faulto 13 0001 1111 T 0

1. Indicates that it takes 1 cycle to execute the instruction plus an additional cycle to fetch the target instruction
if the branch is taken.

Table B-5. Cycle Counts for sysctl Operations

Operation Cycles to Execute

Post Interrupt 20

Purge I-cache 19

Enable I-cache 20

Disable I-cache 22
Software Reset 329+bus
Load Control Register Group 26
Request Breakpoint Resource 21-22

OPCODES AND EXECUTION TIMES

intel

Table B-6. Cycle Counts for icctl Operations

Operation Cycles to Execute
Disable I-cache 18
Enable I-cache 16
Invalidate I-cache 18
Load and Lock I-cache 5193
I-cache Status Request 21
I-cache Locking Status 20

Table B-7. Cycle Counts for dcctl Operations

Operation Cycles to Execute
Disable D-cache 18
Enable D-cache 18
Invalidate D-cache 19
Load and Lock D-cache 19
D-cache Status Request 16
Quick Invalidate D-cache 14

Table B-8. Cycle Counts for intctl Operations

Operation Cycles to Execute
Disable Interrupts 13
Enable Interrupts 13
Interrupt Status Request 8

intel

OPCODES AND EXECUTION TIMES

Table B-9. MEM Format Instruction Encodings

31 ... 24123...19|18....... 14 113...... 12 [11 0
Opcode | src/dst| ABASE Mode Offset
31 ... 24 123...19|18....... 14 | 13....... 12..11....... 10 |9....... 716..5(4.... 0
Opcode | src/dst| ABASE Mode Scale 00 Index
Displacement
Effective Address
efa= offset| opcode | dst | [0] o] offset |
offset(reg) | opcode | dst | reg | 1] 0 | offset |
(reg)| opcode | dst | reg] O] 1] 0] 0] | 00 | |
disp+8(IP)[opcode | dst | [0 1]oJ1] [00 |
displacement
(regl)[reg2* scale]l| opcode | dst | regt | 0 [1 | 1] 1 | scale | 00 | reg2 |
disp| opcode | dst | [1]J1]o0o] o] | 00 |
displacement
disp(reg)| opcode | dst | reg | 1 [1] 0] 1] | 00 |
displacement
displreg * scale] | opcode | dst | [1] 1] 1] 0] scale | 00] reg
displacement
disp(regl)[reg2*scale]| opcode | dst | reg1 [1 | 1 [1 [1 | scale | 00 | reg2
displacement
Opcode Mnemonic Cycles to Opcode Mnemonic Cycles to
Execute Execute
80 Idob (See Note 1.) 9A stl (See Note 1.)
82 stob (See Note 1.) A0 Idt (See Note 1.)
84 bx 4-7 A2 stt (See Note 1.)
85 balx 5-8
86 callx 9-12 BO Idg (See Note 1.)
88 Idos (See Note 1.) B2 stq (See Note 1.)
8A stos (See Note 1.) (0] Idib (See Note 1.)
8C Ida (See Note 1.) Cc2 stib (See Note 1.)
90 Id (See Note 1.) C8 Idis (See Note 1.)
92 st (See Note 1.) CA stis (See Note 1.)
98 Idl (See Note 1.)

1. The number of cycles required to execute these instructions is based on the addressing mode used (see

Table B-10).

OPCODES AND EXECUTION TIMES

Table B-10. Addressing Mode Performance

intel

Memor Number of Cycles to
Mode Assembler Syntax y Instruction Y
Format Execute
words

Absolute Offset exp MEMA 1 1
Absolute Displacement exp MEMB 2 2
Register Indirect (reg) MEMB 1 1
Register Indirect with Offset exp(reg) MEMA 1 1
Register Indirect with Displacement | exp(reg) MEMB 2 2
Index with Displacement exp[reg*scale] MEMB 2 2
Register Indirect with Index (reg)[reg*scale] MEMB 1 6
Register Indirect with Index + " 6
Displacement exp(reg)[reg*scale] MEMB 2
In_structlon Pointer with exp(IP) MEMB 2 6
Displacement

B-10

intel
C

MACHINE-LEVEL
INSTRUCTION FORMATS

intel

APPENDIX C
MACHINE-LEVEL INSTRUCTION FORMATS

This appendix describes the encoding format for instructions used by the i960® Processors.

Included is a description of the four instruction formats and how the addressing modes relate to @
these formats. Refer also to APPENDIX B, OPCODES AND EXECUTION TIMES.

C.1 GENERAL INSTRUCTION FORMAT

The 1960 architecture defines four basic instruction encoding formats: REG, COBR, CTRL and

MEM (see Figure C-1). Each instruction uses one of these formats, which is defined by the
instruction’s opcode field. All instructions are one word long and begin on word boundaries. MEM
format instructions are encoded in one of two sub-formats: MEMA or MEMB. MEMB supports an
optional second word to hold a displacement value. The following sections describe each format’s
instruction word fields.

31 28 24 20 16 12 8 4 0
T T T T T T T T T T T T T T T 1 1 T 1 1 1 1
Opcode sre/dst src2 MMM Opcode S|S srcl REG
(8 bits) (5 bits) (5 bits) 3121 (4 bits) 21 (5 bits)
31 28 24 20 16 12 8 4 0
T T T T T T T T T T T T T T T 1 1 1 1 T 1 1 1 1 1
Opcode srcl 2 M displacement S
@ bits) (5 bits) (Sslr;ts) 1 (L1 bits) T|2| COBR
31 28 24 20 16 12 8 4 0
T 1 1 1 1 1
Opcode displacement
(8 bits) (22 bits) T|o| CTRL
31 28 24 20 16 12 8 4 0
T T
Opcode src/dst abase Offset
(8 bits) (5 bits) (5 bits) x| o (12 bits) MEMA
t T MODE
31 28 24 20 16 12] 8 4 0
T T T T T T T T T T T T T T T 1 I] T T T 1
Opcode src/dst abase Scale Index
(8 bits) (5 bits) (5 bits) Xprpxx (3 bits) oo (5 bits) MEMB
Optional Displacement

Figure C-1. Instruction Formats

C-1

int
MACHINE-LEVEL INSTRUCTION FORMATS I ‘é““

Table C-1. Instruction Field Descriptions

Instruction Field

Description

The opcode of the instruction. Opcode encodings are defined in section 6.1.8,

Opcode “Opcode and Instruction Format” (pg. 6-6).

srel An input to the in_str_uctio_n. This field spfecifies a valug or a}ddress. In one case of the
COBR format, this field is used to specify a register in which a result is stored.

src2 An input to the instruction. This field specifies a value or address.

src/dst Depending on the instruc.tion, this field can be (1) an input value or address, (2) the
register where the result is stored, or (3) both of the above.

abase A register whose register’s value is used in computing a memory address.

INDEX A register whose register’s value is used in computing a memory address.

displacement A signed two’s complement number.

Offset An unsigned positive number.

Optional

Displacement

A signed two’s complement number used in the two-word MEMB format.

A specification of how a memory address for an operand is computed and, for MEMB,

MODE specifies whether the instruction contains a second word to be used as a
displacement.
A specification of how a register’s contents are multiplied for certain addressing
SCALE . . .
modes (i.e., for indexing).
M1, M2, M3 These fields further define the meaning of the SRC 1, SRC 2, and src/dst fields

respectively as shown in and Table C-3.

When a particular instruction is defined as not using a particular field, the field isignored.

C.2 REG FORMAT

REG format is used for operations performed on data contained in registers. Most of the 1960
processor family’s instructions use this format.

The opcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split between

bits 7 through 10 and bits 24 through 31. For exampleadlé opcode is 591H. Here, bits 24
through 31 contain 59H and bits 7 through 10 contain 1H.

srcl andsrc2 fields specify the instruction’s source operands. Operands can be global or local

registers or literals. Mode bits (M1 fercl and M2 forsrc2) and the instruction type determine
what an operand specifieBable C-2shows this relationship.

C-2

MACHINE-LEVEL INSTRUCTION FORMATS

intel

Table C-2. Encoding of src1and src2in REG Format

M1 or M2 Srcl or Src2 Operand Register Number Literal Value
Value
00000 ... 01111 r0 ... r15 NA
0 10000 ... 11111 go0 ... g15 NA
1 00000 ... 11111 NA 0..31

The src/dst field can specify a source operand, a destination operand or both, depending on the
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the src/dst
operand isaglobal or loca register that isencoded as shown in Table C-3.

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-bit
value and used as the operand. When the instruction defines an operand to be larger than 32 hits,
values specified by literals are zero-extended to the operand size.

Table C-3. Encoding of src/dstin REG Format

M3 src/dst src Only dst Only
0 g0 ...g15 g0 ...gl5 g0 ...g15

r0 ... r15 r0 ... r15 r0 ... r15
1 Reserved Reserved Reserved

C.3 COBR FORMAT

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits).

The srcl and src2 fields specify source operands for the instruction. The srcl field can specify
either aglobal or loca register or aliteral as determined by mode bit M1. The src2 field can only
specify aglobal or loca register. Table C-4 shows the M1, srcl relationship and Table C-4 shows
the S2, src2 relationship:.

Table C-4. Encoding of src1in COBR Format

M1 srcl

0 g0 ...gl5
r0 ... r15

1 Literal

C-3

int
MACHINE-LEVEL INSTRUCTION FORMATS I ‘é““

Table C-5. Encoding of src2in COBR Format

S2 src2

0 g0...gl5
r0 ... r15

1 reserved

The displacement field contains a signed two’s complement number that specifies a word
displacement. The processor uses this value to compute the address of a target instruction to which
the processor branches as a result of the comparison. The displacement field’s value can range
from -210 to 21 -1. To determine the target instruction’s IP, the processor converts the
displacement value to a word displacement (i.e., multiplies the value by 4). It then adds the
resulting word displacement to the IP of the current instruction.

C.4 CTRL FORMAT

The CTRL format is used for instructions that branch to a new IP, includirgRARBCH<cc>,
bal, ret and call instructions. Note thahalx, bx andcallx do not use this format. The CTRL
opcode field is eight bits (two hexadecimal digits).

A branch target address is specified with the displacement field in the same manner as COBR
format instructions. The displacement field specifies a word displacement as a signed, two’s
complement number in the range21—2to 2L1. The processor ignores thet instruction’s
displacement field.

C.5 MEM FORMAT

The MEM format is used for instructions that require a memory address to be computed. These
instructions include theOAD, STORE andlda instructions. Also, the extended versions of the
branch, branch-and-link and call instructiobg,(balx andcallx) use this format.

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit
displacement (contained in a second word) to the instruction. Bit 12 of the instruction’s first word
determines whether MEMA (clear) or MEMB (set) is used.

The opcode field is eight bits long for either encoding. FbkAlst field specifies a global or local
register. For load instructions;c/dst specifies the destination register for a word loaded into the
processor from memory or, for operands larger than one word, the first of successive destination
registers. For store instructions, this field specifies the register or group of registers that contain
the source operand to be stored in memory.

c-4

MACHINE-LEVEL INSTRUCTION FORMATS

intel

The mode field determines the address mode used for the instruction. Table C-6 summarizes the
addressing modes for the two MEM-format encodings. Fields used in these addressing modes are
described in the following sections.

Table C-6. Addressing Modes for MEM Format Instructions

) . # of Instr C
Format | MODE Addressing Mode Address Computation
Words
00 Absolute Offset offset 1
MEMA : : ,
10 Register Indirect with Offset (abase) + offset 1
0100 |Register Indirect (abase) 1
0101 |IP with Displacement (IP) + displacement + 8 2
0110 |Reserved reserved NA
0111 |Register Indirect with Index (abase) + (index) * 25¢ale 1
MEMB 1100 | Absolute Displacement displacement
1101 R_eglster Indirect with (abase) + displacement 2
Displacement
1110 |Index with Displacement (index) * 25¢@€ 4+ displacement 2
1111 Register Indirect with Index and (abase) + (index) * 25°@%€ + displacement 2
Displacement
NOTE:

In these address computations, afield in parentheses indicates that the value in the specified regis-
ter isused in the computation.

Usage of areserved encoding may cause generation of an OPERATION.INVALID_OPCODE
fault.

C.5.1 MEMA Format Addressing

The MEMA format provides two addressing modes:
e Absolute offset
¢ Register indirect with offset

Theoffset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a global
or local register that contains an address in memory.

For the absolute-offset addressing mode (MODE = 00), the processor interprgfsettieeld as

an offset from byte 0 of the current process address space; the abase field is ignored. Using this
addressing mode along with th#a instruction allows a constant in the range 0 to 4096 to be
loaded into a register.

C-5

int
MACHINE-LEVEL INSTRUCTION FORMATS I ‘é““

For the register-indirect-with-offset addressing mode (MODE = 10), offset field value is added to
the address in the abase register. Clearing the offset value creates a register indirect addressing
mode; however, this operation can generally be carried out faster by using the MEMB version of
this addressing mode.

C.5.2 MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

* absolute displacement e register indirect

e register indirect with displacement » register indirect with displacement
e register indirect with index and displacement e index with displacement

« |P with displacement

The abase and index fields specify local or global registers, the contents of which are used in
address computation. When theindex field is used in an addressing mode, the processor automati-
cally scales the index register value by the amount specified in the SCALE field. Table C-7 gives
the encoding of the scale field. The optiona displacement field is contained in the word following
the instruction word. The displacement is a 32-bit signed two’s complement value.

Table C-7. Encoding of Scale Field

Scale Scale Factor (Multiplier)
000 1
001 2
010 4
011 8
100 16
101to 111 Reserved

NOTE:
Usage of a reserved encoding causes an unpredictable result.

For the IP with displacement mode, the value of the displacement field plus eight is added to the
address of the current instruction.

C-6

intgl.
D

REGISTER AND DATA
STRUCTURES

intgl.

APPENDIX D
REGISTER AND DATA STRUCTURES

This appendix is a compilation of all register and data structure figures described throughout the
manual. Following each figure is areference that indicates 23the section that discusses the figure.

Table D-1. Register and Data Structures (Sheet 1 of 2)

Fig.| Register/Data Structure Where Defined in the manual Page
D-1 | AC (Arithmetic Controls) Register Section 3.7.2, “Arithmetic Controls (AC) Register D-3
(pg. 3-18)
D-2 | PC (Process Controls) Register Section 3.7.3, “Process Controls (PC) Register” (pg. 3-21) D-4
D-3 | Procedure Stack Structure and Locd Registers ;szct;t{r;)?l.l, Local Registers and the Procedure Stack D5
D-4 | System Procedure Table Section 7.5.1, “System Procedure Table” (pg. 7-15) D-6
D-5 | PFP (Previous Frame Pointer) Register (r0) Section 7.8, “RETURNS” (pg. 7-20) D-7
D-6 | Fault Table and Fault Table Entries Section 8.3, “FAULT TABLE” (pg. 8-4) D-8
D-7 | Fault Record Section 8.5, “FAULT RECORD?” (pg. 8-6) D-9
D-8 | TC (Trace Controls) Register Section 9.1.1, “Trace Controls (TC) Register” (pg. 9-2) D-10
D-9 | BPCON (Breakpoint Control) Register section 9.2.7.4, “Breakpoint Control Register” (pg. 9-7) D-10
DAB (Data Address Breakpoint) Register Section 9.2.7.5, “Data Address Breakpoint (DAB) Registers”
D-10 D-11
Format (pg. 9-9)
D-11 | IPB (Instruction Breakpoint) Register Format Section 9.2.7.6, “Instruction Breakpoint (IPB) Registers D-11
(pg. 9-10)
D-12 | TMRO-1 (Timer Mode Register) Section 10.1.1, “Timer Mode Registers (TMRO, TMR1) D-12
(pg. 10-3)
D-13 | TCRO-1 (Timer Count Register) Section 10.1.2, “Timer Count Register (TCRO, TCR1) D-12
(pg. 10-6)
D-14 | TRRO-1 (Timer Reload Register) Section 10.1.3, “Timer Reload Register (TRRO, TRR1) D-13
(pg. 10-7)
D-15 | Interrupt Table Section 11.4, “INTERRUPT TABLE” (pg. 11-4) D-14
D-16 Storage of an Interrupt Record on the Interrupt | Section 11.5, “INTERRUPT STACK AND INTERRUPT D-15
Stack RECORD” (pg. 11-7)
D-17 | ICON (interrupt Control) Register Section 11.7.4, “Interrupt Control Register (ICON) D-16
(pg. 11-22)
i .)) Section 11.7.5, “Interrupt Mapping Registers i
D-18 | IMAPO-IMAP2 (Interrupt Mapping) Registers (IMAPO-IMAP2)” (pg. 11-23) D-17
) Section 11.7.5.1, “Interrupt Mask (IMSK) and Interrupt
D-19 | IMSK (Interrupt Mask) Registers Pending (IPND) Registers” (pg. 11-25) D-18
') Section 11.7.5.1, “Interrupt Mask (IMSK) and Interrupt
D-20 | Interrupt Pending (IPND) Register Pending (IPND) Registers” (pg. 11-25) D-19
D-21 Initial Memory Image (M) and Process Section 12.3.1, “Initial Memory Image (IMI)” (pg. 12-10)| D-20
Control Block (PRCB) S yimag Pg.

