

326841-001

A Novel Hashing

Method Suitable

for Lookup

Functions
 February 2012

White Paper

Vinodh Gopal

Jim Guilford

IA Architects

Intel Corporation

A Novel Hashing Method suitable for Lookup Functions

2

Executive Summary
The paper describes a novel hashing method suitable for lookup functions.

Traditional methods are either of lower hash quality or inferior

performance. In this paper, we show how to compute a high-quality hash

digest at extremely high performance on Intel® processors using the

crc32 instruction. Our method also generates multiple 32-bit hashes of an

input data buffer, which have low correlation.

 This paper describes a novel hashing method suitable for lookup

functions, based on the crc32 instruction. We show how to compute a

high-quality 64-bit hash digest at extremely high performance on

Intel® processors. For large data buffers, the performance of our hash

function tends to ~ 0.44 cycles/byte on a single thread of an Intel®

Core™ i5 650 processor. Even for small buffers (~24 bytes), the

performance is better than 1 cycle/byte.

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

www.intel.com/embedded/edc.

http://www.intel.com/embedded/edc

 A Novel Hashing Method suitable for Lookup Functions

 3

Contents

Overview .. 4

Background of Hashing for Lookups .. 4

Description of the crc32-Based Hash method ... 5

Performance .. 6

Methodology .. 6
Results ... 7

Testing for Quality .. 8

Conclusion .. 8

Contributors .. 9

References .. 9

326841-001

Overview

This paper describes a novel hashing method suitable for lookup functions.
Traditional methods are either of lower hash quality or inferior performance.
In this paper, we show how to compute a high-quality hash digest at
extremely high performance on Intel® processors using the crc32 instruction
[3]. Our method also generates multiple 32-bit hashes of an input data
buffer, which have low correlation and is useful in contexts such as network
processing applications.

Background of Hashing for Lookups

Some of the best methods to perform hashing for lookups such as lookup,

lookup2 and lookup3 have been developed by Bob Jenkins [1]. The

requirements vary based on applications, but for the most critical usages in

network processing, we need to generate a hash digest of an input data

buffer of typically small size. In some instances, the data buffers are all fixed

length, however in others they vary. Performance of the hash function and

the hash quality are both critical. The hash function does not require

cryptographic strength.

The digest size can be larger than 32 bits, such as 64 bits. In some usages,

we need to generate a pair of 32-bit hash digests that have low correlation in

addition to being individually strong. The general requirement is that we need

a hash digest whose size is N*32 bits or a set of N 32-bit digests of low

correlation. For the special case of 32-bit hashes, we can use the crc32

instruction, but the question is how to extend the power/speed of the crc32

instruction to the general case.

We describe a framework to achieve this and show the details of one such

function that generates 64-bit digests (or pairs of 32-bit digests) called

intel_hash64. Further details can be found in the patent application [2] on

which the methods are based. We measured performance as the average

cycles and the average rate in cycles / byte to hash a large number of unique

data buffers.

In addition to checking the strength of our proposed hash function, we also

checked the quality of a hash function derived from a cryptographic hash for

reference (SHA1 based). One of the best known tests, the frog test [1],

toggles bits in an attempt to generate digest collisions. We tested the hash

functions for collisions with each individual 32-bit digest, and with a 64-bit

digest created by concatenating the two 32-bit digests. The SHA1 algorithm

generates a 160-bit digest, from which we had to form a 64-bit digest of the

highest quality as measured by the frog test (for 32-bit digests). The SHA1

digest can be viewed as comprising five 32-bit digests, and we picked the

best performing one (bits 127:96) as our first 32-bit digest. We constructed

 A Novel Hashing Method suitable for Lookup Functions

 5

our 2nd 32-bit digest from the entire SHA1 digest with the function:

SHA[31:0] SHA[64:32] SHA[127:96] – (SHA[95:64] SHA[159:128]).

We found this function yielded the best quality, on par with the 1st digest.

Description of the crc32-Based Hash

method

Figure 1: Overall crc32-Based Method for Hash Functions

In Figure 1, we show the generalized flow for computing multiple 32-bit

digests:

 An intermediate digest computed as the CRC of the data

 Some number of intermediate digests computed as the CRC of a

modified form of the input data (using functions F1, F2, …)

 Some number of intermediate digests computed by non-CRC

operations (e.g., xor, add) on a modified form of the input data (using

functions such as G1, G2, etc.)

 A combination step that takes these intermediate digests and

combines them with each other and possibly other data such as the

input length to produce multiple final digests or a single larger digest

A Novel Hashing Method suitable for Lookup Functions

6

This generalized method is mainly intended for usages where we need at

least two 32-bit digests. If we needed just one digest, the crc32 of the input

data is a good digest.

Figure 2: Example of a crc32-Based Hash Function Returning two Digests

C = length of data <<< 19

while (more than 8 bytes of data left){

 data_chunk = next 8 bytes of data

A = CRC (A, data_chunk)

B = CRC (B, data_chunk <<< 31)

C = C data_chunk

}

Return A, CRC(B,C)

The proposed intel_hash64 function is based on the pseudo-code shown in

Figure 2. In the terminology of Figure 1, we can see that the F1 function is

rotate-left-by-31 (<<< 31) and the G1 function is the trivial identity function

(i.e., output is the same as the input). The non-crc accumulating function is a

bit-wise XOR operation (). The combiner block returns a computed crc (A)

directly as the 1st digest, but performs another final crc operation using the

two intermediate digests B, C, and returns CRC(B,C) as the 2nd digest.

