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1. Introduction

An object file format is the lowest level file format for any platform. It is designed with the primary
goal of providing formatted binaries of machine codes, initialized data and uninitialized data for an
execution vehicle. As a secondary goal, it provides source level debugging (SLD) information, such as
line number information for a communication utility that links the host computer to the debugging
engine.

Typically, an embedded system is a micro processor based system with an application specific software
self-contained in Read-Only-Memory(ROM) and without readily-recognizable software operating
system. The interface between a host machine and an embedded system is implemented by a debugger,
which uses all three aspects of an object file format. The programming for an embedded system
requires knowledge of how to setup text and data segments in the different memory locations and how
to initialize architecture specific data structure.

From this point of view, the primary difference between an executable object file for an embedded
system and for a computer system lies in absolute address resolution, although the specification of an
object file format for an embedded system and a computer system is the same. An executable object
file for a computer system are always relocatable, however, a finalized executable object file for an
embedded system is not relocatable: the addresses for text, data segments are absolutely not
changeable. As a consequence, after a source file has been translated into a relocatable object file, and
bound with other object modules, which mostly are library object modules, the builder utility needs a
locator, (usually assisted by a build configuration file), to fix the absolute addresses for each segment.

In this paper, we review Intel OMF and COFF, and we also describe some important tools
commercially available for handling these formatted object files. At last, we discuss the ideas for
converting a relocatable
COFF object file into a linkable Intel OMF object file, and propose a 6-step procedure for the
conversion.

2. Linkable Intel Object Modules Format

Intel object file format has two class specifications: Intel OMF specification and Intel hexadecimal
object file format specification. The Intel OMF specification defines the structure of four kinds of
object files, the linkable file which contains one or more linkable modules, the loadable file which is a
single module absolute object file, the bootloadable file which contains a bootloadable module, and the
library file which contains a collection of linkable modules and a directory.

Intel hexadecimal object file format specification defines the format which represents an absolute
binary object file in ASCII. The hexadecimal format is suitable as input to PROM programmers and
hardware emulators.

In this section, we assume that Intel OMF is Intel OMF386 which is designed for the 80386
processors.

The first byte of a linkable object file is a hexadecimal number B0 which is the Intel linkable OMF file
type. (cf. [1]). A linkable object file contains one or more linkable modules. As illustrated in figures 1
and 2, each linkable module must contain a first partition, since it records the most important message
of the module, e.g., the formatted binaries of machine codes, initialized data and uninitialized data
which are stored in the TXTFIX section, the relocation information of the module which is stored in
fixup blocks of the TXTFIX section, the type checking information for symbols defined in PUBDEF
and EXTDEF sections which is stored in TYPDEF section and information for binding or linking with
other linkable files which is stored in SEGDEF section.

The 163-byte long linkable module header (LMH) records all the information on the module’s creation
environment, total length in bytes of the current module, and number of sections for segments, publics
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and externals. Its structure declaration is defined as following. Here we assume that in C, numeric
scalar type char is used for 1 byte value, int is used for 2-byte value and long is used for 4-byte value.

 struct lmh { /* linkable module header */
long tot_length; /* total length of the module on disk in bytes */
int num_segs; /* number of SEGDEF sections in the module */
int num_gates; /* number of GATDEF sections in the module */
int num_publics; /* number of PUBDEF sections in the module */
int num_externals; /* number of EXTDEF sections in the module */
char linked, /* linked = 0, if the module was produced by a translator */

date[8], /* the creation date, written in the form MM/DD/YY */
time[8], /* the creation time, written in the form HH:MM:SS */
mod_name[41], /* name of the module, the first char is the string’s length

*/
creator[41], /* the name of the program which created the module */
src_path[46]; /* the path to the source file which produced the module */

char trans_id; /* translator id, mainly for debugger */
char trans_vers[4]; /* translator version (ASCII) */
char OMF_vers; /* OMF version  */

  };

The 64-byte long table of contents (TOC) for first partition describes location and length for every
section in the partition. TOC plays the central role in accessing the various sections within the linkable
object file. The location of a section represents a byte offset into the current module, therefore, the first
field in the linkable module header starts at byte 0 of the current linkable module. See figure 2, for an
illustration of the usage for fields in the TOC.

 struct toc_p1 { /* Table of contents for first partition */
long SEGDEF_loc, /* all the following _loc represents location of the first byte

*/
SEGDEF_len, /* of the section in current module, unit is byte;

*/
GATDEF_loc, /* all the following _len represents the length of the

section*/
GATDEF_len, /* also the unit is byte.