REGISTER AND DATA STRUCTURES

In

Table D-1. Register and Data Structures (Sheet 2 of 2)

tel.

Fig.| Register/Data Structure Where Defined in the manual Page
D22 | pr Control Block Configurtion Words Section 12.3.1.2, “Process Control Block (PRCB) D21
(pg. 12-16)
D-23 | Control Table Section 12.3.3, “Control Table” (pg. 12-20) D-22
D-24 | IEEE 1149.1 Device I dentification Register Section 12.4, “DEVICE IDENTIFICATION ON RESET D-23
(pg. 12-22)
)) - Section 13.3, “Programming the Physical Memory
D-25 | PMCON Register Bit Description Attributes (PMCON Registers)” (pg. 13-4) b-3
D-26 | BCON (Bus Control) Register Section 13.4.1, “Bus Control (BCON) Register” (pg. 13-¢) D-24
D.p7 | PLMCON (Defauilt Logical Memory Configu- Section 13.6, “Programming the Logical Memory D-24
ration) Register Attributes” (pg. 13-8)
D-pg | LMADRO:1Logical Memory Template Starting Section 13.6, “Programming the Logical Memory D25
Address Registers Attributes” (pg. 13-8)
D29 | LMMRO:1 (Logical Memory Mask Registers) Section 13.6, “Programming the Logical Memory D-25

Attributes” (pg. 13-8)

Intel® REGISTER AND DATA STRUCTURES

D.1 REGISTERS

31 28 24 20 16 12 8 4 0
n clc|c
i % ? clc|c
f 211]0

No-Imprecise-Faults Bit- AC.nif 4T

(0) Some Faults are Imprecise
(1) All Faults are Precise

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc

Reserved
(Initialize to 0)

Figure D-1. AC (Arithmetic Controls) Register

Section 3.7.2, “Arithmetic Controls (AC) Register” (pg. 3-18)

D-3

REGISTER AND DATA STRUCTURES

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending

(1) fault pending
State Flag - PC.s

(0) executing

(1) interrupted

Priority Field - PC.p
(0-31) process priority l
1
PP |P|P|P ! et
alz|2]1]o s f
p
31 28 24 20 16 12 8
Reserved
(Do not modify)

Figure D-2. PC (Process Controls) Register

Section 3.7.3, “Process Controls (PC) Register” (pg. 3-21)

D-4

Intel® REGISTER AND DATA STRUCTURES

Procedure Stack

Current Register Set Previous Frame Pointer (PFP) r0
g0 — Stack Pointer (SP) r1 .
Previous
Return Instruction Pointer (RIP) r2 Stack
Frame
rl5
Frame Pointer (FP) gl5
user allocated stack
padding area
Previous Frame Pointer (PFP) r0 |—
Stack Pointer (SP) rl [
register Current
reserved for RIP r2 save area Stack
Frame
r15
user allocated stack
unused stack

stack growth
(toward higher addresses)

Figure D-3. Procedure Stack Structure and Local Registers

Section 7.1.1, “Local Registers and the Procedure Stack” (pg. 7-2)

D-5

REGISTER AND DATA STRUCTURES

(Initialize to 0)

. Preserved

31 0
000H
008H
supervisor stack pointer base T| OOCH
010H
02CH
procedure entry 0 030H
procedure entry 1 034H
procedure entry 2 038H
03CH
438H
procedure entry 259 43CH
31 Procedure Entry 210
‘ address D:I
Reserved l—lt

Trace
Control
Bit

Entry Type:
00 - Local
10-Supervisor

Figure D-4. System Procedure Table

Section 7.5.1, “System Procedure Table” (pg. 7-15)

Intel® REGISTER AND DATA STRUCTURES

Return Status
Return-Type Field - PFP.rt
Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer
Address-PFP.a ¢

W
a0
kel
-
-

31 28 24 20 16 12 8 4

Figure D-5. PFP (Previous Frame Pointer) Register (r0)

Section 7.8, “RETURNS” (pg. 7-20)

REGISTER AND DATA STRUCTURES Intel®

31 Fault Table 0
PARALLEL/OVERRIDE Fault Entry 00H
TRACE Fault Entry 08H
OPERATION Fault Entry 10H
ARITHMETIC Fault Entry 18H
20H
CONSTRAINT Fault Entry 28H
30H
PROTECTION Fault Entry 38H
40H
48H
TYPE Fault Entry 50H
FCH
31 Local-Call Entry 210
Fault-Handler Procedure Address 0|0fn

31 System-Call Entry 210
Fault-Handler Procedure Number ‘ 1‘ ol n
0000 027FH n+4

. Reserved (Initialize to 0)

Figure D-6. Fault Table and Fault Table Entries

Section 8.3, “FAULT TABLE” (pg. 8-4)

Intel® REGISTER AND DATA STRUCTURES

31 0

NFP - (n+1)*32

FAULT DATA

NFP - 24- n*32

NFP - 20- n*32

NFP - 12- n*32
i |F|TYFE£H)| i i |FS|UB-|I—YP|E(|H)| NFP - 8- n*32
ADDRESS OF FAULTING INSTRUCTION (n) NFP - 4- n*32
NFP - 64
RESUMPTION INFORMATION
NFP - 52
NFP - 44
I OVERRIDE FAULT DATA N
NFP - 32
FAULT DATA
1T 1T T T T 1 T T T T T
IR " over . DRI | cekred || wee-20
PROCESS CONTROLS NFP-16
ARITHMETIC CONTROLS NFP-12
L ATPEQ) L FSUSTEEQ | | NFP-g
... . | ADDRESSORFAULTNGINSTRUGTION() | | | | |, , , | NFP-4
31 28 24 20 16 12 8 4 0
. RESERVED NOTES: “NFP” means “New Frame Pointer”

n” means “number of faults”

Figure D-7. Fault Record

Section 8.5.1, “Fault Record Description” (pg. 8-7)

D-9

REGISTER AND DATA STRUCTURES

Trace Mode Bits

Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c
Return Trace Mode - TC.r
Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Mark Trace Mode - TC.mk

31 28 24 20 16
dld]ili m
1]0(1]0 s rlc|bfi
AR k|*|P

12 8 4 0

Hardware Breakpoint Event Flags
Instruction-Address Breakpoint 0 - TC.iOf
Instruction-Address Breakpoint 1 - TC.i1f
Data-Address Breakpoint 0 - TC.dOf
Data-Address Breakpoint 1 - TC.d1f

Reserved

Figure D-8. TC (Trace Controls) Register

Section 9.1.1, “Trace Controls (TC) Register” (pg. 9-2)

DABO
DAB1 J
[Il |
m eleymimje |e
1]0 of1]o 0
31 28 24 20 16 12 8 4 0
Reserved Hardware Reset Value: 0000 0000H
(Initialize to 0) Software Re-Init Value: 0000 0000H

Figure D-9. BPCON (Breakpoint Control) Register

Section 9.2.7.4, “Breakpoint Control Register” (pg. 9-7)

D-10

intgl.

REGISTER AND DATA STRUCTURES

Data Address

31 28 24 20 16 12 8 4 0

Hardware Reset Value: 0000 0000H
Software Re-init Value: 0000 0000H

Figure D-10. DAB (Data Address Breakpoint) Register Format

Section 9.2.7.5, “Data Address Breakpoint (DAB) Registers” (pg. 9-9)

IPBx Mode
Instruction Address

1]0

31 28 24 20 16 12 8 4 0

Hardware Reset Value: 0000 0000H
Software Re-init Value: 0000 0000H

Figure D-11. IPB (Instruction Breakpoint) Register Format

Section 9.2.7.6, “Instruction Breakpoint (IPB) Registers” (pg. 9-10)

D-11

REGISTER AND DATA STRUCTURES

Terminal Count Status - TMRx.tc

(0) No Terminal Count
(1) Terminal Count

Timer Enable - TMRx.enable

(0) Disabled
(1) Enabled

Timer Auto Reload Enable - TMRx.reload

(0) Auto Reload Disabled
(1) Auto Reload Enabled

Timer Register Supervisor Write Control - TMRx.sup
(0) Supervisor and User Mode Write Enabled
(1) Supervisor Mode Only Write Enabled

Timer Input Clock Selects - TMRx.csel1:0
(00) 1:1 Timer Clock = Bus Clock

(01) 2:1 Timer Clock = Bus Clock / 2
(10) 4:1 Timer Clock = Bus Clock / 4
(11) 8:1 Timer Clock = Bus Clock / 8

31 28 24 20 16 12 8

-

Ti

3

er Mode Register (TMRO, TMR1)

Reserved
(Initialize to 0)

Figure D-12. TMRO-1 (Timer Mode Register)

Section 10.1.1, “Timer Mode Registers (TMRO, TMR1)” (pg. 10-3)

Timer Count Value - TCRx.d31:0
D31:0

28 24 20 16 12 8

Timer Count Register (TCRO, TCR1)

Figure D-13. TCRO-1 (Timer Count Register)

Section 10.1.2, “Timer Count Register (TCRO, TCR1)" (pg. 10-6)

D-12

Intel® REGISTER AND DATA STRUCTURES

Timer Auto-Reload Value - TRRx.d31:0
D31:0
[
28 24 20 16 12 8 4 0

Timer Reload Register (TRRO, TRR1)

Figure D-14. TRRO-1 (Timer Reload Register)

Section 10.1.3, “Timer Reload Register (TRRO, TRR1)” (pg. 10-7)

D-13

REGISTER AND DATA STRUCTURES

NMI Vector

Entry 252

Entry 255

31 87 0
Pending Priorities O00OH
004H
> Pending Interrupts
020H
Entry 8 024H (Vector 8)
Entry 9 028H (Vector 9)
Entry 10 02CH (Vector 10)
Entry 243 3DOH (Vector 243)

3D4H (Vector 244)

3EOH (Vector 247)
3E4H (Vector 248)
3E8H (Vector 249)

3FOH (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Vector Entry

| Instruction Pointer

210 _
[X[X] [0 Norma

- Reserved (Initialize to 0)

- Preserved

01 Reserved!

10 Reserved®

11 Reserved®

1 Vector entries with a reserved type
cause unpredictable behavior.

Figure D-15. Interrupt Table

Section 11.4, “INTERRUPT TABLE” (pg. 11-4)

D-14

Intel® REGISTER AND DATA STRUCTURES

Current Stack
31 (Local, Supervisor, or Interrupt Stack) 0

T Current Frame

Interrupt Stack

L Padding Area £

Optional Data

Stack (not used by 80960Jx)
Growth
Saved Process Controls Register NFP-16
Interrupt
Saved Arithmetic Controls Register NFP-12 | Record

Vector Number NFP-8

NFP
New Frame 2
T D Reserved

Figure D-16. Storage of an Interrupt Record on the Interrupt Stack

Section 11.5, “INTERRUPT STACK AND INTERRUPT RECORD” (pg. 11-7)

D-15

REGISTER AND DATA STRUCTURES Intel®

Interrupt Mode - ICON.im
(00) Dedicated
(01) Expanded
(10) Mixed
(11) Reserved
Signal Detection Mode - ICON.sdm
(0) Level-low activated
(1) Falling-edge activated
Global Interrupts Enable - ICON.gie
(0) Enabled
(1) Disabled
Mask Operation - ICON.mo
(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded
mode interrupts
Vector Cache Enable - ICON.vce
(0) Fetch from external memory
(1) Fetch from internal RAM

Sampling Mode -ICON.sm
(0) debounce

(1) fast
S|S|]S|S|Ss|s]S]| S
s|eloN™ 9 d]|dldfs]dld]d]d]|m|lm
mel()emmmmmmmmlo
716]5|4|3]2]1]0
31 28 24 20 16 12 8 4 0

Interrupt Control Register (ICON)

Reserved
(Initialize to 0)

Figure D-17. ICON (Interrupt Control) Register

Section 11.7.4, “Interrupt Control Register (ICON)” (pg. 11-22)

D-16

intgl.

REGISTER AND DATA STRUCTURES

External Interrupt O Field - IMAPO.x0
External Interrupt 1 Field - IMAPO.x1
External Interrupt 2 Field - IMAPO.x2
External Interrupt 3 Field - IMAPO.x3
Y
x|Ix x| x| x| x| x| x| x| x]x|x]x|{x]x]x
313]3[3]2]2[2|2J1]1|1|[2]o]|of0fO
3210321032103210
28 24 20 16 12 8 4 0
Interrupt Map Register 0 (IMAPO)
External Interrupt 4 Field - IMAP1.x4
External Interrupt 5 Field - IMAP1.x5
External Interrupt 6 Field - IMAP1.x6
External Interrupt 7 Field - IMAP1.x7 l J
XIx x| xpx| x| x] x| x| x]x|x]x|{x]x]x
7|17(7|7]6|6|/6]|6]5|5|5|5]4(4]|4]|4
7|16(5|4|7|6|5]|4]7|6|5|4]7|6]|5]|4
28 24 20 16 12 8 4 0
Interrupt Map Register 1 (IMAP1)
Timer Interrupt O Field - IMAP2.t0
Timer Interrupt 1 Field - IMAP2.t1 —
tjt]ptftpetejt|t
1|11 1]0f{0|0]O
3[2]1{0]3]2f1]0
28 24 20 16 12 8 4 0
Interrupt Map Register 2 (IMAP2)
Reserved
(Initialize to 0)

Figure D-18. IMAPO-IMAP2 (Interrupt Mapping) Registers

Section 11.7.5, “Interrupt Mapping Registers (IMAPO-IMAP2)" (pg. 11-23)

D-17

REGISTER AND DATA STRUCTURES

Dedicated External Interrupt Mask Bits - IMSK.xim
(0) Masked
(1) Not Masked
Timer Interrupt Mask Bits - IMSK.tim
(0) Masked 1
(1) Not Masked
t t XXX XIX]|X]|X]|X
i i i i ifififi
mim mimimimfim|mj|m|m
1]o0 7]16(5]4]3]2]1]0
28 24 20 16 12 4 0
Interrupt Mask Register (IMSK) Dedicated Mode
Expanded External Interrupts Mask Bits - IMSK.eim
(0) Masked
(1) Not Masked
Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked |
B e
I I i
m|m
1o m
28 24 20 16 12 4 0
Interrupt Mask Register (IMSK) Expanded Mode
Expanded External Interrupt Mask Bits - IMSK.eim
(0) Masked
(1) Not Masked
Dedicated External Interrupt Mask Bits - IMSK.xim
(0) Masked
(1) Not Masked
Timer Interrupt Mask Bits - IMSK.tim
(0) Masked
(1) Not Masked
e TxT% e
I I o I i
mim mimi|m
1]o 7|65 m
28 24 20 16 12 4 0
Interrupt Mask Register (IMSK) Mixed Mode

Figure D-19. IMSK (Interrupt Mask) Registers

Section 11.7.5.1, “Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers” (pg. 11-25)

