
Order Number: 320631-001US

Removing System Bottlenecks in
Multi-threaded Applications
Application Note

September 2008

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
2 Order Number: 320631-001US

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel’s Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus,
OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel
Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights reserved.

http://www.intel.com
http://www.intel.com/products/processor_number

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 3

Category—Shortened Product Name

Contents

1.0 Introduction ..5
1.1 Purpose ...5
1.2 References ...5
1.3 Acronyms...5
1.4 Definitions..5

2.0 Description of the project ..5
2.1 Background and purpose..5
2.2 Snort-2.2.0 optimization ..6

3.0 Snort v2.8.0.1 optimization ...7
3.1 Using the Intel® Thread Profiler ..8

4.0 Making improvements ... 10
4.1 Removing Lock Contention ... 10
4.2 Removing Excess Memory Copies .. 11

5.0 Benchmark Test and Results.. 12
5.1 System Configuration .. 12
5.2 Results .. 12
5.3 New System Bottlenecks .. 14

6.0 Conclusion... 14

7.0 Next Steps... 15

A Performing Benchmarks .. 16
A.1 Offline packet trace file test .. 16
A.2 Online test ... 17

Figures
1 Architecture of two-stage pipeline and flow-pinning optimization on Dual processor Dual

core system ..6
2 Offline trace file test result ..7
3 Snort v2.8.0.1 Dataflow..8
4 Snort v2.8.0.1-Parallel-orig TProfile summary..9
5 Snort v2.8.0.1-Parallel -orig Architecture .. 10
6 Snort v2.8.0.1 Parallel architecture (Lock free) .. 11
7 Snort v2.8.0.1-Parallel Architecture .. 12
8 Offline test result ... 13
9 Online test result ... 13
10 Packet Capture module Kernel part and NIC driver CPU Utilization 14
11 Packet Capture module userspace part and Packet Classifier CPU Utilization..................... 14

Tables
1 Acronyms ...5
2 Definitions ..5
3 Running SNORT* on the live network connection.. 17

Shortened Product Name—Category

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
4 Order Number: 320631-001US

Revision History

Date Revision Description

September 2008 001 Initial release

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 5

Category—Shortened Product Name

1.0 Introduction

1.1 Purpose

This document describes the software optimization of a popular open-source embedded
application. The goal was to document the efforts/procedure to multi-thread an existing
single-threaded application.

1.2 References

The following list of documents constitutes the baseline and framework for this project:

1. Snort diagrams for developers http://afrodita.unicauca.edu.co/~cbedon/snort/
snortdevdiagrams.pdf

2. Supra-linear Packet Processing Performance with Intel® Multi-core Processors -
White Paper doc # 31156601

1.3 Acronyms

1.4 Definitions

2.0 Description of the project

2.1 Background and purpose

SNORT* is an open source network intrusion prevention and detection system utilizing
a rule-driven language, which combines the benefits of signature, protocol and
anomaly based inspection methods. With millions of downloads to date, SNORT* is the
most widely deployed intrusion detection and prevention technology worldwide and has
become the de facto standard for the industry.

Multi-core has become a clear trend in the computing area to the extent that multi-core
systems are available at an ever-expanding range of markets. While there are many
ways to take advantage of the computing power of multi-core systems (ex.
virtualization, SMP OS, etc.), multi-threading individual applications may be the best
way to realize large performance gains on such platforms.

Table 1. Acronyms

Acronym Definition

SMP Symmetric Multi-Processing

OS Operating System

Table 2. Definitions

Term Definition

Flow-pinning Packet segregation method in which all packets associated with same
TCP flow are processed by same CPU core

Dual-core / dual-processor A processor combining two independent cores into a single package

mpstat A Linux-based tool that reports processor-related statistics

http://afrodita.unicauca.edu.co/~cbedon/snort/snortdevdiagrams.pdf

Shortened Product Name—Category

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
6 Order Number: 320631-001US

This document demonstrates one method to rewrite a serial piece of software - SNORT
v2.8.0.1 - to take advantage of a multi-core system. Procedures for benchmarking,
application analysis, and code modification that can be applied to many other multi-
core development scenarios are also included.