*/
TYPDEF_loc,
TYPDEF_len,
PUBDEF_loc,
PUBDEF_len,
EXTDEF_loc,
EXTDEF_len,
TXTFIX_loc,
TXTFIX_len,
REGINT_loc,
REGINT_len,
next_partition,
reserved;

  };

The SEGDEF section contains one or more segment definitions. It defines the segment’s name, length
and alignment type. The 2-byte attributes in the field of segdef describes the rules that the segment can
be combined with other logical segments at binding, linking or loading time. (cf. [1])

struct segdef {  /* segment definition */
int attributes; /* need to be separated into bits to get bitwise info(cf. [1])

*/
long slimit, /* the length of the segment minus one, in bytes */

dlength, /* the number of data bytes in the segment, only for dsc
seg*/
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speclength; /* the total number of bytes in the segment */
int ldt_position; /* the position in LDT that this segment must occupy */
char align; /* alignment requirements of the segment */
char combine_name[41]; /* first char is the length of the string in byte, rest is name

*/
  };

The GATDEF section defines an entry for each gate occurring in the module. There is a 1-byte field in
the data structure which is used to identify type of gate from call gate, task gate, interrupt gate or trap
gate. (cf. [1])

struct gatdef { /* Gate definition */
char privilege; /* privilege of gate */
char present;
char gate_type;
long  GA_offset; /* gate entry GA consists of GA_offset and GA_segment */
int GA_segment;

  };

The TYPDEF section serves two purposes: to allow Relocation and Linkage software to check the
validity of sharing data across external linkages, and to provide type information to debuggers to
interpret data correct. [2] provides storage size equivalence tables and lists the syntactical constructs for
high level languages PL/M, PASCAL, FORTRAN and C.

struct typdef { /* type definition */
char linkage; /* is TRUE, if for public-external linkage; is FALSE, if only 

     for debug symbols. */
int length; /* the length in bytes of all the leaves in it */
struct leaf leaves; /* all different leaves format */

 };

 struct leaf {
char   type; /* an 8-bit number defines the type of the leaf */
union { /* following are different kind of leaves */
         char *string;
         int   num_2;
         long   num_4;
         ulong   num_8;
         signed int   s_2;
         signed long   s_4;
         signed ulong s_8;
         } content;
struct leaf *next; /* points to next leaf */

  };

The PUBDEF section contains a list of public names with their general addresses for the public
symbols. The 2-byte field type_IN specifies an internal name for a segment, gate, GDT selector or the
special CONST$IN. This section serves to define symbols to be exported to other modules.

struct pubdef { /* public definition */
long PUB_offset; /* gen addr consists of PUB_offset and PUB_segment */
int PUB_segment;
int type_IN; /* internal name for the type of the public of

symbol */
char wordcount; /* the total # of 16-bit entities of stacked parameters */
char *sym_name;

  };

The EXTDEF section lists all external symbols, which are then referenced elsewhere in the module by
means of their internal name. The 2-byte field seg_IN specifies the segment that is assumed to contain
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the matching public symbol and the 2-byte value of type_IN defines the type of the external symbol.
(cf. [1])

struct extdef { /* external definition */
int seg_IN; /* internal name of segment having matched public symbol

*/
int type_IN; /* internal name for the type of the external symbol

*/
char allocate; /* not zero, if R&L needs allocate space for

external symbol*/
union {
     int len_2;
     long len_4;
  } allocate_len; /* number of bytes needed allocated for the external symbol

*/
char *sym_name; /* the 1st char is length , the rest are name of the symbol*/

  };

The TXTFIX section consists of intermixed text block, fixup block and iterated text block. As one can
see, it is the TXTFIX section that records the binaries for machine codes, initialized data and
uninitialized data. TXTFIX section output by a translator under debug option will also contain SLD
information.

struct txtfix { /* text, iterated text and fixup block */
char blk_type; /* 0 for text blk; 1 for fixup blk and 2 for iterated text blk */
union {
    struct text text_blk; /* text block */
    struct fixup fixup_blk; /* fixup block */
    struct iterat it_text_blk; /* iterated text block */
} block;
struct txtfix *next;

  };

A text block contains binaries for code segment and data segment. These segments are relocatable.
Other than that, all the SLD information is also implemented in this block by a translator under debug
option. Segment MODULES in the text block is designed with the purpose of providing general
information about the current module. Segment SYMBOLS provides entries for each symbol used in
the module, including stack symbols, local symbols and symbols that are used as procedure or block
start entries. Segment LINES consists of line offset values, each line offset is the byte offset of the start
of a line in the code segment. Segment SRCLINES consists of line offsets of the source files.

  struct text { /* text block */
long txt_offset; /* gen addr consists of txt_offset and txt_IN */
int txt_IN; /* internal segment name */
long length; /* the length of the text content, in byte */
union {
    char *code; /* CODE segment */
    char *data; /* DATA segment */
    struct  mod modules; /* MODULES segment */
    struct  sym symbols; /* SYMBOLS segment */
    struct  line lines; /* LINES segment */
    struct  src srclines; /* SRCLINES segment */
   } segment; 

  };

 struct mod { /* MODULES segment */
int ldt_sel; /* a selector into the GDT for an LDT which contains the 

    segments in this module */
long code_offset; /* code segment GA consists of code_offset and code_IN */
int code_IN;
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long types_offset; /* TYPES GA consists of types_offset and types_IN */
int types_IN;
long sym_offset; /* SYMBOLS GA consists of sym_coffset and sym_IN */
int sym_IN;
long lines_offset; /* LINES GA consists of lines_offset and lines_IN */
int lines_IN;
long pub_offset; /* PUBLICS GA consists of pub_offset and pub_IN */
int pub_IN;
long ext_offset; /* EXTERNAL GA consists of ext_offset and ext_IN */
int ext_IN;
long src_offset; /* SRCLINES GA consists of src_offset and src_IN */
int src_IN;
int first_line; /* first line number */
char kind; /* 0 value for 286, 1 value for 386 format */
char trans_id; /* same as lmh */
char trans_vers[4]; /* same as lmh */
char *mod_name; /* same as lmh */