D-18

Intel® REGISTER AND DATA STRUCTURES

External Interrupt Pending Bits - IPND.xip
(0) No Interrupt
(1) Pending Interrupt
Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt
(1) Pending Interrupt y
t]t XX]| X]|X XX | X]|X
ili Pl i pififigi
plp P{P|P|P]P|P]|P|P
1]0 7]16]5]4]3]2]1]0
28 24 20 16 12 8 4 0
Interrupt Pending Register (Dedicated Mode)
Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt
(1) Pending Interrupt Y
tft
il
p|pP
1]0
28 24 20 16 12 8 4 0
Interrupt Pending Register (Expanded Mode)
External Interrupt Pending Bits - IPND.xip
(0) No Interrupt
(1) Pending Interrupt
Timer Interrupt Pending Bits - IPND.tip
(0) No Interrupt
(1) Pending Interrupt Y Y
t]t XX |X
il ilii
p|pP plp|P
1]0 71615
28 24 20 16 12 8 4 0
RESERVED
Interrupt Pending Register (Mixed Mode) (INITIALIZE TO 0)

Figure D-20. Interrupt Pending (IPND) Register

Section 11.7.5.1, “Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers” (pg. 11-25)

D-19

REGISTER AND DATA STRUCTURES Intel®

Fixed Data Structures Relocatable Data Structures

User Code:

< s

Init. Boot Record (IBR): Address Process Control Block (PRCB):
E{\,AtggN FEFF FF30H Fault Table Base Address
E{‘,"tg?N FEFF FF34H Control Table Base Address
E{}"tg?N FEFF FF38H AC Register Initial Image
PMCON
Byte 3 FEFF FF3CH Fault Configuration Word
First Instruction
Pointer FEFF FF40H Interrupt Table Base Address
— PRCB Pointer FEFF FF44H System Procedure
FEFF FF48H Table Base Address
Reserved
Interrupt Stack Pointer
6 Check Words Instruction Cache
(For Bus Confidence Configuration Word
Self-Test) Register Cache
FEFF FF5CH Configuration Word

Control Table

< <
Interrupt Table
< <
System Procedure Table
< <

Other Architecturally
Defined Data
Structures (Not
Required As Part Of IMI)

Figure D-21. Initial Memory Image (IMI) and Process Control Block (PRCB)

Section 12.3.1, “Initial Memory Image (IMI)” (pg. 12-10)

D-20

Intel® REGISTER AND DATA STRUCTURES

AC Register Initial Image Offset 08H

Condition Code Bits - AC.cc
Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow
Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif
16 l

(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions
31 28 24 20

Fault Configuration Word Offset 0CH
31 24 20 16 12 8 4 0

N
[es)

Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault

Instruction Cache Configuration Word Offset 20H

Disable Instruction Cache
(0) enable cache
(1) disable cache

31 28 24 20 16 12 8 4 0

Register Cache Configuration Word Offset 24H
Programmed Limit

Abort Flushreg: 0 = Disabled
1 = Enabled

31 28 24 20 16 12 8 4 0

Reserved
(Initialize to 0) F_CRO76A

Figure D-22. Process Control Block Configuration Words

Section 12.3.1.2, “Process Control Block (PRCB)” (pg. 12-16)

D-21

REGISTER AND DATA STRUCTURES Intel®

31 0
00H
04H
08H
OCH

Interrupt Map 0 (IMAPO) 10H
Interrupt Map 1 (IMAP1) 14H
Interrupt Map 2 (IMAP2) 18H
Interrupt Configuration (ICON) 1CH
Physical Memory Region 0:1 Configuration (PMCONO_1) 20H
24H

2CH

34H

3CH

44H

4CH

54H

5CH

60H

64H

Trace Controls (TC) 68H

Bus Configuration Control (BCON) 6CH

Figure D-23. Control Table

Section 12.3.3, “Control Table” (pg. 12-20)

D-22

Intel® REGISTER AND DATA STRUCTURES

Part Number

Product
Version Type Gen Model Manufacturer ID
ofofoflojofofof1fofo|1]|1
28 24 20 16 12 8 4 0

Figure D-24. IEEE 1149.1 Device ldentification Register

Section 12.4, “DEVICE IDENTIFICATION ON RESET” (pg. 12-22)

31 28 24 20 16 12 8 4 0
BB
w(w
10
L1
_ T Bus Width
00 = 8-bit
01 = 16-bit
Re.tseived, 10 = 32-bit bus
L1 write to zero 11 = reserved (do not use)

Figure D-25. PMCON Register Bit Description

Section 13.1.1, “Physical Memory Attributes” (pg. 13-1)

D-23

REGISTER AND DATA STRUCTURES

Configuration Entries in Control Table Valid (BCON.ctv)
0 = PMCON entries not valid; use PMCON15 setting.
1 =PMCON entries valid

Internal RAM Protection (BCON.irp)
0 = Internal data RAM not protected from user mode writes
1 = Internal data RAM protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp)
0 = First 64 bytes not protected from supervisor mode writes
1 = First 64 bytes protected from supervisor mode writes

o0 -0 | €«<—

I'lc
RIT
P v
31 28 24 20 16 12 8 0
Reserved,
write to zero
Figure D-26. BCON (Bus Control) Register
Section 13.4.1, “Bus Control (BCON) Register” (pg. 13-6)
Byte Order
0 = Little endian
1 = Big endian
Data Cache Enabled
0 = Data caching disabled
1 = Write-through caching enabled
D
c|B
E|E
N
31 28 24 20 16 12 8 0
Reserved,

write to zero

Figure D-27. DLMCON (Default Logical Memory Configuration) Register

Section 13.6, “Programming the Logical Memory Attributes” (pg. 13-8)

D-24

Intel® REGISTER AND DATA STRUCTURES

Byte Order (read-only)
0 = Little endian
1 = Big endian

Data Cache Enable
0 = Data caching disabled
1 = Data caching enabled

ZMOO | «<——

31 28 24 20 16 12
AlAlA|AJA|A[A[A]A[AlA]AA[A]A[A]A|A[A]A B
313122222222]2f2)2|2f2|2f2f2r|2]2 E
1{ofo|s)7|6]|5]|4]3|2|1|o]ofs|7]|6]|5]|4]|3]|2
| 8 4 0
Template Starting Address
Reserved,

write to zero

Figure D-28. LMADRO:1 Logical Memory Template Starting Address Registers

Section 13.6, “Programming the Logical Memory Attributes” (pg. 13-8)

Logical Memory Template Enabled
0 = LMT disabled
1=LMT enabled

31 28 24 20 16 12
MIMIMIM{IM|[M[M|IM{M[M|M|M{M|M|M|M{M|M|M|M L
A|JA|JA|AJA|JAIA|AJATAJA|AJAIA]A]IATAIAIALA M
31312222 |2|2f2|2|2|2)1|1]21]1)1]|]21]1]|1 T
1{0]9|8)7]|6|5|4|3|2|1|0}j9|8|7|6)5|4]3]2 E

[8 4 0

Template Address Mask

Reserved,
write to zero

Figure D-29. LMMRO:1 (Logical Memory Mask Registers)

Section 13.6, “Programming the Logical Memory Attributes” (pg. 13-8)

D-25

intgl.

GLOSSARY

intgl.

Address Space

Address

Arithmetic
Controls (AC)
Register

Asynchronous
Faults

Big Endian

Condition Code
Flags

Execution M ode
Flag

Fault Call

GLOSSARY

An array of bytes used to store program code, data, stacks and system

data structures required to execute a program. Address space is linear —

also calledflat — and byte addressable, with addresses running contigu-
ously from O to 32_ 1.t can be mapped to read-write memory, read-only
memory and memory-mapped 1/O. ibarchitecture does not define a
dedicated, addressable I/O space.

A 32-bit value in the range 0 to FFFF FFFFH used to reference in
memory a single byte, half-word (2 bytes), word (4 bytes), double-word
(8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Choice depends
on the instruction used.

A 32-hit register that contains flags and masks used in controlling the
various arithmetic and comparison operations that the processor
performs. Flags and masks contained in this register include the condition
codeflags, integer-overflow flag and mask bit and the no-imprecise-faults
(NIF) bit. All unused bitsin thisregister are reserved and must be set to 0.

Faults that occur with no direct relationship to a particular ingtruction in the
ingruction stream. When an asynchronous fault occurs, the address of the
faulting instruction in the fault record and the saved IP are undefined. 1960
core architecture does not define any fault types that are asynchronous.

>
o
<
9]
[%2]
@)
-
o

The bus controller reads or writes a data word’s least-significant byte to
the bus’ eight most-significant data lines (D31:24). Big endian systems
store the least-significant byte at the highest byte address in memory. So,
if a big endian ordered word is stored at address 600, the least-significant
byte is stored at address 603 and the most-significant byte at address 600.
Compare with little endian.

AC register bits 0, 1 and 2. The condition code flags indicate the results of
certain instructions — usually compare instructions. Other instructions,
such as conditional branch instructions, examine these flags and perform
functions according to their state. Once the processor sets the condition
code flags, they remain unchanged until the processor executes another
instruction that uses these flags to store results.

PC register bit 1. This flag determines whether the processor is operating
in user mode (0) or supervisor mode (1).

An implicit call to a fault handling procedure. The processor performs
fault calls automatically without any intervention from software. It gets
pointers to fault handling procedures from the fault table.

Glossary-1

GLOSSARY

Fault Table

Fault

Frame Pointer (FP)

Frame
Global Registers

Guarded Memory
Unit (GMU)

Har dware Reset
IBR
IMI
Imprecise Faults

Initialization Boot
Record (IBR)

Initial Memory
Image (IM1)

Glossary-2

intgl.

An architecture-defined data structure that contains pointers to fault handling
procedures. Each fault table entry is associated with a particular fault type.
When the processor generates a fault, it uses the fault table to select the
proper fault handling procedure for the type of fault condition detected.

An event that the processor generates to indicate that, while executing the
program, a condition arose that could cause the processor to go down a
wrong and possibly disastrous path. One example of afault conditionisa
divisor operand of zero in a divide operation; another example is an
instruction with an invalid opcode.

The address of the first byte in the current (topmost) stack frame of the
procedure stack. The FP is contained in global register g15.

See Stack Frame.

A set of 16 genera-purpose registers (g0 through g15) whose contents are
preserved across procedure boundaries. Globd registers are used for general
storage of data and addresses and for passing parameters between procedures.

A section of the processor that monitors all of the processor's memory
transactions and can prevent accesses to predefined address regions or
warn the user program if accesses occur.

The assertion of the RESET# pin; equivalent to powerup.
See Initialization Boot Record.
See Initial Memory Image.

Faults that are allowed to be generated out-of-order from where they
occur in the instruction stream. When an imprecise fault is generated, the
processor indicates the address of the faulting instruction, but it does not
guarantee that software can to recover from the fault and resume
execution of the program with no break in the program's control flow.
The NIF bit in the arithmetic controls register determines whether all
faults must be precise (1) or some faults are allowed to be imprecise (0).

One of three IMI components, IBR is the primary data structure required
to initialize the processor. IBR is 12-word structure which must be
located at address FFFF FFQOH

Comprises the minimum set of data structures the processor needs to
initialize its system. Performs three functions for the processor: 1)
provides initial configuration information for the core and integrated
peripherals; 2) provides pointers to system data structures and the first
instruction to be executed after processor initialization; 3) provides
checksum words that the processor uses in self-test at startup. See also
IBR, PRCB and System Data Structures

intel.
Instruction Cache

Instruction Pointer

(1P)

Integer Overflow
Flag

Integer Overflow
Mask Bit

Interrupt Call

Interrupt Stack
Interrupt Table

Interrupt Vector
Interrupt

L eaf Procedure
Literals

Little Endian

GLOSSARY

A memory array used for temporary storage of instructions fetched from
main memory. Its purpose is to streamline instruction execution by
reducing the number of instruction fetches required to execute a program.

A 32-bit register that contains the address (in the address space) of the
instruction currently being executed. Since instructions are required to be
aligned on word boundaries in memory, the IP's two least-significant bits
are al\ways zero.

AC register bit 8. When integer overflow faults are masked, the processor
sets the integer overflow flag whenever integer overflow occurs to
indicate that the fault condition has occurred even though the fault has
been masked. If the fault is not masked, the fault is allowed to occur and
the flag is not set.

AC register bit 12. This bit masks the integer overflow fault.

An implicit cal to a interrupt handling procedure. The processor
performs interrupt calls automatically without any intervention from
software. It gets vectors (pointers) to interrupt handling procedures from
the interrupt table.

>
o
<
9]
[%2]
@)
-
o

Stack the processor uses when it executes interrupt handling procedures.

A data structure that contains vectors to interrupt handling procedures and
fields for storing pending interrupts. When the processor receives an
interrupt, it uses the vector number that accompanies the interrupt to
locate an interrupt vector in the interrupt table. The interrupt table's
pending interrupt fields contain bits that indicate priorities and vector
numbers of interrupts waiting to be serviced.

A pointer to an interrupt handling procedure. In the i960 architecture,
interrupts vectors are stored in the interrupt table.

An event that causes program execution to be suspended temporarily to
allow the processor to handle a more urgent chore.

Leaf procedures call no other procedures. They are called “leaf
procedures” because they reside at the “leaves” of the call tree.

A set of 32 ordinal values ranging from 0 to 31 (5 bits) that can be used as
operands in certain instructions.

The bus controller reads or writes a data word’s least-significant byte to

the bus’ eight least-significant data lines (D7:0). Little endian systems

store a word’s least-significant byte at the lowest byte address in memory.
For example, if a little endian ordered word is stored at address 600, the
least-significant byte is stored at address 600 and the most-significant
byte at address 603. Compare with big endian.

Glossary-3

GLOSSARY

L ocal Call

Local Registers

Memory

Memory-M apped
Register (MMR)

“Natural” Fill
Policy

No Imprecise
Faults (NIF) Bit

Non Maskable
Interrupt (NMI)

Parallel Faults

Pending Interrupt

PFP
Pointer

Glossary-4

intgl.

A procedure cal that does not require a switch in the current execution
mode or a switch to another stack. Local calls can be made explicitly
through the call, callx and calls instructions and implicitly through the
fault call mechanism.

A set of 16 genera-purpose data registers (rO through rl5) whose
contents are associated with the procedure currently being executed.
Local registers hold the local variables for a procedure. Each time a
procedure is called, the processor automatically allocates a new set of
local registers for that procedure and saves the local registers for the
calling procedure.

Array to which address space is mapped. Memory can be read-write,
read-only or a combination of the two. A memory address is generaly
synonymous with an address in the address space.

A 32-bit register located in memory used to control specific sections of
the processor. All MMRs reside inside the processor. These registers can
be manipulated like any other register, but their contents affect the
processor’s behavior directly.

The processor fetches only the amount of data that is requested by aload
(i.e., aword, long word, etc.) on a data cache miss. Exceptions are byte
and short word accesses, which are aways promoted to words.

AC register bit 15. This flag determines whether or not imprecise faults
are allowed to occur. If set, al faults are required to be precise; if clear,
certain faults can be imprecise.

Provides an interrupt that cannot be masked and has a higher priority than
priority-31 interrupts and priority-31 process priority. The core services
NMI requests immediately.

A condition which occurs when multiple execution units, executing
instructions in paralel, report multiple faults simultaneously. Setting the
NIF bit prohibits execution conditions which could cause parallél faults.

An interrupt that the processor savesto be serviced at alater time. When the
processor receives an interrupt, it compares the interrupt’s priority with the
priority of the current processing task. If the priority of theinterrupt is equal
to or less than that of the current task, the processor saves the interrupt’s
priority and vector number in the pending interrupt fields of the interrupt
table, then continues work on the current processing task.

See Previous Frame Pointer.

An address in the address space (or memory). The term pointer generally
refers to the first byte of a procedure or data structure or a specific byte
location in a stack.

intgl.

PRCB
Precise Faults

Previous Frame
Pointer (PFP)

Priority Field

Priority

Process Control
Block (PRCB)

Process Controls
(PC) Register

Register Score-
boarding

Return Instruction

Pointer (RIP)

Return Type Field

GLOSSARY

See Process Control Block.