2.2 Snort-2.2.0 optimization

In 2005 Intel conducted a study of SNORT version 2.2.0; the effort had a similar goal:
to multi-thread a serial application for optimal performance on a multi-core platform.
Several iterations of analysis and code rewrite converged on a solution featuring a two-
stage pipelining and flow-pinning software architecture. Figure 1 shows this solution on
an Intel dual-processor, dual-core platform.

Here, SNORT's packet classifier module runs on Core 1 of Processor 0 and directs
network traffic to all the other cores based on a hash of fields in the packet header,
specifically the IP source address and destination address fields, as well as the TCP
source port and destination port fields. This hash algorithm ensures that packets from
the same TCP flow are always assigned to the same core; this type of algorithm is
known as flow-pinning.

Refer to Document [2] for the full details. The outcome of the first study was a
performance boost of about six times the original serial version for test cases with large
numbers of TCP connections (~25,000 in MRA-1104721946-1), as shown in Figure 2.

Figure 1. Architecture of two-stage pipeline and flow-pinning optimization on Dual
processor Dual core system

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 7

Category—Shortened Product Name

Since that time, SNORT was updated rapidly by the open-source community and serial
performance improved prominently. Benchmarking shows that the current “out of the
box” release of SNORT version 2.8.0.1 is 10 times faster than the baseline version of
Snort v2.2.0. In addition, this latest serial version of SNORT is 3 times faster than the
parallel version created in Intel's first study (that is, Snort-2.2.0-parallel) in offline
HTTP-32KB data trace file1 test.

It is paramount to start with the most optimized serial version possible when
approaching the task of multi-threading a given application. It is much easier to
develop/debug a single-threaded application than a multi-threaded one.

With this background in mind, this document uses Snort v2.8.0.1 as its baseline for
analysis.

3.0 Snort v2.8.0.1 optimization

The overall SNORT software architecture has not changed much from Snort v2.2.0 to
Snort v2.8.0.1. The dataflow can be subdivided into five functional processes, as shown
in Figure 3.

Figure 2. Offline trace file test result

1. Dumped the packets generated by Spirent Avalanche 2700C. HTTP 32KB data file and TCP
connection speed 2,000 per second

Shortened Product Name—Category

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
8 Order Number: 320631-001US

Given the structural similarity between SNORT versions 2.2.0 and 2.8.0.1, it is feasible
to employ many of the same optimizations in this project (i.e. of Snort v2.8.0.1). Snort
v2.8.0.1 was modified to implement a two-stage pipeline and flow-pinning software
architecture.

However, performance did not improve; in fact, this new version was slower than
original serial version. For example, in an offline HTTP 1KB data trace file test, the
multi-threaded snort-2.8.0.1 was approximately 35% slower than the serial version
(22.68 seconds versus 16.80 seconds).

3.1 Using the Intel® Thread Profiler

The team used the Intel® Thread Profiler plug-in for the VTune™ Performance Analyzer
to determine where the biggest performance bottlenecks were. The tool indicated - via
the Profiling summary window - that the multi-threaded version of SNORT spent a lot of
time context swapping between threads, most likely due to high levels of contention to
enter critical sections (that is, the threads are fighting over shared resources protected
by synchronization locks). Figure 4 shows these results.

Figure 3. Snort v2.8.0.1 Dataflow

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 9

Category—Shortened Product Name

Overall, out of a total of 84,166 synchronization lock attempts, 19,499 were
contended, which means that approximately 1 out of 4 times a thread ready to work
(i.e. enter a given critical section) was not able to do so because another thread was
already there and had locked the resource. Overall, this application performed context
switches 1149.02 times per second, mostly because of this 23% lock contention rate,
and this became one of the greatest factors that led to poor performance.

Figure 4. Snort v2.8.0.1-Parallel-orig TProfile summary

Shortened Product Name—Category

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
10 Order Number: 320631-001US

Armed with this data from the Intel® Thread Profiler, the team analyzed the code itself
and found that almost every thread in the system faced a synchronization lock in order
to write itself into the packet pool, as shown in Figure 5. Given that this is a common
operation, improving this area of code became the number one area for improvement.

4.0 Making improvements

Software “locking” mechanisms (ex. critical sections, mutex, etc.) are commonly used
to regulate access to data structures shared between threads. However, contention for
locked resources usually becomes one of the major bottlenecks to multi-threaded
application performance.