  };

  struct sym { /* SYMBOLS segment */
char kind; /* kind of entries */
union  {
   struct  blk blk_start; /* block start entry */
   struct  proc prc_start; /* procedure start entry */
   struct  sbase sym_base; /* symbol base entry */
   struct  symbol s_ent; /* symbol entry */

    } entry;
struct sym *next;

  };

  struct blk  { /* block start entry */
long offset; /* offset in code segment */
long blk_len; /* block length */
char *blk_name; /* block name, note that first byte is the length of string */

  };

  struct  proc  { /* procedure start entry */
long offset; /* offset in code segment */
int type_IN; /* internal name of the typdef associated with the

proc */
char kind; /* specifying 16-bit or 32-bit */
long ebp_offset; /* offset of return address from EBP */
long proc_len; /* procedure length */
char *proc_name; /* procedure name, as always, the 1st char is string length

*/
  };
  struct sbase  { /* symbol base entry */

long offset;
int s_IN;

  };

  struct symbol   { /* symbol entry */
long offset;
int type_IN;
char  *sym_name;

  };

  struct lines  { /* LINES segment */
long offset;
struct lines *next;
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  };

  struct srclines { /* SRCLINES segment */
char *src_file /* source file name */
int count;
struct lines *src_line;
struct srclines *next;

 };

Fixup block contains information that allows the binder or linker to resolve (fix up) and eventually
relocate references between object modules. The attributes where_IN and where_offset in the following
data structures make a generalized address specifying the target for the fixup. Similarly, the attributes
what_IN and what_offset make a generalized address specifying the target to which the fixup is to be
applied.

There are four kinds of fixups for Intel linkable object modules. They are general fixup, intra-segment
fixup, call fixup and addition fixup. The general fixup and the addition fixup have the same data
structure, both provide general addresses for where_IN, where_offset, and what_IN, what_offset. The
intra-segment  fixup  is equivalent to a general fixup with  what_IN = where_IN, and the call fixup is
also equivalent to a general fixup with what_offset = 0. (cf. [1])

struct fixup { /* fixup block */
int where_IN; /* specifying the  segment to which fixups should be

applied*/
int length; /* the length in bytes of the fixups */
union {
    struct gen general; /* for general fixup */
    struct intra in_seg; /* for intra-segment fixup */
    struct cal call_fix; /* call fixup */
    struct ad addition; /* addition fixup */
  } fixups;

  };

  struct gen { /* for general fixup */
char kind; /* specifying the kind of fixup */
union {
    int num2;
    long num4;
} where_offset; /* 2- or 4- byte where_offset */
union {
    int num2;
    long num4;
} what_offset; /* 2- or 4- byte what_offset */
int what_IN; /* what_IN & what_offset specify the target for the fixup*/
union fixups *next;

  };

  struct intra { /* for intra-segment fixup */
char kind; /* specifying the kind of fixup */
union {
    int num2;
    long   num4;
} where_offset; /* 2- or 4- byte where_offset */
union {
    int num2;
    long   num4;
} what_offset; /* 2- or 4- byte what_offset */
union fixups *next;

  };
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  struct cal { /* for call fixup */
char kind; /* specifying the kind of fixup */
union {
int num2;
long num4;
}  where_offset; /* 2- or 4- byte where-offset */
int what_IN;
union fixups *next;

  };

  struct ad { /* for addition fixup */
char kind; /* specifying the kind of fixup */
union {
    int num2;
    long num4;
} where_offset; /* specifying the target to which the fixup is to be applied */
union {
    int num2;
    long num4;
}  what_offset;
int what_IN;
union fixups *next;

  };

  struct iterat  { /* for iterated text block */
long it_offset;
int it_segment; /*above two specify a gen addr to put 1st byte of the text */
long it_count; /* the # of times the text template is to be repeated */
struct temp text; /* the text template */

  };

  struct temp { /* for the text template in the iterated text block */
long length; /* the length, in bytes, of a single mem blk to be initialized

*/
char *value; /* the text or data to be used to initialize any single mem

blk*/
  };
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LMH

TOC.

SEGDEF

GATDEF

TYPDEF

PUBDEF

EXTDEF

TXTFIX TXTDEF provides binaries of machine codes,
initialized data and uninitialized data. This part is
loaded into memory at run time. It also contains SLD
info which will be transferred into DEBTXT section in
a loadable or boot loadable module by R&L.

REGINT REGINT provides some of the info required to produce
an Intel TSS. This section is only for main program.

 TOC_2

TBLDEF .

ENTDEF

ALIAS

checksum

                                     Figure 1   Linkable module basic structure and components

LMH contains information on module’s creation
environment, number of sections for segments, gates,
publics, externals. It also contains a flag that provides
R&L status information.

TOC provides location and length of each section in
the module. Also provides information about next
partition.