Faults generated in the order in which they occur in the instruction stream
and with sufficient fault information to allow software to recover from the
faults without altering program’s control flow. The AC register NIF bit
and the syncf instruction allow software to force all faults to be precise.

The address of the previous stack frame's first byte. It is contained in bits
4 through 31 of local register r0.

PC register bits 16 through 20. This field determines processor priority
(from 0O to 31). When the processor is in the executing state, it sets its
priority according to this vaue. It also uses this field to determine
whether to service an interrupt immediately or to save the interrupt for
later service.

A vaue from 0 to 31 that indicates the priority of a program or interrupt;
highest priority is 31. The processor stores the priority of the task
(program or interrupt) that it is currently working on in the priority field
of the PC register. See also NMI.

One of three (IMI) components, PRCB contains base addresses for
system data structures and initial configuration information for the core
and integrated peripherals.

A 32-bit register that contains miscellaneous pieces of information used
to control processor activity and show current processor state. Flags and
fields in this register include the trace enable bit, execution mode flag,
trace fault pending flag, state flag, priority field and internal state field.
All unused bitsin thisregister are reserved and must be set to 0.

Interna flags that indicate a particular register or group of registers is
being used in an operation. This feature enables the processor to execute
some instructionsin parallel and out-of-order. When the processor begins
executing an instruction, it sets the scoreboard flag for the destination
register in use by that instruction. If the instructions that follow do not use
scoreboarded registers, the processor can execute one or more of those
instructions concurrently with the first instruction.

The address of the instruction following a cal or branch-and-link
instruction that the processor is to execute after returning from the called
procedure. The RIP is contained in local register r2. When the processor
executes a procedure call, it sets the RIP to the address of the instruction
immediately following the procedure call instruction.

Bits 0, 1 and 2 of loca register r0. When a procedure cal is made using the
integrated call and return mechanism, this field indicates the call type: local,
supervisor, interrupt or fault. The processor uses this information to select
the proper return mechanism when returning from the called procedure.

Glossary-5

>
o
<
9]
[%2]
@)
-
o

GLOSSARY

RIP
Softwar e Reset

SP
Special Function
Registers (SFRs)

Stack Frame

Stack Pointer (SP)

Stack

State Flag

State

Statusand Control
Registers

Supervisor Call

Supervisor Mode

Glossary-6

intgl.

See Return Instruction Pointer.

Re-running of the Reset microcode without physicaly asserting the
RESET# pin or removing power from the CPU.

See Stack Pointer.

A 32-bit register (sfO-sf4) used to control specific sections of the
processor. These registers can be manipulated like any other register, but
their contents affect the processor’'s behavior directly.

A block of bytes on a stack used to store local variables for a specific
procedure. Another term for a stack frame isaetivation record. Each
procedure that the processor calls has its own stack frame associated with
it. A stack frame is always aligned on a 64-byte boundary. The first 64
bytes in a stack frame are reserved for storage of the local registers
associated with the procedure. The frame pointer (FP) and stack pointer
(SP) for a particular frame indicate location and boundaries of a stack
frame within a stack.

The address of the last byte in the current (topmost) frame of the
procedure stack. The SP is contained in local register r1.

A contiguous array of bytes in the address space that grows from low
addresses to high addresses. It consists of contiguous frames, one frame
for each active procedure. i960 architecture defines three stacks: local,
supervisor and interrupt.

PC register bit 10. This flag indicates to software that the processor is
currently executing a program (0) or servicing an interrupt (1).

The type of task that the processor is currently working on: a program or
an interrupt handling procedure. The processor sets the PC register state
flag to indicate its current state.

A set of four 32-bit registers that contain status and control information
used in controlling program flow. These registers include the instruction
pointer (IP), AC register, PC register and TC register.

A system call (made with thealls instruction) where the entry type of
the called procedure is 102. If the processor is in user mode when a
supervisor call is made, it switches to the supervisor stack and to
supervisor mode.

One of two execution modes — user and supervisor — that the processor
can use. The processor uses the supervisor stack when in supervisor
mode. Also, while in supervisor mode, software is allowed to execute
supervisor mode instructions suchsgsctl andmodpc.

intel.
Supervisor Stack

Pointer

Supervisor Stack
System Call

System Data
Structures

System Procedure
Table

Trace Table

Trace Control Bit

Trace Controls
(TC) Register

Trace Enable Bit

Trace Fault
Pending Flag

GLOSSARY

The address of the first byte of the supervisor stack. The supervisor stack
pointer is contained in bytes 12 through 15 of the system procedure table
and the trace table.

The procedure stack that the processor uses when in supervisor mode.

An explicit procedure call made with the calls instruction. The two types
of system calls are a system-local call and system-supervisor call. On a
system call, the processor gets a pointer to the system procedure through
the system procedure table.

One of three IMI components. The following system data structures
contain values the processor requires for initialization: PRCB, IBR,
system procedure table, control table, interrupt table.

An architecturally-defined data structure that contains pointers to system
procedures and (optionally) to fault handling procedures. It also contains
the supervisor stack pointer and the trace control flag.

An architecturally-defined data structure that contains pointers to
trace-fault-handling procedures. The trace table has the same structure as
the system procedure table.

Bit 0 of byte 12 of the system procedure table. This bit specifies the new
value of the trace enable bit when a supervisor call causes a switch from
user mode to supervisor mode. Setting thisbit to 1 enables tracing; setting
it to O disables tracing.

A 32-bit register that controls processor tracing facilities. This register
contains one event bit and one mode bit for each trace fault subtype (i.e.,
instruction, branch, call, return, prereturn, supervisor and breakpoint).
The mode bits enable the various tracing modes; the event flags indicate
that a particular type of trace event has been detected. All the unused bits
in this register are reserved and must be set to 0.

PC register bit 0. This bit determines whether trace faults are to be
generated (1) or not generated (0).

PC register bit 10. Thisflag indicates that a trace event has been detected
(1) but not yet generated. Whenever the processor detects a trace fault at
the same time that it detects a non-trace fault, it sets the trace fault
pending flag then calls the fault handling procedure for the non-trace
fault. On return from the fault procedure for the non-trace fault, the
processor checks the trace fault pending flag. If set, it generates the trace
fault and handlesit.

Glossary-7

>
o
<
9]
[%2]
@)
-
o

GLOSSARY

Tracing

User Mode

Vector Number

Vector

Glossary-8

intgl.

The ability of the processor to detect execution of certain instruction
types, such as branch, call and return. When tracing is enabled, the
processor generates afault whenever it detects atrace event. A trace fault
handler can then be designed to call a debug monitor to provide
information on the trace event and its location in the instruction stream.

One of two execution modes — user and supervisor — that the processor can
be in. When the processor is in user mode, it uses the local stack and is not
allowed to use thenodpc instruction or any other implementation-defined
instruction that is designed to be used only in supervisor mode.

The number of an entry in the interrupt table where an interrupt vector is
stored. The vector number also indicates the priority of the interrupt.

See Interrupt Vector.

intgl.

INDEX

intel® INDEX

A register indirect 2-7
absolute addressing registers and literals 3-4
displacement addressing mode 2-7 alignment, registers and literals 3-4
memory addressing mode 2-7 alterbit 6-12
offset addressing mode 2-7 and 6-13
AC 3-18 andnot 6-13
AC register, see Arithmetic Controls (AC) register ~ achitecturereserved memory space 12-9
access faults 3-7 argument list 7-13
access types Arithmetic Controls (AC) Register 3-18
restrictions 3-6 Arithmetic Controls (AC) register 3-18
ADD 6-7 condition code flags 3-19
add initial image 12-19
conditiond instructions 6-7 initialization 3-18
integer instruction 6-11 integer overflow flag 3-20
ordinal instruction 6-11 integer overflow mask bit 3-20
ordinal with carry instruction 6-10 no imprecise faults bit 3-20
addc 6-10 arithmetic instructions 5-7
addi 6-11 add, subtract, multiply or divide 5-8
addie 6-7 extended-precision instructions 5-10
addig 6-7 remainder and modulo instructions 5-8
addige 6-7 shift and rotate instructions 5-9
addil 6-7 arithmetic operations and data types 5-7
addile 6-7 atadd 3-15, 4-9, 6-14
addine 6-7 atmod 3-8, 3-15, 4-9, 6-15
addino 6-7 atomic access 3-14
addio 6-7 atomic add instruction 6-14
addo 6-11 atomic instructions 5-18
addoe 6-7 Atomic instructions (LOCK signal) 14-30
addog 6-7 atomic modify instruction 6-15
addoge 6-7 atomic operations 14-30
addol 6-7 atomic-read-modify-write sequence 3-6
addole 6-7 B
addone 6-7 b 6-16
addono 6-7 bal 6-17
addoo -7 balx 6-17
address space restrictions basic bus states 14-2
data structure alignment A-4 bbe 619
instruction cache A-2 bbs 6-19

internal data RAM A-2
reserved memory A-2
stack frame alignment A-4

BCON register, see Bus Control (BCON) register
BCU, see Bus Controller Unit

' be 6-21
addressing mode bg 6-21
examples 2-8 bge 3-20, 6-21

Index-1

INDEX

big endian byte order 2-4
big-endian byte order
selecting
little endian byte order
selecting 13-12
bit definition 1-9
bit field instructions 5-11
bit instructions 5-11
bit ordering 2-4
bits and bit fields 2-3
bl 6-21
ble 6-21
bne 6-21
bno 6-21
bo 6-21
boundary conditions
internal memory locations 13-13
internal memory-mapped locations 13-7
LMT boundaries 13-14
logical datatemplate ranges 13-13
Boundary Scan
test logic 15-2
Boundary Scan (JTAG) 15-1
Boundary Scan Architecture 15-2
Boundary-Scan register 15-7
BPCON 9-8
branch
and link extended instruction 6-17
and link instruction 6-17
check bit and branch if clear set instruction 6-19
check bit and branch if set instruction 6-19
conditional instructions 6-21
extended instruction 6-16
instruction 6-16
branch instructions, overview 5-14
compare and branch instructions 5-15
conditional branch instructions 5-15
unconditional branch instructions 5-14
branch-and-link 7-1
returning from 7-21
branch-and-link instruction 7-1
branch-if-greater-or-equal instruction 3-20
breakpoint
registers A-7

Index-2

intel.
resource request message 9-7

Breakpoint Control (BPCON) register 9-8, D-10
programming 9-8
Breakpoint Control Register (BPCON) 9-8
bswap 6-23
built-in self test 12-2
bus confidence self test 12-6
Bus Control (BCON) register 13-6
BCON.irp bit 4-2
BCON.sirp bit 4-1
Bus Control Unit (BCU) 14-22
changing byte order dynamically 13-14
selecting byte order 13-12
Bus Controller
boundary conditions 13-7
compared to previous i960 processors 13-3
logical memory attributes 13-2
memory attributes 13-1
physical memory attributes 13-1, 13-4
Bus Controller Unit (BCU) 13-1
bus width 13-5
PMCON initialization 13-5
bus controller unit (BCU) 14-2
bus master
arbitration timing diagram 14-33
bus signal groups 14-4
bus snooping 4-5, 4-10
bus states with arbitration 14-3
bus transactions
basic read 14-9
basic write 14-11
burst transactions 14-11
bus width 14-7
datawidth 14-7
bus width
programming with PMCON register 13-5
bx 6-16
byte instructions 5-11
byte order
changing dynamically 13-14
selecting 13-12
byte order, little or big endian 2-4
byte swap instruction 6-23

intel® INDEX

C return operation 7-7
cache calls 3-24, 6-25, 7-2, 7-6
data call-trace mode 9-3
cache coherency and non-cacheable accesses ~ callx 6-27, 7-2, 7-6
4-9 carry conditions 3-19
described 4-6 check bit instruction 6-29
enabling and disabling 4-6 chkbit 6-29
fill policy 4-8 clear bit instruction 6-30
partial-hit multi-word data accesses 4-7 clock input (CLKIN) 12-34
ViS'ibility'4-10 clrbit 6-30
' wrl'te policy 4-8 cmpdeci 6-31
instruction cmpdeco 6-31

enabling and disabling 4-4

loading and locking instruction 4-5 cmp! 5-12, 6-33
visibility 4-5 cmpib 5-12
|oad-and-lock mechanism 4-5 cmpibe 6-35
local register 3-17, 4-2 cmpibg 6-35
stack frame 3-17, 4-2 cmpibge 6-35
cacheable writes (stores) 4-8 cmpibl 6-35
caching of interrupt-handling procedure 11-36 cmpible 6-35
caching of local register sets cmpibne 6-35
framefills 7-7 cmpibno 6-35
frame spills 7-7 cmpibo 6-35
mapping to the procedure stack 7-11 cmpinci 6-32
cmpinco 6-32

updating the register cache 7-11
call cmpis 5-12
extended instruction 6-27 cmpo 5-12, 6-33
instruction 6-24 cmpobe 6-35
system instruction 6-25 cmpobg 6-35
call 6-24, 7-2, 7-6 cmpobge 6-35

call and return instructions 5-16 cmpobl 6-35
call and return mechanism 7-1, 7-2 cmpoble 6-35
explicit calls 7-1 cmpobne 6-35
implicit calls 7-1 cold reset 11-28, 12-3
local register cache 7-3 compare
local registers 7-2 and branch conditiond instructions 6-35
procedure stack 7-3 and conditional compare instructions 5-12

and decrement integer instruction 6-31

register and stack management 7-4
and decrement ordinal instruction 6-31

frame pointer 7-4

previous frame pointer 7-5 and increment integer instruction 6-32
return typefield 7-5 and increment ordinal instruction 6-32
stack pointer 7-4 integer conditional instruction 6-38
stack frame 7-2 integer instruction 6-33
call and return operations 7-5 ordinal conditional instruction 6-38
call operation 7-6 ordinal instruction 6-33

Index-3

INDEX

comparison instructions, overview
compare and increment or decrement instructions
513
test condition instructions 5-13
concmpi 6-38
concmpo 6-38
conditional branch instructions 3-19
conditional fault instructions 5-17
control registers 3-1, 3-7
memory-mapped 3-6
overview 1-6
control table 3-1, 3-7, 3-12
alignment 3-15
Control Table Valid (CTV) bit 13-6
core architecture
and software portability A-1

D

DAB 9-10
Data Address Breakpoint (DAB) Register Format
9-10
Data Address Breakpoint (DAB) registers 9-9
programming 9-8
data alignment in external memory 3-15
data cache
cache coherency and non-cacheable accesses 4-9
coherency
1/0 and bus masters 4-10
control instruction 6-40
described 4-6
enabling and disabling 4-6
fill policy 1-4, 4-8
overview 1-4
partial-hit multi-word data accesses 4-7
visibility 4-10
write policy 4-8
Data Cache Enable (DCEN) bit 13-12
data control peripheral units A-7
data movement instructions 5-5
load address instruction 5-6
load instructions 5-5
move instructions 5-6
dataRAM 3-16
Data Register

Index-4

intgl.