Performance

The performance results provided in this section were measured on an Intel®

Core™ i5 650 processor at a frequency of 3.20 GHz, supporting Intel® crc32

instruction. The tests were run with Intel® Turbo Boost Technology off, on a

single thread.

Methodology

We measured the performance of the hash function on data buffers of

different sizes. We called the function to hash the same buffer a large number

of times, collecting many timing measurements. For each data buffer, we

then sorted the timings, discarded the top and bottom quartiles and averaged

the rest.

The timing was measured using the rdtsc() function which returns the

processor time stamp counter (TSC). The TSC is the number of clock cycles

since the last reset. The ‘TSC_initial’ is the TSC recorded before the function

is called. After the function is complete, the rdtsc() was called again to

record the new cycle count ’TSC_final’. The effective cycle count for the called

routine is computed using

of cycles = (TSC_final-TSC_initial).

 A Novel Hashing Method suitable for Lookup Functions

 7

A large number of such measurements were made for each data buffer and

then averaged as described above.

Note: Performance tests and ratings are measured using specific computer

systems and/or components and reflect the approximate performance of Intel

products as measured by those tests. Any difference in system hardware or

software design or configuration may affect actual performance. Buyers

should consult other sources of information to evaluate the performance of

systems or components they are considering purchasing. For more

information on performance tests and on the performance of Intel products,

Go to:

http://www.intel.com/performance/resources/benchmark_limitations.htm

Results

We show performance with a single thread in cycles for varying sizes of input

data buffers with a single thread, for small buffer sizes.

Figure 3: Cycles vs. Data Buffer Size in Bytes with Single Thread

For large buffers, the performance tends to ~ 0.44 cycles/byte. As can

been seen from the graph, even for small buffers (~24 bytes), the

performance is better than 1 cycle/byte. As the crc32 instruction has a

latency of 3 cycles, and a throughput of 1 cycle, we anticipate that Intel® HT

Technology will bring a substantial additional performance gain on

applications using this hash function.

0

5

10

15

20

25

0 8 16 24 32

intel_hash64

http://www.intel.com/performance/resources/benchmark_limitations.htm

A Novel Hashing Method suitable for Lookup Functions

8

Testing for Quality

Using the frog test, we tested our hash function and the reference one

derived from SHA1 for quality. The test sets bits in the input data in an

attempt to generate digest collisions through the careful, similar construction

of input. All the inputs to the hash function are the same fixed length, and

consist of zero bytes with very few bits set. The original program tested 64-

bit digests. We modified this to also test 32-bit digests. Results for this test

are reported as the logarithm of the highest number of data pairs tested

before the first collision is found. The higher the score, the better is the hash

quality. The tests are exponential in nature, running for weeks if a collision

cannot be found within 267 pairs.

Figure 4: Results of the hash quality tests

frog_64

frog_32

Digest1 Digest2

sha1 >=68 33 33

intel_hash64 >=67 39 39

Due to run-time of the tests, the frog_64 test results are incomplete, and the

“>=” implies that no collisions were found at that point, but the test was still

running. Note that the frog_32 tests are much faster and intel_hash64 is

much better than SHA1 for 32-bit digests.

For the 64-bit collision tests, both functions show extremely strong quality

since a completely random mapping to 64-bit values is expected to result in a

collision by 263 pairs. It is also noted in Bob’s article that both lookup.c and

lookup2.c start seeing collisions after 253 key-pairs, whereas lookup3.c gets

its first collision shortly after 263 pairs.

Conclusion

In this paper, we show how to compute a high-quality hash digest at

extremely high performance on an Intel® Core™ i5 650 processor using the

crc32 instruction. We describe a general method using CRC calculations and

show how that can be used to generate larger digests than the degree of the

CRC Polynomial. The functions can generate larger digests or multiple

uncorrelated digests.

It is possible to develop higher-performance functions for specific usages that

target very large data buffers or work only on fixed sized buffers, but such

 A Novel Hashing Method suitable for Lookup Functions

 9

optimizations have not been attempted in the current versions of our

functions.

Contributors

We thank Schuyler Eldridge, Gil Wolrich, Erdinc Ozturk and Wajdi Feghali of

Intel Corporation for their substantial contributions to this work.

References

[1] Bob Jenkins’ Hash functions http://burtleburtle.net/bob/

[2] US Patent Application: “A Novel Hashing Method suitable for Lookups”

Vinodh Gopal, Jim Guilford, Schuyler Eldridge, Gil Wolrich, Erdinc Ozturk,

Wajdi Feghali

[3] Intel® 64 and IA-32 Architectures Software Developer's Manual Volume

2A: Instruction Set Reference, A-M

http://www.intel.com/products/processor/manuals/

The Intel® Embedded Design Center provides qualified developers with web-

based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

http://intel.com/embedded/edc.

Authors

Vinodh Gopal and Jim Guilford are IA Architects with the IAG

Group at Intel Corporation.

Acronyms

IA Intel® Architecture

http://burtleburtle.net/bob/
http://www.intel.com/products/processor/manuals/
http://intel.com/embedded/edc

A Novel Hashing Method suitable for Lookup Functions

10

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND

INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S

PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD

INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,

OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND

EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY

CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH

MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS

NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS

PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information

here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before

placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel

literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012 Intel Corporation. All rights reserved.