SEGDEF defines the segment’s name, length and
alignment and the way the segment can be combines
with  other logical segments at bind, link or load
time.

GATDEF defines a gate entry for each gate
occurring in the module, and provides the gate
entry’s type and privilege.

TYPDEF contains details about the type of data
represented by a name declared in a PUBDEF and
an EXTDEF section.

PUBDEF contains a list of public names. It makes
item defined in this module available to satisfy
external references in other modules with which it is
bound or linked.

EXTDEF contains  a  list  of  symbolic  external
references,  i.e., it references to symbols defined in
other object modules. The linker  resolves  external
references  by matching the symbols declared  in
EXTDEF  with  symbols declared in PUBDEF in other
object modules.

Table of the second partition (optional). This partition
may exist only in linkable modules created by R&L
products during incremental system building.

TBLDEF contains information on each descriptor table
in the system

ALIAS to be introduced to support link time aliasing, a
method by which  compilers or assemblers may direct
the linker to substitute all references to one symbol to
another.

ENTDEF describes the contents of each used slot in each
descriptor table in the module.
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LMH    tot_length;
num_segs;
num_gates;
num_publics;
num_externals;

TOC     SEGDEF_loc;
 SEGDEF_len;
 GATDEF_loc;
 GATDEF_len;
 TYPDEF_loc;
 TYPDEF_len;
 PUBDEF_loc;
 PUBDEF_len;
 EXTDEF_loc;
 EXTDEF_len;
 TXTFIX_loc;
 TXTFIX_len;
 REGINT_loc;
 REGINT_len;

SEGDEF_1
              :
SEGDEF_ num_segs

GATDEF_1
              :
GATDEF_ num_gates

TYPDEF_1
             :
             :

PUBDEF_1
              :
PUBDEF_ num_publics

EXTDEF_1
              :
              :
EXTDEF_ num_externals

TXTFIX_1
             :
             :

REGINT_1
             :
             :

PARTITION_2

                                        check sum

         Figure 2 lmh & toc components and structural relationships

3.  Common Object File Format (COFF)

COFF is one of the most well-known object file formats. It was originally designed for defining the
structure of machine code files in the UNIX System V environment.(cf. [5]) Now there are several
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modified version of COFF formats, for example, XCOFF is the formal definition for the structure of
object files in the X window’s environment.

COFF supports several types of object files, relocatable object files, fully linked executable object files
and system libraries. Briefly speaking, COFF actually defines a system for both execution and
debugging. The execution vehicle can access machine code section and initialized or uninitialized data
sections for running the program. The debugger can access section’s header, section’s line number
entries and symbol table entries for source level debugging.

The roughly fifty or so bytes at the beginning of the COFF file contain two types of  COFF headers (cf.
Figure 3) The first twenty bytes is the COFF file header which holds information specifying  number of
sections in the object file, pointing to the symbol table with the number of symbol table entries, and
indicating the data and the time at which the object file was created.  The C language structural
declaration for COFF file header is found in the file filehdr.h which is usually located at the UNIX
environment /usr/include directory. As usual, the following type unsigned short is two bytes, and long
is four bytes.

  struct filehdr { /* COFF file header structural definition */
unsigned short f_magic; /* magic number to indicate the UNIX port

*/
unsigned short f_nscns; /* number of sections in this object file */
long f_timdat; /* # of seconds since GMT 00:00:00 Jan. 1, 1970

*/
long f_symptr; /* offset of symbol table in this object file */
long f_nsyms; /* number of symbol table entries */
unsigned short f_opthdr; /* 0, if there is no aout header in the file */
unsigned short f_flags; /* flags */
} ;

  #define FILHDR struct filehdr
  #define FILHSZ sizeof(FILHDR).

The next thirty bytes are reserved for the second type COFF header, i.e., the AOUT header or optional
header. The optional header was designed with the primary purpose of providing the linker with
implementation dependent information and the necessary run-time parameters, e.g.,  the magic number
indicating whether the COFF file is a normal executable file, all the sizes for text, initialized data and
uninitailized data, and the address used by the system as the starting point for program execution, the
start addresses for both text and data sections. The structural declaration for optional header is listed in
the file aouthdr.h which again located in the UNIX environment /usr/include directory.

  typedef struct aouthdr { /* COFF optional header structure */
short magic; /* 0413(octal), if it is a normal executable file */
short vstamp; /* version stamp set by assembler & used by linker

*/
long tsize; /* text section size in bytes */
long dsize; /* data section size in bytes (initialized data)*/
long bsize; /* bss section size in bytes (uninitialized data)*/
long entry; /* starting point for program execution */
long text_start; /* start address for text section */
long data_start; /* start address for data section */
} AOUTHDR;

Immediately after COFF file headers are section headers, as showed by Figure 3.  It is those section
headers that play the central roles in accessing the various components within the file. Section header
provides the linker with the necessary information to access section’s content, section’s relocation
entries and symbol table entries for the relocation process.  These components make possible  to define
the areas in machine code and data that require patching with run-time addresses. It also provides
source level debugger (e.g. sdb or gdb) with the necessary information to access section’s content,
section’s line number entries and symbol table entries. These components work together to set break-
points and to trace program execution.
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The section header’s structural declaration is defined in the UNIX environment, the heading file
scnhdr.h which also located in the directory, /usr/include.

   struct scnhdr { /* COFF section header structural declaration */
char s_name[8]; /* section’s name; 8 char at most */
long s_paddr; /* physical address */
long s_vaddr; /* virtual address */
long s_size; /* section size in bytes */
long s_scnptr; /* section content’s file offset in bytes */
long s_relptr; /* section entries’ file offset in bytes */
long s_lnnoptr; /* section line number entries’ file offset in bytes */
long s_nreloc; /* number of relocation entries within the section

*/
unsigned short s_nlnno; /* number of line number entries within

the section */
long s_flags; /* type and content flags */
};

  #define SCNHDR struct scnhdr
  #define SCNHSZ sizeof (SCNHDR).