timing diagram 15-18
data structures
control table 3-1, 3-7, 3-12
fault table 3-1, 3-12
Initialization Boot Record (IBR) 3-1, 3-11
interrupt stack 3-1, 3-12
interrupt table 3-1, 3-12
literals 3-4
local stack 3-1
Process Control Block (PRCB) 3-1, 3-11
supervisor stack 3-1, 3-12
system procedure table 3-1, 3-12
user stack 3-12
datatypes
bits and bit fields 2-3
integers 2-2
literals 2-4
ordinals 2-2
supported 2-1
triple and quad words 2-3
dcctl 3-23, 4-6, 4-10, 6-40
DCEN bit, see Data Cache Enable (DCEN) bit
debug
overview 9-1
debug instructions 5-18
decoupling capacitors 12-36
Default Logica Memory Configuration (DLM CON)
register 13-3
DLMCON.be bit 4-4
design considerations
high frequency 12-38
interference 12-40
latchup 12-39
line termination 12-38
Device ID register 15-6
device ID Register 12-22
device ID register D-23
DEVICEID register location 3-3
divi 6-47
divide integer instruction 6-47
divide ordinal instruction 6-47
divo 6-47
DLMCON registers

inte|® INDEX

E system-supervisor calls 8-2
ediv 6-48 user stack 8-2
8-hit bus width byte enable encodings 14-8 fault record 8-6
8-bit wide data bus bursts 14-13 address-of -faulting-instruction field 8-7
electromagnetic interference (EM1) 12-40 fault subtype field 8-7
electrostatic interference (ESI) 12-40 location 8-6, 8-8
emul 6-49 structure 8-7
endianism fault table 3-1, 3-12, 8-4
changing dynamically 13-14 dignment 3-15
sdlecting 13-12 local-call entry 8-6
eshro 6-50 location 8-4
explicit calls 7-1 system-call entry 8-6
extended addressing instructions 5-14 fault type and subtype numbers 8-3
extended divide instruction 6-48 fault types 8-4
extended multiply instruction 6-49 faulte 6-52
extended shift right ordinal instruction 6-50 faultg 6-52
external bus faultge 6-52
overview 1-6 faultl 6-52
external buses faultle 6-52
data alignment 14-22 faultne 6-52
external interrupt (XINT) signals 11-18 faultno 6-52
external memory requirements 3-14 faulto 6-52
extract 6-51 faults A-7
AC.nif bit 8-20
F access 3-7
FAIL# pin 12-6 ARITHMETIC.INTEGER_OVERFLOW 6-91
fault ARITHMETIC.OVERFLOW 6-8, 6-11, 6-47,
OPERATION.UNIMPLEMENTED 4-1 6-84, 6-101, 6-107, 6-112
fault conditiona instructions 6-52 ARITHMETIC.ZERO_DIVIDE 6-47, 6-48,
fault conditions 8-1 6-76, 6-91
fault handling CONSTRAINT.RANGE 6-53
data structures 8-1 controlling precision of (syncf) 8-20
fault record 8-2, 8-6 imprecise 5-24
fault table 8-2, 8-4 OPERATION.INVALID_OPERAND 6-45
fault type and subtype numbers 8-3 overview 1-7
fault types 8-4 PROTECTION.LENGTH 6-26
local calls 8-2 TRACE.MARK 6-55, 6-74
multiple fault conditions 8-9 TYPE.MISMATCH 6-45, 6-57, 6-64, 6-67,
procedure invocation 8-6 6-68, 6-69, 6-78
return instruction pointer (RIP) 8-14 field definition 1-9
stack usage 8-6 flag definition 1-9
supervisor stack 8-2 floating point 3-19
system procedure table 8-2 flush local registersinstruction 6-54
system-local calls 8-2 flushreg 6-54, 7-11

Index-5

INDEX

fmark 6-55

force mark instruction 6-55

FP, see Frame Pointer

frame fills 7-7

Frame Pointer (FP) 7-4
location 3-3

frame spills 7-7

G
global registers 3-1, 3-2
overview 1-9

H

halt 3-23, 6-56

halt CPU instruction 6-56

hardware breakpoint resources 9-5
requesting access privilege 9-6

high priority interrupts 4-3

HOLD/HOLDA protocol 14-32

I

IBR, seeinitialization boot record
icctl 1-4, 3-23, 4-4, 4-5, 4-6, A-3
ICON 11-22

|EEE Standard Test Access Port 15-2
IEEE Std. 1149.1 15-2
IMAPO-IMAP2 11-24

IMI 12-1, 12-10
implementation-specific features A-1
implicit calls 7-1, 8-2

imprecise faults 5-24

IMSK 11-26

index with displacement addressing mode 2-8

indivisible access 3-14

inegualities (greater than, equal or less than)

conditions 3-19

Initial Memory Image (IMI) 12-1
initid memory image (IM1) 12-10
initidlization 12-1, 12-2

CLKIN 12-34

code example 12-23

hardware requirements 12-34

MON960 12-23

power and ground 12-34

software 6-114

Index-6

intgl.

Initialization Boot Record (IBR) 3-1, 3-11, 12-1,
12-13, 12-15

aignment 3-15
initiali zation data structures 3-11
initiali zation mechanism A-5
initialization requirements

architecture reserved memory space 12-9

control table 12-21, D-22

data structures 12-10

Process Control Block 12-16
Instruction Breakpoint (IBP) registers 9-10
Instruction Breakpoint (IPB) Register Format 9-10
instruction breakpoint modes

programming 9-11
ingtruction cache 3-16

coherency 4-5

configuration 3-16

enabling and disabling 4-4, 12-19

locking instructions 4-5

overview 1-4

visibility 4-5
ingtruction formats 5-3

assembly language format 5-1

instruction encoding format 5-2
instruction optimizations 5-20
Instruction Pointer (I1P) Register 3-17
Instruction Pointer (I1P) register 3-17
Instruction Register (IR) 15-2, 15-5

timing diagram 15-17
Instruction set

atmod 3-8

sysctl 3-8
instruction set

6-7

ADD 6-7

addc 6-10

addi 6-11

addie 6-7

addig 6-7

addige 6-7

addil 6-7

addile 6-7

addine 6-7

addino 6-7

intel® INDEX

addo 6-11 cmpibno 6-35
addoe 6-7 cmpibo 6-35
addog 6-7 cmpinci 6-32
addoge 6-7 cmpinco 6-32
addol 6-7 cmpis 5-12
addole 6-7 cmpo 5-12, 6-33
addone 6-7 cmpobe 6-35
addono 6-7 cmpobg 6-35
addoo 6-7 cmpobge 6-35
alterbit 6-12 cmpobl 6-35

and 6-13 cmpoble 6-35
andnot 6-13 cmpobne 6-35
atadd 3-15, 4-9, 6-14 concmpi 6-38
atmod 3-15, 4-9, 6-15 concmpo 6-38

b 6-16 dcctl 3-23, 4-6, 4-10, 6-40
bal 6-17 divi 6-47

balx 6-17 divo 6-47

bbc 6-19 ediv 6-48

bbs 6-19 emul 6-49

be 6-21 eshro 6-50

bg 6-21 extract 6-51

bge 3-20, 6-21 faulte 6-52

bl 6-21 faultg 6-52

ble 6-21 faultge 6-52

bne 6-21 faultl 6-52

bno 6-21 faultle 6-52

bo 6-21 faultne 6-52
bswap 6-23 faultno 6-52

bx 6-16 faulto 6-52

call 6-24, 7-2, 7-6 flushreg 6-54
calls 3-24, 6-25, 7-2, 7-6 fmark 6-55

callx 6-27, 7-2, 7-6 halt 3-23, 6-56
chkbit 6-29 icctl 1-4, 3-23, 4-4, 4-5, 4-6, A-3
clrbit 6-30 implementation-specific A-5
cmpdeci 6-31 intctl 3-23, 6-66
cmpdeco 6-31 intdis 3-23, 6-68
cmpi 5-12, 6-33 inten 3-23, 6-69
cmpib 5-12 Id 2-2, 3-15, 6-70
cmpibe 6-35 Ida 6-73

cmpibg 6-35 Idib 2-2, 6-70
cmpibge 6-35 Idis 2-2, 6-70
cmpibl 6-35 Idl 3-4, 4-7, 6-70
cmpible 6-35 Idob 2-2, 6-70
cmpibne 6-35 Idos 2-2, 6-70

Index-7

INDEX

Idq 3-16, 4-7, 6-70
Idt 4-7, 6-70
mark 6-74
modac 3-18, 6-75
modi 6-76
modify 6-77
modpc 3-21, 3-22, 3-23, 6-78, 9-3
modtc 6-80, 9-2
mov 6-81

movl 6-81

movq 6-81
movt 6-81

muli 6-84

mulo 6-84

nand 6-85

nor 6-86

not 6-87

notand 6-87
notbit 6-88
notor 6-89

or 6-90

ornot 6-90

remi 6-91

remo 6-91

ret 6-92

rotate 6-94
scanbit 6-95
scanbyte 6-96
sele 5-6, 6-97
selg 5-6, 6-97
selge 5-6, 6-97
sell 5-6, 6-97
selle 5-6, 6-97
selne 5-6, 6-97
selno 5-6, 6-97
selo 5-6, 6-97
setbit 6-99

shli 6-100

shlo 6-100
shrdi 6-100

shri 6-100

shro 6-100
spanbit 6-103
st 2-2, 3-15, 6-104

Index-8

stib 2-2, 6-104

stis 2-2, 6-104

stl 3-15, 4-7, 6-104

stob 2-2, 6-104

stos 2-2

stq 3-16, 4-7, 6-104

stt 4-7, 6-104

subc 6-108

subi 6-112

subie 6-109

subig 6-109

subige 6-109

subil 6-109

subile 6-109

subine 6-109

subino 6-109

subio 6-109

subo 6-112

suboe 6-109

subog 6-109

suboge 6-109

subol 6-109

subole 6-109

subone 6-109

subono 6-109

suboo 6-109

syncf 6-113, 8-20

sysctl 1-4, 3-23, 4-4, 4-5, 4-6, 6-114, 9-6,

A-3

teste 6-118

testg 6-118

testge 6-118

testl 6-118

testle 6-118

testne 6-118

testno 6-118

testo 6-118

timing A-4

xnor 6-120

xor 6-120
Instruction Trace Event 6-4
instructions

conditional branch 3-19
instruction-trace mode 9-3

intgl.

intctl 3-23, 6-66
intdis 3-23, 6-68
integer flow masking 5-23
integers 2-2
datatruncation 2-2
sign extension 2-2
inten 3-23, 6-69
interna dataRAM 3-16, 4-1
location 3-16
modification 4-1
overview 1-4
size 4-1
internal self test program 12-6
interrupt
timer 11-9
Interrupt Control (ICON) Register 11-22
Interrupt Control (ICON) register 1-5
memory-mapped addresses 11-21
interrupt controller 11-1
configuration 11-31
interrupt pins 11-18
overview 11-2
program interface 11-2
programmer interface 11-21
setup 11-31
Interrupt Controller Unit (ICU) 1-5
interrupt handling procedures 11-31
AC and PC registers 11-31
address space 11-31
global registers 11-31
instruction cache 11-31
interrupt stack 11-31
local registers 11-31
location 11-31
supervisor mode 11-31
Interrupt Mack (IM SK) register
atomic-read-modify-write sequence 3-6
Interrupt Map Control (IMAPO-IMAP2) registers
1-5
Interrupt Mapping (IMAPO-IMAP2) Registers
11-24
Interrupt Mapping (IMAPO-IMAP2) registers 11-23
interrupt mask
saving 11-17

INDEX

Interrupt Mask (IMSK) register 1-5, 11-25, D-18
Interrupt Mask (IMSK) Registers 11-26
Interrupt Pending (IPND) Register 11-25
Interrupt Pending (IPND) register 1-5, 11-25
atomi c-read-modify-write sequence 3-6
interrupt performance
caching of interrupt-handling 11-36
interrupt stack 11-36
local register cache 11-36
interrupt pins
dedicated mode 11-8
expanded mode 11-8
mixed mode 11-8
interrupt posting 11-2
interrupt procedure pointer 11-5
interrupt record 11-7
location 11-7
interrupt request management 11-8
interrupt requests
sysctl 11-9
interrupt sequencing of operations 11-28
interrupt servicing mechanism A-6
interrupt stack 3-1, 3-12, 11-7, 11-36
aignment 3-15
structure 11-7
interrupt table 3-1, 3-12, 11-4
dignment 3-15, 11-4
caching mechanism 11-6
location 11-4
pending interrupts 11-5
vector entries 11-5
interrupt vectors
caching 4-1
interrupts
dedicated mode 11-14
dedicated mode posting 11-14
expanded mode 11-15
function 11-1
global disable instruction 6-68
global enable and disable instruction 6-66
global enableinstruction 6-69
high priority 4-3
internal RAM 11-35
interrupt context switch 11-32

Index-9

INDEX

interrupt handling procedures 11-31
interrupt record 11-7
interrupt stack 11-7
interrupt table 11-4
masking hardware interrupts 11-18
mixed mode 11-17
Non-Maskable Interrupt (NMT) 11-3, 11-8
overview 11-1
physical characteristics 11-18
posting 11-2
priority handling 11-11
priority-31 interrupts 11-3, 11-18
programmable options 11-19
restoring r3 11-18
servicing 11-3
sysctl 11-9
vector caching 11-35
IP3-17
IP register, see Instruction Pointer (1P) register
IP with displacement addressing mode 2-8
IPB 9-10
IPND 11-25

L

Id 2-2, 3-15, 6-70

Ida 6-73

Idib 2-2, 6-70

Idis 2-2, 6-70

Idl 3-4, 4-7, 6-70

Idob 2-2, 6-70

Idos 2-2, 6-70

Idg 3-16, 4-7, 6-70

Idt 4-7, 6-70

leaf procedures 7-1

literd addressing and alignment 3-5

literals 2-4, 3-1, 3-4
addressing 3-4

little endian byte order 2-4, 3-16

LMADR register

LMCON registers

load address instruction 6-73

load instructions 5-5, 6-70

load-and-lock mechanism 4-5

local calls 7-2, 7-14, 8-2

Index-10

call 7-2
callx 7-2
locd register cache 7-3
overview 1-5, 3-17, 4-2
locd registers 3-1, 7-2
alocation 3-3, 7-2
management 3-3
overview 1-9
usage 7-2
local stack 3-1
logical datatemplates
effectiverange 13-11
logicd instructions 5-10
Logical Memory Address (LMADR) register 13-3
Logica Memory Address (LMADR) registers
programming 13-8
Logical Memory Configuration (LMCON) registers
13-3
Logical Memory Mask (LMMR) registers
programming 13-8
Logical Memory Templates (LMTSs)
accesses across boundaries 13-14
boundary conditions 13-13
enabling 13-12
enabling and disabling data caching 13-12
modifying 13-14
overlapping ranges 13-13
values after reset 13-13

M
mark 6-74
Mark Trace Event 6-4
memory

internal dataRAM 3-16
memory address space 3-1

int9I® INDEX

external memory requirements 3-14 NMI, see Non-Maskable Interrupt (NMT)
atomic access 3-14 No Imprecise Faults (AC.nif) bit 8-15, 8-20
big endian byte order 3-16 Non-Maskable Interrupt (NMT) 11-3, 11-8
dataalignment 3-15 signal 11-18
data block sizes 3-15 nor 6-86
data block storage 3-16 not 6-87

indivisible access 3-14

instruction aignment in external memory notand 6-87
3-15 notbit 6-88
little endian byte order 3-16 notor 6-89
reserved memory 3-14 o

location 3-13
management 3-13
memory addressing modes

On-Circuit Emulation (ONCE) mode 12-1, 15-1
OPERATION.UNIMPLEMENTED 4-1

absolute 2-7 > 6-90

ordinas 2-2
examples 2-8 sign and sign extension 2-3
index with displacement 2-8 ornot 6-90

IP with displacement 2-8 output pins 12-37

(r)ggeirs\t/::ivnczii-r?act o7 overflow conditions 3-19
memory-mapped control registers 3-6 P
Memory-Mapped Registers (MMR) 3-6, 3-14 parameter passing 7-12
MMR, see Memory-M apped Registers (MMR) argument list 7-13
modac 3-18, 6-75 by reference 7-12
modi 6-76 by value 7-12
modify 6-77 PC 3-21
modify arithmetic controlsinstruction 6-75 PC register, see Process Controls (PC) register
modify process controls instruction 6-78 pending interrupts 11-5
modify trace controlsinstruction 6-80, 9-2 encoding 11-5
modpc 3-21, 3-22, 3-23, 6-78, 9-3 interrupt procedure pointer 11-5
modtc 6-80, 9-2 pending prioritiesfield 11-5
modulo integer instruction 6-76 performance optimization 5-20
mov 6-81 PFPr0 7-20
move instructions 6-81 Physical Memory Configuration (PM CON) registers
movl 6-81 13-1
movq 6-81 application modification 13-7
movt 6-81 initial values 13-5
muli 6-84 PMCON registers
mulo 6-84 power and ground planes 12-35
multiple fault conditions 8-9 powerup/reset initialization
multiply integer instruction 6-84 timer powerup 10-11
multiply ordinal instruction 6-84 PRCB, see Processor Control Block (PRCB)
N prereturn-trace mode 9-4