In fact, the multi-threaded version of SNORT employs locks to protect read-modify-
write operations on the application's Packet Processing queues. Re-architecting the
application to remove these locks is a priority for achieving higher packet throughput.

4.1 Removing Lock Contention

To eliminate the excessive contention rates around packet queue access in the packet
receive/processing architecture, all queues were rewritten to be Lock-Free. A “Free
Packet pool” data structure was created for each Packet process thread; and one
independent thread, “Collect Packet”, was created to be the sole software entity to read
from the “Free Packet pool” queues (round-robin), and write this data back into the
“Packet pool” queue. While the algorithm requires slightly more data storage to
implement this intermediate step, it allows most of the threads to work independently,
which is a key characteristic of a good multi-threaded algorithm.

Figure 6 demonstrates the new Snort v2.8.0.1 parallel architecture.

Figure 5. Snort v2.8.0.1-Parallel -orig Architecture

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 11

Category—Shortened Product Name

A general rule of thumb in multi-threaded software is to share as little data as possible
between threads because the synchronization overhead can really limit performance.

4.2 Removing Excess Memory Copies

In the process of inspecting the Snort v2.8.0.1 multi-threaded version of the source
code (and performing the queue rewrites described in the previous section), the team
found a duplicated memory copy for each packet going from the Packet Capture
module to the Packet Classifier module.

When a new packet arrives on the Network Interface Card, the Packet Capture module
copies it to a pre-allocated memory block (i.e. one set aside during module
initialization). In the serial version of SNORT, a pointer to this memory block is passed
from the Packet Capture module to the Packet Processing module, so that there is only
one overall memory copy. On the other hand, the multi-threaded version of SNORT
passes a pointer to the memory block to Packet Classifier module (i.e. a new module
not in the serial version), which, in turn, copies the memory block itself in order to
perform a node read from the Packet pool data structure.

This data copy is simply done in an effort to keep the modules as separate as possible,
per the vision of the original SNORT architecture. So the Packet pool data structure and
code that needs to read/write it was moved from the Packet Classifier module to the
Packet Capture module, as implied by Figure 6.

In this updated implementation of the Packet Capture module, packet memory blocks
are not allocated during the initialization phase. Instead, the Packet Capture module
takes a memory block from the Packet pool only as each new packet arrives on the
NIC.

After packets are copied from the NIC to memory, the Packet Capture module passes a
pointer to the Packet Classifier module, which, in turn, performs a hash on the packet
header. As mentioned before, this hash is used to distribute packets to multiple Packet
Processing modules running on different Cores. Here, again, the Packet Classifier
passes just the packet pointer to the Packet Processing module in order to reduce the
number of memory copies per packet.

Figure 6. Snort v2.8.0.1 Parallel architecture (Lock free)

Packet C
apture

Packet C
lassifier

…
...

…
...

Collect Packet

Packet process

Packet process

Packet process

…
...

New Packet
arrives on NIC

Process packet queue Free packet queue

Packet pool

Shortened Product Name—Category

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
12 Order Number: 320631-001US

5.0 Benchmark Test and Results

After making the changes described in the sections above, the team retested the multi-
threaded version of SNORT v2.8.0.1; the system configuration and results follow.

Note: The full benchmark procedure can be found in Appendix A, “Performing
Benchmarks”.

5.1 System Configuration

• CPU: Quad-Core Intel® Xeon® Processor X5355 (8M Cache, 2.66 GHz, 1333 MHz
FSB)

• Chipset: Intel® 5000P Chipset with 6311ESB I/O Controller Hub

• MEM: 4GB FBDIMM DDR2 667MHz

• NIC: Built-in Dual Port GbE 631xESB/632xESB

• OS: RedHat AS4 Update 4 x86-64bit with Linux kernel 2.6.23

• PF-Ring: Trunk version 3427

• SNORT* Version: 2.8.0.1

• SNORT* Rules: snortrules-snapshot-2.8.tar.gz

• SNORT* Configuration: Default configure file.