As pointed out in [5], a relocation entry is created by the assembler for every instance of an address
reference that requires patching by the linker. Relocation entry fields implement the dynamics of
relocation. The field r_vaddr is the byte-offset value relative to the start of its raw data, it specifies the
area in the section’s content that requires  patching by the linker. The field r_symndx is the index into
the symbol table, it points to the appropriate symbol table entry that contains run-time address
information, i.e., the field n_value defined in the structural declaration for symbol table entry.

The relocation entries’ structural declaration is defined in the UNIX environment, the heading file
reloc.h which is in the directory /usr/include.

   struct reloc { /* COFF relocation structural declaration */
long r_vaddr; /* byte-offset value of reference  */
long r_symndx; /* index into the symbol table */
unsigned short r_type; /* relocation type */
};

Line number entries are generated  by a compiler only in the case that the debug option was invoked.
The structure of a line number entry is used to define a point in the source file that corresponds to a
break point, i.e., the point where program execution can stop. (cf. [5])  As a consequence, line number
information  can be created only for the text section, and that is all needed to implement symbolic or
source line reference to execution points within the source code.  The structural declaration for line
number entries is defined in the UNIX environment, the heading file linenum.h which is in the
directory /usr/include.

  struct lineno { /* COFF line number entry */
union {
     long l_symndx; /* if l_lnno==0; then l_addr takes l_symndx*/
     long l_paddr; /* else l_addr takes l_paddr */
}  l_addr;
unsigned short l_lnno; /* line number relative to the source file */
};

  #define LINENO struct lineno
 #define LINESZ 6 /* the size of a line number entry */

At the end of a COFF object file, there are two components, symbol table and string table. As shown
by figure 3,  symbol table is the symbolic information resource of the object file which provides linker
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a run-time address whenever it requires patching in the relocation process, symbol table is also the
resource for source level debugger to understand the structure of its source file, as well as the binary
file.

If the source file has been compiled under the debug option, an individual symbol table entry
completely records an individual quantum of debug information, and the sequence of symbol table
entries then maps the structure of source file written in a high level language (HLL). The field n_sclass
defines the storage class for a symbol at run time, as a consequence of this, n_sclass determines the
meaning of the value given by n_value. The field n_type provides the symbol’s type information, and
the field n_scnum indicates the section number where the symbol is defined. The complete
correspondence relation among these fields is declared in the files storeclass.h, a.out.h and syms.h.

  #define SYMNMLEN 8

  struct syment { /* symbol table entries’ structural declaration */
union {
    char _n_name[SYMNMLEN]; /* symbol name, old COFF version */
    struct { /* symbol name, new COFF version */

long _n_zeroes; /* new COFF version requires this be zero */
long _n_offset; /* offset into string table for the symbol name */
} _n_n;

   char *_n_nptr[2]; /* use for offset, allows for overlaying */
} _n;
long n_value; /* location for the symbol */
long n_scnum; /* section number the symbol is defined */
unsigned short n_type; /* type and derived type info of the symbol */
char n_sclass; /* storage class */
char n_numaux; /* number of auxiliary entries it needs */
};

  #define SYMENT struct syment.

Symbol table entries for linked list structure needs auxiliary entries to provide linker or debugger extra
information for efficient access of symbol table data. As described in [5],  the .file auxiliary entry is the
first auxiliary entry in the symbol table which provides the ASCII string for the file’s name; the .text,
.data
and .bss auxiliary entries record the section’s length, number of relocation entries and the number of
line number entries in the section. The auxiliary entries for structure, union or enumeration’s tag record
their size and index to next structure, union or enumeration. The function definition auxiliary entry
records the size, a pointer to the function’s line number entry and index to the next function’s auxiliary
entry. The block auxiliary entry records the line numbers for the start code and end of the block as well
as  an index to the next block’s auxiliary entry.