Previous Frame Pointer (PFP) 3-1, 7-4, 7-5

nand 6-85

Index-11

INDEX

location 3-3

ro 7-20
Previous Frame Pointer Register (PFP) (r0) 7-20
priority-31 interrupts 11-3, 11-18
procedure calls

branch-and-link 7-1

cal and return mechanism 7-1

leaf procedures 7-1
procedure stack 7-3

growth 7-3
Process Control Block (PRCB) 3-1, 3-11, 4-4,

12-1, 12-16

alignment 3-15

configuration 12-16

register cache configuration word 12-19
Process Controls (PC) Register 3-21
Process Controls (PC) register 3-21

execution mode flag 3-21

initialization 3-22

modification 3-22

modpc 3-22

priority field 3-21

processor state flag 3-21

trace enable bit 3-22

trace fault pending flag 3-22
processor initialization 12-1
processor management instructions 5-19
processor state registers 3-1, 3-17

Arithmetic Controls (AC) register 3-18

Instruction Pointer (IP) register 3-17

Process Controls (PC) register 3-21

Trace Controls (TC) register 3-23
programming

logical memory attributes 13-13

R
r0 Previous Frame Pointer (PFP) 7-20
RAM 3-11

internal data

described 4-1

RAM, internal data 3-16
region boundaries

bus transactions across 13-7
register

Index-12

access 11-27
addressing 3-4
addressing and alignment 3-5
Breakpoint Control (BPCON) 9-7
cache 3-17, 4-2
control 3-7
memory-mapped 3-6
DEVICEID
memory location 3-3
global 3-2
indirect addressing mode
regi ster-indirect-with-displacement 2-7
regi ster-indirect-with-index 2-7
regi ster-indirect-with-index-and-di splacemen
t2-8
regi ster-indirect-with-offset 2-7
Interrupt Control (ICON) 11-21
Interrupt Mapping IMAPO-IMAP2) 11-23
Interrupt Mask (IMSK) 11-25
Interrupt Pending (IPND) 11-25
local
alocation 3-3
management 3-3
processor-state 3-17
scoreboarding
example 3-4
TCRx 10-6
Registers
Arithmetic Controls (AC) Register 3-18
Breakpoint Control Register (BPCON) 9-8
Data Address Breakpoint (DAB) Register Format
9-10
Instruction Breakpoint (IPB) Register Format
9-10
Instruction Pointer (1P) Register 3-17
Interrupt Control (ICON) Register 11-22
Interrupt Mapping (IMAPO-IMAP2) Registers
11-24
Interrupt Mask (IMSK) register 11-26
Interrupt Pending (IPND) Register 11-25
Previous Frame Pointer Register (PFP) (r0) 7-20
Process Controls (PC) Register 3-21
Timer Count Register (TCRO, TCR1) 10-6
Timer Mode Register (TMRO, TMR1) 10-3
Timer Reload Register (TRRO, TRR1) 10-7

intgl.

Trace Controls (TC) Register 3-23, 9-2
registers
Boundary-Scan 15-7
Bus Control (BCON) 13-6
device ID 12-22, D-23
Instruction 15-5
Interrupt Control (ICON) 1-5
Interrupt Map Control (IMAPO-IMAP2) 1-5
Interrupt Mask (IMSK) 1-5
Interrupt Pending (IPND) 1-5, D-15
Logica Memory Templates (LMTs) 13-13
naming conventions 1-9
re-initialization
software 6-114
remainder integer instruction 6-91
remainder ordinal instruction 6-91
remi 6-91
remo 6-91
reserved locations A-4
reserved memory 1-9
reserving framesin the local register cache 11-36
reset operation
register vaues 12-5
reset state 12-3
ret 6-92
Return Instruction Pointer (RIP) 7-4
location 3-3
return operation 7-7
return typefield 7-5
RIP, see Return Instruction Pointer (RIP)
ROM 3-11
rotate 6-94
Run Built-In Self-Test (RUNBIST) register 15-7

S

SALIGN A-4

saving the interrupt mask 11-17

scanbit 6-95

scanbyte 6-96

sele 5-6, 6-97

select based on equal instruction 5-6

select based on less or equal instruction 5-6
select based on not equal instruction 5-6
select based on ordered instruction 5-6

INDEX

Select Based on Unordered 5-6
select instructions 6-120
self test (STEST) pin 12-6
selg 5-6, 6-97
selge 5-6, 6-97
sell 5-6, 6-97
selle 5-6, 6-97
selne 5-6, 6-97
selno 5-6, 6-97
selo 5-6, 6-97
setbit 6-99
shift instructions 6-100
shli 6-100
shlo 6-100
shrdi 6-100
shri 6-100
shro 6-100
sign extension
integers 2-2
ordinals 2-3
single processor as bus master 14-32
16-bit bus width byte enable encodings 14-8
16-bit wide data bus bursts 14-12
software re-initialization 6-114
SP, see Stack Pointer
spanbit 6-103
src/dst parameter encodings 9-7
st 2-2, 3-15, 6-104
stack frame
alocation 7-2
stack frame cache 3-17, 4-2
Stack Pointer (SP) 7-4
location 3-3
stacks 3-11
STEST 12-6
stib 2-2, 6-104
stis 2-2, 6-104
stl 3-15, 4-7, 6-104
stob 2-2, 6-104
store instructions 5-5, 6-104
stos 2-2
stq 3-16, 4-7, 6-104
stt 4-7, 6-104
subc 6-108

Index-13

INDEX

subi 6-112
subie 6-109
subig 6-109
subige 6-109
subil 6-109
subile 6-109
subine 6-109
subino 6-109
subio 6-109
subo 6-112
suboe 6-109
subog 6-109
suboge 6-109
subol 6-109
subole 6-109
subone 6-109
subono 6-109
suboo 6-109
subtract
conditional instructions 6-109
integer instruction 6-112
ordinal instruction 6-112
ordinal with carry instruction 6-108
supervisor calls 7-2
supervisor mode resources 3-23
Supervisor Stack 7-17
supervisor stack 3-1, 3-12
alignment 3-15
supervisor-trace mode 9-3
syncf 6-113, 8-20
synchronize faults instruction 6-113
sysctl 1-4, 3-8, 3-23, 4-4, 4-5, 4-6, 6-114, 9-6,
A-3
sysem cals 7-2, 7-15
calls 7-2
system-local 7-2, 8-2
system-supervisor 7-2, 8-2
system control instruction 6-114
system procedure table 3-1, 3-12, 7-15
alignment 3-15

T
TC 3-23, 9-2
TCRO, TCR1 10-6

Index-14

intgl.

Test Access Port (TAP) controller 15-2
architecture 15-3
Asynchronous Reset Input (TRST) pin 15-5
block diagram 15-3
Serial Test Data Output (TDO) pin 15-5
state diagram 15-4
Test Clock (TCK) pin 15-5
Test Mode Select (TMS) pin 15-5
test features 15-2
test instructions 6-118
Test Mode Select (TMS) line 15-2
teste 6-118
testg 6-118
testge 6-118
testl 6-118
testle 6-118
testne 6-118
testno 6-118
testo 6-118
32-hit bus width byte enable encodings 14-8
32-bit wide data bus bursts 14-12
timer
interrupts 11-9
memory-mapped addresses 10-2
Timer Count Register (TCRO, TCR1) 10-6
Timer Count Register (TCRx) 10-6
address and access type 3-11
Timer Mode Register
timer mode control bit summary 10-8
Timer Mode Register (TMRO, TMR1) 10-3
Timer Mode Register (TMRX)
address and access type 3-11
terminal count 10-4
timer clock encodings 10-6
Timer Reload Register (TRRO, TRR1) 10-7
Timer Reload Register (TRRX)
address and access type 3-11
timers
overview 1-6
TMRO, TMR1 10-3
Trace Controls (TC) Register 3-23, 9-2
Trace Controls (TC) register 3-23, 9-2
trace events 9-1
hardware breakpoint registers 9-1

intgl.

mark and fmark 9-1
PC and TC registers 9-1
trace-fault-pending flag 9-3
TRR), TRR1 10-7
true/false conditions 3-19
TTL input pins 12-37
two-word burst write transaction 14-14

U

unordered numbers 3-19
user space family registers and tables 3-11
user stack 3-12, 7-19
alignment 3-15
user supervisor protection model 3-23
supervisor mode resources 3-23
usage 3-24

Vv

vector entries 11-5
NMI 11-5
structure 11-5

W

warm reset 11-28, 12-3
words
triple and quad 2-3

X

XINT, see external interrupt (XINT) signals 11-18
xnor 6-120

xor 6-120

INDEX

Index-15

	i960® Jx Microprocessor Developer’s Manual
	Copyright Page
	Contents
	Figures
	Tables
	CHAPTER 1 INTRODUCTION
	Figure 1-1. i960® Jx Microprocessor Functional Blo...
	1.1 Product Features
	1.1.1 Instruction Cache
	1.1.2 Data Cache
	1.1.3 On-chip (Internal) Data RAM
	1.1.4 Local Register Cache
	1.1.5 Interrupt Controller
	1.1.6 Timer Support
	1.1.7 Memory-Mapped Control Registers (MMR)
	1.1.8 External Bus
	1.1.9 Complete Fault Handling and Debug Capabiliti...

	1.2 ABOUT THIS MANUAL
	1.3 NOTATION AND TERMINOLOGY
	1.3.1 Reserved and Preserved
	1.3.2 Specifying Bit and Signal Values
	1.3.3 Representing Numbers
	1.3.4 Register Names
	Table 1-1. Register Terminology Conventions�

	1.4 Related Documents

	CHAPTER 2 DATA TYPES AND MEMORY ADDRESSING MODES
	2.1 DATA TYPES
	Figure 2-1. Data Types and Ranges
	2.1.1 Integers
	Example 2-1. Sign Extensions on Load Byte and Load...

	2.1.2 Ordinals
	2.1.3 Bits and Bit Fields
	2.1.4 Triple- and Quad-Words
	2.1.5 Register Data Alignment
	2.1.6 Literals

	2.2 BIT AND BYTE ORDERING IN MEMORY
	2.2.1 Bit Ordering
	2.2.2 Byte Ordering
	Table 2-1. Memory Contents for Little and Big Endi...
	Table 2-2. Byte Ordering for Little and Big Endian...
	Figure 2-2. Data Placement in Registers

	2.3 MEMORY ADDRESSING MODES
	Table 2-3. Memory Addressing Modes
	2.3.1 Absolute
	2.3.2 Register Indirect
	2.3.3 Index with Displacement
	2.3.4 IP with Displacement
	2.3.5 Addressing Mode Examples
	Example 2-2. Addressing Mode Mnemonics
	Example 2-3. Scaled Index and Scaled Index Plus Di...

	CHAPTER 3 PROGRAMMING ENVIRONMENT
	3.1 OVERVIEW
	3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS...
	Figure 3�1. i960® Jx Processor Programming Environ...
	3.2.1 Global Registers
	Table 3�1. Registers and Literals Used as Instruct...

	3.2.2 Local Registers
	3.2.3 Register Scoreboarding
	Example 3-1. Register Scoreboarding

	3.2.4 Literals
	3.2.5 Register and Literal Addressing and Alignmen...
	Example 3-2. Register Alignment
	Table 3-2. Allowable Register Operands

	3.3 MEMORY-MAPPED CONTROL REGISTERS
	3.3.1 Memory-Mapped Registers (MMR)
	3.3.1.1 Restrictions on Instructions that Access M...
	3.3.1.2 Access Faults
	Table 3-3. Access Types �
	Table 3-4. Supervisor Space Family Registers (Shee...
	Table 3-5. User Space Family Registers and Tables ...

	3.4 ARCHITECTURALLY DEFINED DATA STRUCTURES
	Table 3-6. Data Structure Descriptions

	3.5 MEMORY ADDRESS SPACE
	Figure 3-2. Memory Address Space
	3.5.1 Memory Requirements
	3.5.2 Data and Instruction Alignment in the Addres...
	Table 3�7. Alignment of Data Structures in the Add...

	3.5.3 Byte, Word and Bit Addressing
	3.5.4 Internal Data RAM
	3.5.5 Instruction Cache
	3.5.6 Data Cache

	3.6 LOCAL REGISTER CACHE
	3.7 PROCESSOR-STATE REGISTERS
	3.7.1 Instruction Pointer (IP) Register
	3.7.2 Arithmetic Controls (AC) Register
	Figure 3�3. Arithmetic Controls (AC) Register
	3.7.2.1 Initializing and Modifying the AC Register...
	3.7.2.2 Condition Code (AC.cc)
	Table 3�8. Condition Codes for True or False Condi...
	Table 3�9. Condition Codes for Equality and Inequa...
	Table 3�10. Condition Codes for Carry Out and Over...

	3.7.3 Process Controls (PC) Register
	Figure 3-4. Process Controls (PC) Register
	3.7.3.1 Initializing and Modifying the PC Register...

	3.7.4 Trace Controls (TC) Register

	3.8 USER-SUPERVISOR PROTECTION MODEL
	3.8.1 Supervisor Mode Resources
	3.8.2 Using the User-Supervisor Protection Model

	CHAPTER 4 CACHE AND ON-CHIP DATA RAM
	4.1 INTERNAL DATA RAM
	Figure 4-1. Internal Data RAM and Register Cache

	4.2 LOCAL REGISTER CACHE
	Example 4-1. Register Cache Operation

	4.3 BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA C...
	4.4 INSTRUCTION CACHE
	4.4.1 Enabling and Disabling the Instruction Cache...
	4.4.2 Operation While the Instruction Cache Is Dis...
	4.4.3 Loading and Locking Instructions in the Inst...
	4.4.4 Instruction Cache Visibility
	4.4.5 Instruction Cache Coherency

	4.5 DATA CACHE
	4.5.1 Enabling and Disabling the Data Cache
	4.5.2 Multi-Word Data Accesses that Partially Hit ...
	4.5.3 Data Cache Fill Policy
	4.5.4 Data Cache Write Policy
	4.5.5 Data Cache Coherency and Non-Cacheable Acces...
	4.5.6 External I/O and Bus Masters and Cache Coher...
	4.5.7 Data Cache Visibility

	CHAPTER 5 INSTRUCTION SET OVERVIEW
	5.1 INSTRUCTION FORMATS
	5.1.1 Assembly Language Format
	5.1.2 Instruction Encoding Formats
	Table 5-1. Instruction Encoding Formats
	Figure 5�1. Machine-Level Instruction Formats

	5.1.3 Instruction Operands

	5.2 INSTRUCTION GROUPS
	Table 5-2. 80960Jx Instruction Set
	5.2.1 Data Movement
	5.2.1.1 Load and Store Instructions
	5.2.1.2 Move
	5.2.1.3 Load Address

	5.2.2 Select Conditional
	5.2.3 Arithmetic
	Table 5�3. Arithmetic Operations
	5.2.3.1 Add, Subtract, Multiply, Divide, Condition...
	5.2.3.2 Remainder and Modulo
	5.2.3.3 Shift, Rotate and Extended Shift
	5.2.3.4 Extended Arithmetic

	5.2.4 Logical
	5.2.5 Bit, Bit Field and Byte Operations
	5.2.5.1 Bit Operations
	5.2.5.2 Bit Field Operations
	5.2.5.3 Byte Operations

	5.2.6 Comparison
	5.2.6.1 Compare and Conditional Compare
	5.2.6.2 Compare and Increment or Decrement
	5.2.6.3 Test Condition Codes