• Packet Generator: Sprient Avalanche 2700C and 2700B

• Network Switch: Cisco* 3550-12T Gigabit switch

5.2 Results

The team performed two tests:

1. Packet throughput for an offline packet trace file

2. Packet throughput for a “live” packet trace

In the first “offline” packet trace file test, packets are read from trace file stored on the
system's hard drive. The second test is more “true-to-life”, where the packets are
received off a network via the system's NIC.

Figure 7. Snort v2.8.0.1-Parallel Architecture

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 13

Category—Shortened Product Name

Figure 8 shows that in the offline packet trace file test, the new multi-threaded version
of SNORT* gained a 26% performance boost when using HTTP 1KB data packet trace
file over the original serial version, and a 10% performance boost when using HTTP
32KB data packet trace file.

Figure 9 shows that in the “online” test, the multi-threaded version performance is
75% better than the serial version when using HTTP 1KB data file, and 50% better
when using HTTP 32KB data file.

Overall, the new multi-threaded code based on the SNORT v2.8.0.1 baseline can
process between 10%-75% more packets per second, depending on the application
workload.

Figure 8. Offline test result

 Snort-2.8.0.1-Parallel vs. Snort-2.8.0.1 Offline test result

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

HTTP 1KB file HTTP 32KB file

Pe
rfo

rm
an

ce
 (%

 o
f o

rig
in

al
)

Original

Flow -pinned
(5 process threads)

Figure 9. Online test result

 Snort-2.8.0.1-Parallel vs. Snort-2.8.0.1 Online test result

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

HTTP 1KB file HTTP 32KB file

Pe
rfo

rm
an

ce
 (%

 o
f o

rig
in

al
)

Original

Flow -pinned
(5 process threads)

Shortened Product Name—Category

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
14 Order Number: 320631-001US

5.3 New System Bottlenecks

While a 75% performance improvement is great, given that there are 8 Cores in the
test system, one might ask, “Why not an 800% improvement?”

After the last set of benchmarks, the team went back to reanalyze system behavior to
see if they had, indeed, removed some of the bottlenecks related to thread
synchronization and data copies in memory as discussed in the previous section. They
did. However, there was a new bottleneck in the physical receipt of data into the
system.

The mpstat output in Figure 10, recorded during the online tests, shows that the packet
capture library (i.e. Pcap or PR_RING), was a new bottleneck within the Packet Capture
module. Here, the CPU is fully subscribed by servicing software IRQs, as indicated by
the mpstat data in the red circles in Figure 10 and Figure 11.

6.0 Conclusion

The two-stage packet pipeline and flow-pinning software architectures pioneered by the
first SNORT* multi-threading effort (i.e. for v2.2.0, as documented in [1]) was
applicable for multi-threading the latest version of SNORT (i.e. v2.8.0.1). However, it
was not a “drop-in” set of changes; the team needed to modify the way data was
shared between threads in order to gain real performance improvement.

Once system and application analysis and programming work was complete, the multi-
threaded version of Snort v2.8.0.1 yielded between 10% and 75% performance
improvement, depending on the test load and rule set, and was only really limited by
the CPU being able to bring in data fast enough off the network.

Figure 10. Packet Capture module Kernel part and NIC driver CPU Utilization

Figure 11. Packet Capture module userspace part and Packet Classifier CPU Utilization

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 15

Category—Shortened Product Name

7.0 Next Steps

During the final benchmarking, mpstat indicated that the current system bottleneck is
in the Packet Capture module. Specifically, the CPU is spending almost 100% of its time
responding to packet receive interrupts.

Intel® I/O Acceleration Technology (Intel® I/OAT) is a large set of hardware
accelerations in Intel chipsets and network devices that aim to reduce CPU overhead
for packet reception. Future versions of SNORT, multi-threaded or not, should take
advantage of them.

For example,

• The Intel® Ethernet Controllers 82575 and 82598 contain multiple receive and
transmit queues and L2 sorting logic that can be used to off load some or all of the
Packet Classifier functionality.

• The Intel® 5100 chipset contains an Enhanced DMA engine that can be used to
improve packet copy performance.

Shortened Product Name—Category

Removing System Bottlenecks in Multi-threaded Applications
AN September 2008
16 Order Number: 320631-001US

Appendix A Performing Benchmarks

This Appendix contains instructions for performing the benchmarks described in
Section 5.0.