A complete description for all types’ auxiliary entries is declared in the following data structure. (cf.
syms.h)

   union auxent { /* COFF auxiliary entry format */
struct { /* auxiliary entry for linked list structure */
   long x_tagndx; /* struct, union, or enum.  tag index */
   union {
      struct {

unsigned short x_lnno; /* declaration line number */
unsigned short x_size; /* struct, union, or array size*/
} x_lnsz;

      long f_size; /* size of function */
      } x_misc;
    union {
      struct { /* if ISFCN, tag, or .bb */

long x_lnnoptr; /* pointer to function line */
long x_endndx; /* entry index past block end */
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} x_fcn;
      struct { /* if ISARY, up to 4 dimension */

unsigned short x_dimen[DIMNUM];
} x_ary;

      } x_fcnary;
      unsigned short xtvndx; /* tv index */
} x_sym;
struct { /* auxiliary entry for .file */
     char x_fname[FILNMLEN];
  } x_file;
struct { /* auxiliary entry for .text, .data, or .bss */
     long x_scnlen; /* section length */
     unsigned short x_nreloc; /* number of relocation entries */
     unsigned short x_linno; /* number of line number entries */
 } x_scn;
struct { /* auxiliary entry for tv */
     long x_tvfill; /* tv fill value */
     unsigned short x_tvlen; /* length of tv */
     unsigned short x_tvran[2]; /* tv range */
 } x_tv;

    };

 #define AUXENT union auxent.
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4.  Tools for object file formats

4.1.  Tools for Intel OMF

DOS debugger is a useful tool for dumping any binary file. By counting the bytes of a linkable Intel
OMF file displayed by DOS debugger, users can access every section of a module. However, it is a
tedious process for users to dump an Intel linkable OMF file using DOS debugger. A dumping tool
called deomf.exe [12] is designed to display fields of a linkable module header, components for toc,
and components for every section in every partition for a linkable Intel OMF file.

In an embedded environment, usually the embedded system requires a development tools package and
debug facilities. Commercially, there are some development tools which directly bind Intel OMF386
formatted object files with Intel OMF386 library object modules and build it into a bootloadable Intel
OMF386 file, i.e., the ABS file which is ready for loading into the embedded system. Some vendors’
development tool set can accept relocatable Intel OMF386 object modules and link them with their
system library object modules to produce an executable file for an embedded system.

The Intel386™ processor family utilities provide total program development and system configuration
resources for Intel386 processor family software. The utilities are the Librarian LIB386, the mapper
MAP386, the binder BND386 and the system builder BLD386. Translators, like the assembler Intel
ASM386, the C language compiler Intel IC386 etc., translate source files into Intel OMF386 formatted
object modules.  When building a system, collect these object modules according to their common
functions and characteristics, and use BND386 to combine them with object modules in a system
library generated by LIB386. Then use BLD386 which accepts an input building file to processes the
modules and add the initial protected-mode data structures.

SSI (System & Software, Inc.) Link&Locate 386 package also provides a solution for the software
development producing Intel OMF386 formatted object files. This package includes an embedded
linker XLINK386, an ROM-image generator PROM386 and a librarian XLIB386. XLINK386
generates an output object file in Intel OMF386 format for protected-mode embedded applications.

Phar Lap Software, Inc. has an one-step linker/locator for embedded system, the LinkLoc. It accepts
object files in Intel OMF386 format, and also can generate executable files in Intel OMF 386 format.
LinkLoc supports the Intel 386 processor’s protected-mode.

As for the debug facilities for embedded system, according to [4], commercial debugging tools could
be catalogued as debugging software, ROM emulator debugger and Logic Analyzer/ In-Circuit-
Emulators. A debugging software consists of debug tools that are purely software in nature, including
debug kernels and source code debuggers, the target for a software debugger is usually RS-232 serial
port. A ROM emulator debugger consists of ROM emulator hardware units that have direct links into
ROM sockets in the target system. The Logic Analyzers and In-Circuit Emulators are the big guns in
the debug arena for embedded systems programming. Essentially, stand-alone in-circuit emulators are
embedded micro-processor systems that contain hardware and software capable of totally emulating the
function and functional characteristics of a given CPU, hence, the target for an in-circuit emulator is
the CPU socket.

As debugging software, SSI SoftProbe 386/RTD series accept Intel OMF386 absolute object files, they
are DOS-hosted source-level debuggers for debugging real mode and protected mode 386 embedded C
applications. Concurrent Science’s Soft-Scope/CSi-Mon also supports Intel OMF386 ABS files. It is a
DOS-hosted source level debugger for debugging real and protected mode C embedded applications.
Basically, the Soft-Scope is a communication utility that uses DOS as a host computer’s environment
to load and debug in the source level for an Intel OMF386 ABS file through CSi-Mon.

For the ROM monitors, there are American Arium’s RP-256, SSI SoftProbe 386/RED series, and
Grammar Engine, Inc. product PromICE™. They accept Intel hex object files which can be generated
by Intel tool OH386 converting from an Intel OMF386 ABS object file.  In addition to an Intel ICE™
system,  American Arium’s  EZ-Prob and LA/ICE suppport  Intel486™ processors.
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4.2. Tools for COFF

Tools for COFF, GOFF and ELF/DWARF could be classified as dumping tools, dump, tools for listing
symbols from object files, nm, archive tools, ar, which creates or modifies an archive, and even
extracts some object modules from an archive, tools for linking object modules into an executable file,
and also debugging tools. The tool dump under certain options can dump the respective component of
an object file, e.g., if it is under option - f, it dumps the file header, the detailed description for the
options is listed in the man page for the tool dump in any UNIX environment.