	5.2.7 Branch
	5.2.7.1 Unconditional Branch
	5.2.7.2 Conditional Branch
	5.2.7.3 Compare and Branch

	5.2.8 Call/Return
	5.2.9 Faults
	5.2.10 Debug
	5.2.11 Atomic Instructions
	5.2.12 Processor Management

	5.3 PERFORMANCE OPTIMIZATION
	5.3.1 Instruction Optimizations
	5.3.1.1 Load / Store Execution Model
	5.3.1.2 Compare Operations
	5.3.1.3 Microcoded Instructions
	5.3.1.4 Multiply-Divide Unit Instructions
	5.3.1.5 Multi-Cycle Register Operations
	5.3.1.6 Simple Control Transfer
	5.3.1.7 Memory Instructions
	5.3.1.8 Unaligned Memory Accesses

	5.3.2 Miscellaneous Optimizations
	5.3.2.1 Masking of Integer Overflow
	5.3.2.2 Avoid Using PFP, SP, R3 As Destinations fo...
	5.3.2.3 Use Global Registers (g0 - g14) As Destina...
	5.3.2.4 Execute in Imprecise Fault Mode

	CHAPTER 6 INSTRUCTION SET REFERENCE
	6.1 NOTATION
	6.1.1 Alphabetic Reference
	6.1.2 Mnemonic
	6.1.3 Format
	6.1.4 Description
	6.1.5 Action
	Table 6-1. Pseudo-Code Symbol Definitions �
	Table 6-2. Faults Applicable to All Instructions
	Table 6-3. Common Faulting Conditions

	6.1.6 Faults
	6.1.7 Example
	6.1.8 Opcode and Instruction Format
	6.1.9 See Also
	6.1.10 Side Effects
	6.1.11 Notes

	6.2 INSTRUCTIONS
	6.2.1 ADD<cc>
	Table 6-4. Condition Code Mask Descriptions

	6.2.2 addc
	6.2.3 addi, addo
	6.2.4 alterbit
	6.2.5 and, andnot
	6.2.6 atadd
	6.2.7 atmod
	6.2.8 b, bx
	6.2.9 bal, balx
	6.2.10 bbc, bbs
	6.2.11 BRANCH<cc>
	Table 6-5. Condition Code Mask Descriptions

	6.2.12 bswap
	6.2.13 call
	6.2.14 calls
	6.2.15 callx
	6.2.16 chkbit
	6.2.17 clrbit
	6.2.18 cmpdeci, cmpdeco
	Table 6-6. Condition Code Settings

	6.2.19 cmpinci, cmpinco
	Table 6-7. Condition Code Settings

	6.2.20 COMPARE
	Table 6-8. Condition Code Settings

	6.2.21 COMPARE AND BRANCH<cc>
	Table 6-9. Condition Code Mask Descriptions

	6.2.22 concmpi, concmpo
	Table 6-10. concmpo example: register ordering and...

	6.2.23 dcctl
	Table 6-11. dcctl Operand Fields
	Figure 6-1. dcctl src1 and src/dst Formats
	Table 6-12. DCCTL Status Values and D-Cache Parame...
	Figure 6-2. Store Data Cache to Memory Output Form...
	Figure 6-3. D-Cache Tag and Valid Bit Formats

	6.2.24 divi, divo
	6.2.25 ediv
	6.2.26 emul
	6.2.27 eshro
	6.2.28 extract
	6.2.29 FAULT<cc>
	Table 6-13. Condition Code Mask Descriptions

	6.2.30 flushreg
	6.2.31 fmark
	6.2.32 halt
	6.2.33 icctl
	Table 6-15. icctl Operand Fields
	Figure 6-4. icctl src1 and src/dst Formats
	Table 6-16. ICCTL Status Values and Instruction Ca...
	Figure 6-5. Store Instruction Cache to Memory Outp...
	Figure 6-6. I-Cache Set Data, Tag and Valid Bit Fo...

	6.2.34 intctl
	6.2.35 intdis
	6.2.36 inten
	6.2.37 LOAD
	6.2.38 lda
	6.2.39 mark
	6.2.40 modac
	6.2.41 modi
	6.2.42 modify
	6.2.43 modpc
	6.2.44 modtc
	6.2.45 MOVE
	6.2.46 muli, mulo
	6.2.47 nand
	6.2.48 nor
	6.2.49 not, notand
	6.2.50 notbit
	6.2.51 notor
	6.2.52 or, ornot
	6.2.53 remi, remo
	6.2.54 ret
	6.2.55 rotate
	6.2.56 scanbit
	6.2.57 scanbyte
	6.2.58 SEL<cc>
	Table 6.17. Condition Code Mask Descriptions

	6.2.59 setbit
	6.2.60 SHIFT
	6.2.61 spanbit
	6.2.62 STORE
	6.2.63 subc
	6.2.64 SUB<cc>
	6.2.65 subi, subo
	6.2.66 syncf
	6.2.67 sysctl
	Figure 6-7. Src1 Operand Interpretation
	Table 6-18. sysctl Field Definitions
	Table 6-19. Cache Mode Configuration
	Figure 6-8. src/dst Interpretation for Breakpoint ...

	6.2.68 TEST<cc>
	Table 6-20. Condition Code Mask Descriptions

	6.2.69 xnor, xor

	CHAPTER 7 PROCEDURE CALLS
	7.1 CALL AND RETURN MECHANISM
	7.1.1 Local Registers and the Procedure Stack
	Figure 7-1. Procedure Stack Structure and Local Re...

	7.1.2 Local Register and Stack Management
	7.1.2.1 Frame Pointer
	7.1.2.2 Stack Pointer
	7.1.2.3 Considerations When Pushing Data onto the ...
	7.1.2.4 Considerations When Popping Data off the S...
	7.1.2.5 Previous Frame Pointer
	7.1.2.6 Return Type Field
	7.1.2.7 Return Instruction Pointer

	7.1.3 Call and Return Action
	7.1.3.1 Call Operation
	7.1.3.2 Return Operation

	7.1.4 Caching Local Register Sets
	7.1.4.1 Reserving Local Register Sets for High Pri...
	Figure 7-2. Frame Spill
	Figure 7-3. Frame Fill

	7.1.5 Mapping Local Registers to the Procedure Sta...

	7.2 MODIFYING THE PFP REGISTER
	Example 7-1. flushreg

	7.3 PARAMETER PASSING
	Example 7-2. Parameter Passing Code Example

	7.4 LOCAL CALLS
	7.5 SYSTEM CALLS
	7.5.1 System Procedure Table
	Figure 7-4. System Procedure Table
	7.5.1.1 Procedure Entries
	Table 7-1. Encodings of Entry Type Field in System...

	7.5.1.2 Supervisor Stack Pointer
	7.5.1.3 Trace Control Bit

	7.5.2 System Call to a Local Procedure
	7.5.3 System Call to a Supervisor Procedure

	7.6 USER AND SUPERVISOR STACKS
	7.7 INTERRUPT AND FAULT CALLS
	7.8 RETURNS
	Figure 7-5. Previous Frame Pointer Register (PFP) ...
	Table 7-2. Encoding of Return Status Field

	7.9 BRANCH-AND-LINK

	CHAPTER 8 FAULTS
	8.1 FAULT HANDLING OVERVIEW
	Figure 8�1. Fault-Handling Data Structures

	8.2 FAULT TYPES
	Table 8�1. i960® Jx Processor Fault Types and Subt...

	8.3 FAULT TABLE
	Figure 8-2. Fault Table and Fault Table Entries

	8.4 STACK USED IN FAULT HANDLING
	8.5 FAULT RECORD
	8.5.1 Fault Record Description
	Figure 8�3. Fault Record

	8.5.2 Fault Record Location
	Figure 8�4. Storage of the Fault Record on the Sta...

	8.6 MULTIPLE AND PARALLEL FAULTS
	8.6.1 Multiple Non-Trace Faults on the Same Instru...
	8.6.2 Multiple Trace Fault Conditions on the Same ...
	8.6.3 Multiple Trace and Non-Trace Fault Condition...
	8.6.4 Parallel Faults
	8.6.4.1 Faults on Multiple Instructions Executed i...
	8.6.4.2 Fault Record for Parallel Faults

	8.6.5 Override Faults
	8.6.6 System Error

	8.7 FAULT HANDLING PROCEDURES
	8.7.1 Possible Fault Handling Procedure Actions
	8.7.2 Program Resumption Following a Fault
	8.7.2.1 Faults Happening Before Instruction Execut...
	8.7.2.2 Faults Happening During Instruction Execut...
	8.7.2.3 Faults Happening After Instruction Executi...

	8.7.3 Return Instruction Pointer (RIP)
	8.7.4 Returning to the Point in the Program Where ...
	8.7.5 Returning to a Point in the Program Other Th...
	8.7.6 Fault Controls
	Table 8�2. Fault Control Bits and Masks

	8.8 FAULT HANDLING ACTION
	8.8.1 Local Fault Call
	8.8.2 System-Local Fault Call
	8.8.3 System-Supervisor Fault Call
	8.8.4 Faults and Interrupts

	8.9 PRECISE AND IMPRECISE FAULTS
	8.9.1 Precise Faults
	8.9.2 Imprecise Faults
	8.9.3 Asynchronous Faults
	8.9.4 No Imprecise Faults (AC.nif) Bit
	8.9.5 Controlling Fault Precision

	8.10 FAULT REFERENCE
	8.10.1 ARITHMETIC Faults
	8.10.2 CONSTRAINT Faults
	8.10.3 OPERATION Faults
	8.10.4 OVERRIDE Faults
	8.10.5 PARALLEL Faults
	8.10.6 PROTECTION Faults
	8.10.7 TRACE Faults
	8.10.8 TYPE Faults

	CHAPTER 9 TRACING AND DEBUGGING
	9.1 TRACE CONTROLS
	9.1.1 Trace Controls (TC) Register
	Figure 9-1. 80960Jx Trace Controls (TC) Register

	9.1.2 PC Trace Enable Bit and Trace-Fault-Pending ...

	9.2 TRACE MODES
	9.2.1 Instruction Trace
	9.2.2 Branch Trace
	9.2.3 Call Trace
	9.2.4 Return Trace
	9.2.5 Prereturn Trace
	9.2.6 Supervisor Trace
	9.2.7 Mark Trace
	9.2.7.1 Software Breakpoints
	9.2.7.2 Hardware Breakpoints
	9.2.7.3 Requesting Modification Rights to Hardware...
	Table 9-1. src/dst Encoding

	9.2.7.4 Breakpoint Control Register
	Figure 9-2. Breakpoint Control Register (BPCON)
	Table 9-2. Configuring the Data Address Breakpoint...
	Table 9-3. Programming the Data Address Breakpoint...

	9.2.7.5 Data Address Breakpoint (DAB) Registers
	Figure 9-3. Data Address Breakpoint (DAB) Register...

	9.2.7.6 Instruction Breakpoint (IPB) Registers
	Figure 9-4. Instruction Breakpoint (IPB) Register ...
	Table 9-4. Instruction Breakpoint Modes

	9.3 GENERATING A TRACE FAULT
	9.4 HANDLING MULTIPLE TRACE EVENTS
	9.5 TRACE FAULT HANDLING PROCEDURE
	9.5.1 Tracing and Interrupt Procedures
	9.5.2 Tracing on Calls and Returns
	9.5.2.1 Tracing on Explicit Call
	Table 9-5. Tracing on Explicit Call

	9.5.2.2 Tracing on Implicit Call
	Table 9-6. Tracing on Implicit Call �

	9.5.2.3 Tracing on Return from Explicit Call
	Table 9-7. Tracing on Return from Explicit Call

	9.5.2.4 Tracing on Return from Implicit Call: Faul...
	Table 9-8. Tracing on Return from Fault

	9.5.2.5 Tracing on Return from Implicit Call: Inte...
	Table 9-9. Tracing on Return from Interrupt

	CHAPTER 10 TIMERS
	Figure 10-1. Timer Functional Diagram
	Table 10-1. Timer Performance Ranges
	10.1 TIMER REGISTERS
	Table 10-2. Timer Registers
	10.1.1 Timer Mode Registers (TMR0, TMR1)
	Figure 10-2. Timer Mode Register (TMR0, TMR1)
	10.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.t...
	10.1.1.2 Bit 1 - Timer Enable (TMRx.enable)
	10.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.re...
	10.1.1.4 Bit 3 - Timer Register Supervisor Read/Wr...
	10.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMR...
	Table 10-3. Timer Input Clock (TCLOCK) Frequency S...

	10.1.2 Timer Count Register (TCR0, TCR1)
	Figure 10-3. Timer Count Register (TCR0, TCR1)

	10.1.3 Timer Reload Register (TRR0, TRR1)
	Figure 10-4. Timer Reload Register (TRR0, TRR1)

	10.2 TIMER OPERATION
	10.2.1 Basic Timer Operation
	Table 10-4. Timer Mode Register Control Bit Summar...

	10.2.2 Load/Store Access Latency for Timer Registe...
	Table 10-5. Timer Responses to Register Bit Settin...

	10.3 TIMER INTERRUPTS
	10.4 POWERUP/RESET INITIALIZATION
	Table 10-6. Timer Powerup Mode Settings

	10.5 UNCOMMON TCRX AND TRRX CONDITIONS
	Table 10-7. Uncommon TMRx Control Bit Settings�

	10.6 TIMER STATE DIAGRAM
	Figure 10-5. Timer Unit State Diagram

	CHAPTER 11 INTERRUPTS
	11.1 OVERVIEW
	Figure 11-1. Interrupt Handling Data Structures
	11.1.1 The i960® Jx Processor Interrupt Controller...

	11.2 SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING
	11.3 INTERRUPT PRIORITY
	11.4 INTERRUPT TABLE
	Figure 11-2. Interrupt Table
	11.4.1 Vector Entries
	11.4.2 Pending Interrupts
	11.4.3 Caching Portions of the Interrupt Table

	11.5 INTERRUPT STACK AND INTERRUPT RECORD
	Figure 11-3. Storage of an Interrupt Record on the...

	11.6 MANAGING INTERRUPT REQUESTS
	11.6.1 External Interrupts
	11.6.2 Non-Maskable Interrupt (NMI)
	11.6.3 Timer Interrupts
	11.6.4 Software Interrupts
	11.6.5 Posting Interrupts
	11.6.5.1 Posting Software Interrupts via sysctl
	Example 11�1. Using sysctl to Request an Interrupt...

	11.6.5.2 Posting Software Interrupts Directly in t...
	11.6.5.3 Posting External Interrupts
	Example 11-2. External Agent Posting

	11.6.5.4 Posting Hardware Interrupts

	11.6.6 Resolving Interrupt Priority
	Example 11-3. Interrupt Resolution

	11.6.7 Sampling Pending Interrupts in the Interrup...
	Example 11-4. Sampling Pending Interrupts

	11.6.8 Interrupt Controller Modes
	11.6.8.1 Dedicated Mode
	Figure 11-4. Dedicated Mode

	11.6.8.2 Expanded Mode
	Figure 11-5. Expanded Mode
	Figure 11-6. Implementation of Expanded Mode Sourc...

	11.6.8.3 Mixed Mode

	11.6.9 Saving the Interrupt Mask

	11.7 EXTERNAL INTERFACE DESCRIPTION
	11.7.1 Pin Descriptions
	11.7.2 Interrupt Detection Options
	Example 11-5. Return from a Level-detect Interrupt...
	Figure 11-7. Interrupt Sampling

	11.7.3 Memory-Mapped Control Registers
	Table 11-1. Interrupt Control Registers Memory-Map...

	11.7.4 Interrupt Control Register (ICON)
	Figure 11-8. Interrupt Control (ICON) Register

	11.7.5 Interrupt Mapping Registers (IMAP0-IMAP2)
	Figure 11-9. Interrupt Mapping (IMAP0-IMAP2) Regis...
	11.7.5.1 Interrupt Mask (IMSK) and Interrupt Pendi...
	Figure 11-10. Interrupt Pending (IPND) Register
	Figure 11-11. Interrupt Mask (IMSK) Registers

	11.7.5.2 Interrupt Controller Register Access Requ...
	11.7.5.3 Default and Reset Register Values

	11.8 INTERRUPT OPERATION SEQUENCE
	Figure 11-12. Interrupt Controller
	11.8.1 Setting Up the Interrupt Controller
	Example 11-6. Programming the Interrupt Controller...