A.1 Offline packet trace file test

1. Compile and Install
Enter SNORT* directory and compile the code
Single-threaded (original) version:
./configure
make

Multi-threaded version:
./configure --enable-pipeline_mthread --enable-cpu_affinity --with-num-cpus=8 --
with-num-process-threads=5
make

2. Run SNORT* with an offline packet trace

a. Enter SNORT* directory and start the executable with the default configuration
file
src/snort -c etc/snort.conf -l . -K none -k none -r ../http-1KB-35k.pcap
Note on SNORT* options:

— -c etc/snort.conf Use the default configure file etc/snort.conf

— -l . Use current directory as the log directory

— -K none Disable logging

— -k none Disable packet checksum

— -r ./http-1KB-35k.pcap - Read and Process
packet trace file http-1KB-35k.pcap

3. Repeat with another offline packet trace
src/snort -c etc/snort.conf -l . -K none -k none -r ../http-32KB-2k-30s.pcap

4. Record results
Error! Not a valid link.
Packet trace files info:
http-1KB-35k.pcap:

— Total pkt: 11039801

— Total tcp sessions: 1004103

— TCP connection speed: 35,000/sec

— File size: 831MB

http-32K-2k-30s.pcap:

— Total pkt: 4902174

— Total TCP sessions:88995

— TCP connection speed: 2000/sec

— File size: 359MB

Removing System Bottlenecks in Multi-threaded Applications
September 2008 AN
Order Number: 320631-001US 17

Category—Shortened Product Name

A.2 Online test

1. Compile and Install: (same as Offline test case)

2. Adjust TCP connection speed on a live network connection to make sure packet
drop rate less than 0.05% (example below uses eth1).

3. Run SNORT* on the live network connection

a. Enter SNORT* directory and start the executable with the default configuration
file
src/snort -c etc/snort.conf -l . -K none -N -i eth1 -n 5000000
Note on SNORT* options:

— -c etc/snort.conf -- Use the default configure file etc/snort.conf

— -l . -- Use current directory as the log directory

— -K none-- Disable logging

— -i eth1 -- Listen on eth1

— -n 5,000,000-- Exit after receiving 5,000,000 packets

Result:

§ §

Table 3. Running SNORT* on the live network connection

File size
Snort v2.8.0.1 standard

version (TCP Connections
Requests per second)

Snort v2.8.0.1 parallel version (TCP
Connections Requests per second)

Performance boost
via optimization

HTTP 64KB data file 1000 1500 50%

HTTP 32KB data file 2000 3000 50%

HTTP 1KB data file 20,000 35,000 75%

	Removing System Bottlenecks in Multi-threaded Applications
	Contents
	Figures
	Tables

	Revision History
	Legal Lines and Disclaimers

	1.0 Introduction
	1.1 Purpose
	1.2 References
	1.3 Acronyms
	Table 1. Acronyms

	1.4 Definitions
	Table 2. Definitions

	2.0 Description of the project
	2.1 Background and purpose
	2.2 Snort-2.2.0 optimization
	Figure 1. Architecture of two-stage pipeline and flow-pinning optimization on Dual processor Dual core system
	Figure 2. Offline trace file test result

	3.0 Snort v2.8.0.1 optimization
	Figure 3. Snort v2.8.0.1 Dataflow
	3.1 Using the Intel® Thread Profiler
	Figure 4. Snort v2.8.0.1-Parallel-orig TProfile summary
	Figure 5. Snort v2.8.0.1-Parallel -orig Architecture

	4.0 Making improvements
	4.1 Removing Lock Contention
	Figure 6. Snort v2.8.0.1 Parallel architecture (Lock free)

	4.2 Removing Excess Memory Copies

	5.0 Benchmark Test and Results
	Figure 7. Snort v2.8.0.1-Parallel Architecture
	5.1 System Configuration
	5.2 Results
	Figure 8. Offline test result
	Figure 9. Online test result

	5.3 New System Bottlenecks
	Figure 10. Packet Capture module Kernel part and NIC driver CPU Utilization
	Figure 11. Packet Capture module userspace part and Packet Classifier CPU Utilization

	6.0 Conclusion
	7.0 Next Steps
	Appendix A Performing Benchmarks
	A.1 Offline packet trace file test
	A.2 Online test
	Table 3. Running SNORT* on the live network connection