Recently, GNU proposed a Binary File Descriptor (BFD) library which allows a program to operate on
object files (e.g. ld or GDB) to support many different object formats in a clean way. Currently, BFD
supports COFF, GOFF and ELF. GNU linker gld is a cross linker which accesses object and archive
files using the BFD libraries to cover a broad range of object formats. It accepts a command file which
uses  linker scripts to specify everything necessary for describing the target. Basically, the command
file controls input files, file formats, output file format, address of sections and placement of common
blocks. Commercially, there are only CYGNUS supporting the GNU developer’s kit. It is worth
pointing out that there are also a lot of supports for the cross GNU linker and GNU debugger GDB
over the internet.

5. Conversion analysis

The idea for converting an object file from one format to the other is not new. In the UNIX world, there
already exists a converter cof2elf, which converts a relocatable COFF object file into a relocatable ELF
object file. Also, as mentioned in the previous section, GNU uses BFD to process object files in a wide
range of  file formats. To do this, GNU takes an object file in one file format to fill in a standardized
data structure, recording all the components of the object file, then all the processes are carried out
based on this data structure. The idea behind this procedure is quite clear: they convert the input object
file into the standardized form.

It is quite practical to convert a linkable (or relocateable) object file from one file format to another,
although it seems more direct if an executable file can be converted. The direct conversion of
executable files is problematic, however, due to conversion of architecture-specific initialization and
alignment constraints. These constraints for a linkable file will be resolved during binding and building
processes. Since all embedded development tool kits support building an executable file from linkable
object modules and static shared libraries' object modules, translation at the executable file level is
unnecessary.

In this section, we discuss the idea for converting a relocatable object file in COFF format into a
linkable Intel OMF386 file. To make our narrative simpler, we propose a six-step procedure to
illustrate the basic idea for converting from a relocatable COFF object file into a linkable Intel OMF
object file. There are two conversion levels and one is to convert all the text and data segments, and
process all the relocation entries. The second level needs extra effort in converting all the SLD
information within the object file. Steps 0, 1, 2, and 5 in this procedure carry out the translation at first
level, and steps 3 and 4 are designed for dealing with line number entries and symbol table entries.
Consequently, the following six-step procedure as a whole carries out both levels of conversion.

Step 0 is an initialization step. It initializes all the fields in the struct lmh to be zeros, and also sets all
the fields in the struct toc_p1 to be zeros. The fields for recording the lengths or sizes of segments and
sections will be updated during the steps in processing these segments or sections. However, the fields
for pointing to locations of  segments and sections in an Intel OMF object file will be fixed at the last
step of the procedure.

Step 1 is to process all COFF sections’ raw data content and also to convert their relocation entries in a
relocatable COFF object file. This step will build SEGDEF and TXTFIX sections, but they are not
ready to be flushed into the output object file, i.e. the Intel OMF object file, since they are not
completed at this step. During steps 3 and 4, there will be more segments added into the TXTFIX
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section. As a consequence of this, the SEGDEF section needs to catch the definitions for the associated
segments in the TXTFIX section.

From the COFF file header, it is easy to get  all the offsets in the input object file for all section headers
(c.f. figure 3). This step starts at processing each section header to record definitions into the SEGDEF
section for the segments being added into the TXTFIX section,  then converting the COFF section’s
raw data content, which is pointed by the field s_scnptr in the section header structure, into a segment
in the  TXTFIX section of  the output object file. At the end of this step, process all the section’s
relocation entries whose first entry is pointed by s_relptr in the data structure for the section’s header,
and map them into the fixup blocks for the previous segment in the TXTFIX section. Remember to
update the lengths of SEGDEF section and TXTFIX section, as well as the num_segs for struct lmh.

To define a segment in SEGDEF section, first increment num_segs, i.e. num_segs++, then define the
associated segment in the SEGDEF data structure. Mainly, set slimit=s_size-1,  and let combine_name
record the segment’s name provided by s_name in the COFF section’s header. All other fields in the
structure for SEGDEF temporary are set to zeros. Remember to update the length for SEGDEF section,
i.e., SEGDEF_len += sizeof (SEGDEF_num_segs).

To convert the COFF section’s raw data content into a segment in the TXTFIX section of Intel OMF
object file,  allocate storage for a structure of txtfix and let it be pointed by the field next of current
txtfix. Set blk_type=0, because it is a text block to be added. Consequently, the union block goes to the
text_blk. In the struct text_blk,  set txt_offset=0, and the internal segment name txt_IN is determined by
the segment’s name. i.e., combine_name which was defined in the SEGDEF section (cf. Table 1).  The
field length of the struct text should record the length in bytes of the text content, therefore, it equals
s_size.

If it is a CODE segment, then the union segment goes to char *code, let code point to a string copied
from COFF section’s raw data content.

The last stage of this step is designed for processing COFF section’s relocation entries. In the COFF
section header, it provides a pointer which points to the first relocation entry for the section, also it
provides the total number of relocation entries in the section. Consequently, a loop is required to
process each relocation entry in this section.

To convert a relocation entry into a fixup block for the previous segment in the TXTFIX section,
allocate storage  for txtfix and also let it be pointed by the field next of current struct txtfix, set
blk_type=1, since it is for the fixup block. Consequently, the union block goes to fixup_blk, allocate
storage for fixup_blk, set the field where_IN to equal to txt_IN, the internal name for the target segment
which requires patching by a linker to resolve the address reference for the symbol.