	11.8.2 Interrupt Service Routines
	11.8.3 Interrupt Context Switch
	11.8.3.1 Servicing an Interrupt from Executing Sta...
	11.8.3.2 Servicing an Interrupt from Interrupted S...

	11.9 OPTIMIZING INTERRUPT PERFORMANCE
	Figure 11-13. Interrupt Service Flowchart
	11.9.1 Interrupt Service Latency
	11.9.2 Features to Improve Interrupt Performance
	11.9.2.1 Vector Caching Option
	Table 11-2. Location of Cached Vectors in Internal...

	11.9.2.2 Caching Interrupt Routines and Reserving ...
	11.9.2.3 Caching the Interrupt Stack

	11.9.3 Base Interrupt Latency
	Table 11-3. Base Interrupt Latency

	11.9.4 Maximum Interrupt Latency
	Table 11-4. Worst-Case Interrupt Latency Controlle...
	Table 11-5. Worst-Case Interrupt Latency Controlle...
	Table 11-6. Worst-Case Interrupt Latency Controlle...
	Table 11-7. Worst-Case Interrupt Latency When Deli...
	Table 11-8. Worst-Case Interrupt Latency Controlle...
	11.9.4.1 Avoiding Certain Destinations for MDU Ope...
	11.9.4.2 Masking Integer Overflow Faults for syncf...

	CHAPTER 12 INITIALIZATION AND SYSTEM REQUIREMENTS
	12.1 OVERVIEW
	12.2 INITIALIZATION
	Figure 12-1. Processor Initialization Flow
	12.2.1 Reset State Operation
	Figure 12-2. Cold Reset Waveform
	Table 12-1. Reset States
	Table 12-2. Register Values After Reset (Sheet 2 o...

	12.2.2 Self Test Function (STEST, FAIL)
	12.2.2.1 The STEST Pin
	12.2.2.2 External Bus Confidence Test
	12.2.2.3 The Fail Pin (FAIL)
	Figure 12-3. FAIL Sequence

	12.2.2.4 IMI Alignment Check and System Error
	12.2.2.5 FAIL Code
	Table 12-3. Fail Codes For BIST (bit 7 = 1)
	Table 12-4. Remaining Fail Codes (bit 7 = 0)

	12.3 Architecturally Reserved Memory Space
	12.3.1 Initial Memory Image (IMI)
	Figure 12-4. Initial Memory Image (IMI) and Proces...
	12.3.1.1 Initialization Boot Record (IBR)
	Table 12-5. Initialization Boot Record
	Example 12-1. Processor Initialization Flow �
	Figure 12-5. PMCON14_15 Register Bit Description i...

	12.3.1.2 Process Control Block (PRCB)
	Table 12-6. PRCB Configuration
	Figure 12-6. Process Control Block Configuration W...

	12.3.2 Process PRCB Flow
	Example 12-2. Process PRCB Flow �
	12.3.2.1 AC Initial Image
	12.3.2.2 Fault Configuration Word
	12.3.2.3 Instruction Cache Configuration Word
	12.3.2.4 Register Cache Configuration Word

	12.3.3 Control Table
	Figure 12-7. Control Table

	12.4 DEVICE IDENTIFICATION ON RESET
	Figure 12-8. IEEE 1149.1 Device Identification Reg...
	12.4.1 Reinitializing and Relocating Data Structur...

	12.5 Startup Code Example
	Example 12-3. Initialization Header File (init.h) ...
	Example 12-4. Startup Routine (init.s) (Sheet 4 of...
	Example 12-5. High-Level Startup Code (initmain.c)...
	Example 12-6. Control Table (ctltbl.c) �
	Example 12-7. Initialization Boot Record File (rom...
	Example 12-8. Linker Directive File (init.ld) (She...
	Example 12-9. Makefile

	12.6 SYSTEM REQUIREMENTS
	12.6.1 Input Clock (CLKIN)
	12.6.2 Power and Ground Requirements (VCC, VSS)
	12.6.3 VCC5 Pin Requirements
	Figure 12-9. VCC5 Current-Limiting Resistor

	12.6.4 Power and Ground Planes
	Figure 12-10. Reducing Characteristic Impedance

	12.6.5 Decoupling Capacitors
	12.6.6 I/O Pin Characteristics
	12.6.6.1 Output Pins
	12.6.6.2 Input Pins
	Table 12-7. Input Pins

	12.6.7 High Frequency Design Considerations
	12.6.8 Line Termination
	Figure 12-11. Series Termination
	Figure 12-12. AC Termination

	12.6.9 Latchup
	12.6.10 Interference
	Figure 12-13. Avoid Closed-Loop Signal Paths

	CHAPTER 13 MEMORY CONFIGURATION
	13.1 Memory Attributes
	13.1.1 Physical Memory Attributes
	13.1.2 Logical Memory Attributes
	Figure 13-1. PMCON and LMCON Example

	13.2 Differences With Previous i960 Processors
	13.3 Programming the Physical Memory Attributes (P...
	Table 13-1. PMCON Address Mapping �
	13.3.1 Bus Width
	Figure 13-2. PMCON Register Bit Description

	13.4 Physical Memory Attributes at Initialization
	13.4.1 Bus Control (BCON) Register
	Figure 13-3. Bus Control Register (BCON)

	13.5 Boundary Conditions for Physical Memory Regio...
	13.5.1 Internal Memory Locations
	13.5.2 Bus Transactions Across Region Boundaries
	13.5.3 Modifying the PMCON Registers

	13.6 Programming the Logical Memory Attributes
	Figure 13-4. Logical Memory Template Starting Addr...
	Figure 13-5. Logical Memory Template Mask Register...
	Figure 13-6. Default Logical Memory Configuration ...
	13.6.1 Defining the Effective Range of a Logical D...
	13.6.2 Selecting the Byte Order
	13.6.3 Data Caching Enable
	13.6.4 Enabling the Logical Memory Template
	13.6.5 Initialization
	Table 13-2. DLMCON Values at Reset

	13.6.6 Boundary Conditions for Logical Memory Temp...
	13.6.6.1 Internal Memory Locations
	13.6.6.2 Overlapping Logical Data Template Ranges
	13.6.6.3 Accesses Across LMT Boundaries

	13.6.7 Modifying the LMT Registers
	13.6.8 Dynamic Byte Order Changing

	CHAPTER 14 EXTERNAL BUS
	14.1 OVERVIEW
	14.2 BUS OPERATION
	14.2.1 Basic Bus States
	Figure 14.1. Bus States with Arbitration

	14.2.2 Bus Signal Types
	14.2.2.1 Clock Signal
	14.2.2.2 Address/Data Signal Definitions
	14.2.2.3 Control/Status Signal Definitions
	Table 14-1. Summary of i960 Jx Processor Bus Signa...

	14.2.3 Bus Accesses
	14.2.3.1 Bus Width
	Figure 14-2. Data Width and Byte Encodings
	Table 14-2. 8-Bit Bus Width Byte Enable Encodings
	Table 14-3. 16-Bit Bus Width Byte Enable Encodings...
	Table 14-4. 32-Bit Bus Width Byte Enable Encodings...

	14.2.3.2 Basic Bus Accesses
	Figure 14-3. Non-Burst Read and Write Transactions...

	14.2.3.3 Burst Transactions
	Figure 14-4. 32-Bit Wide Data Bus Bursts
	Figure 14-5. 16-Bit Wide Data Bus Bursts
	Figure 14-6. 8-Bit Wide Data Bus Bursts
	Figure 14-7. Unaligned Write Transaction
	Figure 14-8. Burst Read and Write Transactions w/o...
	Figure 14-9. Burst Read and Write Transactions w/o...

	14.2.3.4 Wait States
	Figure 14-10. Burst Write Transactions With 2,1,1,...

	14.2.3.5 Recovery States
	Figure 14-11. Burst Read/Write Transactions with 1...
	Figure 14-12. Burst Read/Write Transactions with 1...

	14.2.4 Bus and Control Signals During Recovery and...
	14.2.5 Data Alignment
	Table 14-5. Natural Boundaries for Load and Store ...
	Table 14-6. Summary of Byte Load and Store Accesse...
	Table 14-7. Summary of Short Word Load and Store A...
	Table 14-8. Summary of n-Word Load and Store Acces...
	Figure 14-13. Summary of Aligned and Unaligned Acc...
	Figure 14-14. Summary of Aligned and Unaligned Acc...
	Figure 14-15. Accesses Generated by Double Word Re...

	14.2.6 Byte Ordering and Bus Accesses
	Table 14-9. Byte Ordering on Bus Transfers, Word D...
	Table 14-10. Byte Ordering on Bus Transfers, Short...
	Table 14-11. Byte Ordering on Bus Transfers, Byte ...
	Figure 14-16. Multi-Word Access to Big-Endian Memo...

	14.2.7 Atomic Bus Transactions
	Figure 14-17. The LOCK Signal

	14.2.8 Bus Arbitration
	14.2.8.1 HOLD/HOLDA Protocol
	Figure 14-18. Arbitration Timing Diagram for a Bus...

	14.2.8.2 BSTAT Signal

	14.3 BUS APPLICATIONS
	14.3.1 System Block Diagrams
	Figure 14-19. Generalized 80960Jx System with 8096...
	Figure 14-20. Generalized 80960Jx System with 8096...
	Figure 14-21. 80960Jx System with 80960 Local Bus,...
	14.3.1.1 Memory Subsystems
	14.3.1.2 I/O Subsystems

	CHAPTER 15 TEST FEATURES
	15.1 ON-CIRCUIT EMULATION (ONCE)
	15.1.1 Entering/Exiting ONCE Mode

	15.2 BOUNDARY SCAN (JTAG)
	15.2.1 Boundary Scan Architecture
	15.2.1.1 TAP Controller
	15.2.1.2 Instruction Register
	15.2.1.3 Test Data Registers
	15.2.1.4 TAP Elements
	Figure 15-1. Test Access Port Block Diagram
	Figure 15-2. TAP Controller State Diagram
	Table 15-1. TAP Controller Pin Definitions �

	15.3 TAP REGISTERS
	15.3.1 Instruction Register (IR)
	15.3.2 TAP Test Data Registers
	15.3.2.1 Device Identification Register
	15.3.2.2 Bypass Register
	15.3.2.3 RUNBIST Register
	15.3.2.4 Boundary-Scan Register

	15.3.3 Boundary Scan Instruction Set
	Table 15-2. Boundary Scan Instruction Set

	15.3.4 IEEE Required Instructions
	15.3.5 TAP Controller
	15.3.5.1 Test Logic Reset State
	15.3.5.2 Run-Test/Idle State
	15.3.5.3 Select-DR-Scan State
	15.3.5.4 Capture-DR State
	15.3.5.5 Shift-DR State
	15.3.5.6 Exit1-DR State
	15.3.5.7 Pause-DR State
	15.3.5.8 Exit2-DR State
	15.3.5.9 Update-DR State
	15.3.5.10 Select-IR Scan State
	15.3.5.11 Capture-IR State
	15.3.5.12 Shift-IR State
	15.3.5.13 Exit1-IR State
	15.3.5.14 Pause-IR State
	15.3.5.15 Exit2-IR State
	15.3.5.16 Update-IR State

	15.3.6 Boundary-Scan Register
	Table 15-3. Boundary Scan Register Bit Order
	15.3.6.1 Example
	Figure 15-3. JTAG Example
	Figure 15-4. Timing diagram illustrating the loadi...
	Figure 15-5. Timing diagram illustrating the loadi...

	15.3.7 Boundary Scan Description Language Example
	Example 15-1. Boundary Scan Description Language E...

	APPENDIX A CONSIDERATIONS FOR WRITING PORTABLE COD...
	A.1 CORE ARCHITECTURE
	A.2 ADDRESS SPACE RESTRICTIONS
	A.2.1 Reserved Memory
	A.2.2 Initialization Boot Record
	A.2.3 Internal Data RAM
	A.2.4 Instruction Cache

	A.3 Data and Data Structure Alignment
	A.4 RESERVED LOCATIONS IN REGISTERS AND DATA STRUC...
	A.5 INSTRUCTION SET
	A.5.1 Instruction Timing
	A.5.2 Implementation-Specific Instructions

	A.6 EXTENDED REGISTER SET
	A.7 INITIALIZATION
	A.8 MEMORY CONFIGURATION
	A.9 INTERRUPTS
	A.10 OTHER i960 Jx PROCESSOR IMPLEMENTATION-SPECIF...
	A.10.1 Data Control Peripheral Units
	A.10.2 Timers
	A.10.3 Fault Implementation

	A.11 BREAKPOINTS

	APPENDIX B OPCODES AND EXECUTION TIMES
	B.1 INSTRUCTION REFERENCE BY OPCODE
	Table B�1. Miscellaneous Instruction Encoding Bits...
	Table B�2. REG Format Instruction Encodings (Sheet...
	Table B�3. COBR Format Instruction Encodings �
	Table B�4. CTRL Format Instruction Encodings �
	Table B-5. Cycle Counts for sysctl Operations
	Table B-6. Cycle Counts for icctl Operations
	Table B-7. Cycle Counts for dcctl Operations
	Table B-8. Cycle Counts for intctl Operations
	Table B�9. MEM Format Instruction Encodings
	Table B-10. Addressing Mode Performance

	APPENDIX C MACHINE-LEVEL INSTRUCTION FORMATS
	C.1 GENERAL INSTRUCTION FORMAT
	Figure C-1. Instruction Formats
	Table C-1. Instruction Field Descriptions

	C.2 REG FORMAT
	Table C-2. Encoding of src1 and src2 in REG Format...
	Table C-3. Encoding of src/dst in REG Format

	C.3 COBR FORMAT
	Table C-4. Encoding of src1 in COBR Format
	Table C-5. Encoding of src2 in COBR Format

	C.4 CTRL FORMAT
	C.5 MEM FORMAT
	Table C-6. Addressing Modes for MEM Format Instruc...
	C.5.1 MEMA Format Addressing
	C.5.2 MEMB Format Addressing
	Table C-7. Encoding of Scale Field

	APPENDIX D REGISTER AND DATA STRUCTURES
	Table D�1. Register and Data Structures (Sheet 2 o...
	D.1 REGISTERS
	Figure D-1. AC (Arithmetic Controls) Register
	Figure D-2. PC (Process Controls) Register
	Figure D-3. Procedure Stack Structure and Local Re...
	Figure D-4. System Procedure Table
	Figure D-5. PFP (Previous Frame Pointer) Register ...
	Figure D-6. Fault Table and Fault Table Entries
	Figure D-7. Fault Record
	Figure D-8. TC (Trace Controls) Register
	Figure D-9. BPCON (Breakpoint Control) Register
	Figure D-10. DAB (Data Address Breakpoint) Registe...
	Figure D-11. IPB (Instruction Breakpoint) Register...
	Figure D-12. TMR0-1 (Timer Mode Register)
	Figure D-13. TCR0-1 (Timer Count Register)
	Figure D-14. TRR0-1 (Timer Reload Register)
	Figure D-15. Interrupt Table
	Figure D-16. Storage of an Interrupt Record on the...
	Figure D-17. ICON (Interrupt Control) Register
	Figure D-18. IMAP0-IMAP2 (Interrupt Mapping) Regis...
	Figure D-19. IMSK (Interrupt Mask) Registers
	Figure D-20. Interrupt Pending (IPND) Register
	Figure D-21. Initial Memory Image (IMI) and Proces...
	Figure D-22. Process Control Block Configuration W...
	Figure D-23. Control Table
	Figure D-24. IEEE 1149.1 Device Identification Reg...
	Figure D-25. PMCON Register Bit Description
	Figure D-26. BCON (Bus Control) Register
	Figure D-27. DLMCON (Default Logical Memory Config...
	Figure D-28. LMADR0:1 Logical Memory Template Star...
	Figure D-29. LMMR0:1 (Logical Memory Mask Register...

	GLOSSARY
	INDEX