The field r_symndx in the struct reloc for a  COFF relocation entry points to the symbol table entry
which contains relocation information for the symbol. The struct syment for the COFF symbol table

     Segment                   txt_IN

      CODE          0x2001

      DATA          0x2002

  MODULES          0x2004

  SYMBOLS                 0x2005

     LINES                   0x2007

   SRCLINES          0x2008

Table 1.  Internal name definition for segments in a TXTFIX section of an Intel  OMF object file
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entry tells the section where the symbol is defined, i.e. n_scnum specifies this host section.  Back to the
section’s header as to get s_size which is required information for the field length in the fixup_blk. The
symbol table entry uses n_scnum, n_type and n_sclass to define symbolic meaning for this symbol.
Using the symbolic language dialect declared in the files storeclass.h, a.out.h and syms.h in the UNIX
environment, /usr/include, it is easy to interpret the type for the relocation  entry as a general fixup, an
intra-segment fixup or a calling fixup, then set the union fixups of the fixup_blk to point to its field
accordingly. Basically, the union fixups requires information regarding where_offset, what_IN and
what_offset.

As described in the section 2.1.1, where_offset  in a fixup block is the byte-offset value in the target
segment where the symbol is referenced, while what_offset is the byte-offset value in a host segment
where the symbol is defined, and what_IN is the internal name for the host segment. Consequently, set
where_offset to equal to r_addr in the struct reloc for a  COFF relocation entry which is the byte-offset
value of  reference, set what_offset to equal to n_value in the struct syment for the COFF symbol table
entry which is the byte-offset value in the host section  for the starting byte of a code block which
defines the symbol. Then, set what_IN  to be txt_IN, the internal name for the host segment, if needed.
Finally, update the length of TXTFIX section, i.e., TXTFIX_len += sizeof(struct txtfix).

Step 2 is designed for mapping a subset of a symbol table and string table entries in a COFF relocation
object file into sections for PUBDEF, EXTDEF and even for TYPDEF in a linkable Intel OMF object
file. As described in the section 2.1.1, PUBDEF section defines all public names with their general
address for public symbols defined in the current object module, while EXTDEF lists all external
symbols to be referenced in the current object module. Both sections are critical  for a linker to define
and resolve the symbols reference across different object modules. The TYPDEF section is designed to
record storage size and type interpretation by the compiler for the symbols defined in the current
module. Also TYPDEF provides type information for type checking.

From the COFF file header, get the byte-offset value f_symptr of the first symbol table entry and total
number of symbol table entries f_nsyms in the input COFF file. Start a loop on the symbol table to
process each symbol table entry.

COFF symbol table entry uses n_sclass  to define the storage class of  its symbol, when n_sclass
equals C_EXT, it represents that the current symbol is either a external symbol, if its section number
field n_scnum  equals N_UNDEF; or the current symbol is a public symbol, if n_scnum gives you a
positive number to specify the section in the COFF file where the symbol is defined. From this point of
view, a screening over the entire symbol table is needed. If the current symbol is a public symbol, i.e.,
n_sclass == CEXT && n_scnum > 0,. first increment num_publics, i.e., num_publics++. To define
the general address for this public symbol, set PUB_offset = n_value,  and set PUB_segment to be
txt_IN, the internal name for the segment in TXTDEF section which is converted from the section
specified by n_scnum. The field n_type in the struct syment provides the type declaration information
of the symbol which should be converted into type_IN, an internal name for the type of this public
symbol (cf. [1] & [5]). Finally, copy the string in the string table for the symbol’s name pointed by
_n._n_offset in struct syment into sym_name in the current PUBDEF section. Remember to update the
length for PUBDEF, i.e., PUBDEF_len += sizeof(PUBDEF_num_publics).

If the symbol is an external symbol, i.e., n_sclass == CEXT && n_scnum == N_UNDEF, then struct
syment should be converted into an EXTDEF section in the output object file. To do this, also first to
increment  num_externals, i.e., num_externals++, then to convert n_type in struct syment into type_IN,
for defining the type of this external symbol. Also copy the string in the string table for the symbol’s
name pointed by _n._n_offset in struct syment into sym_name in the current EXTDEF section. Since it
is not available for the information regarding segment having matched public symbol which is not in
the current object module, we set seg_IN and allocate_len to be zeros, leave them to be resolved by a
binder in a binding process. To complete building the EXTDEF section, we need to update the length
for EXTDEF, i.e., EXTDEF_len += sizeof(EXTDEF_num_externals).

To build TYPDEF section for the output object file at this step, we only need to record type
information for both public and external symbols. The basic information which  TYPDEF is inquiring
is leaves’ message which is classified as null leaf, string leaf, index leaf and  numeric leaf. Especially
for numeric leaves(c.f. [1]), it corresponds to the scalar type declaration for the symbol provided by
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n_type and its auxiliary entries in struct syment. After building TYPDEF section, record its length, i.e.,
TYPDEF_len = sizeof(TYPDEF).

Step 3 is to build segments LINES and SRCLINES in TXTFIX section of a linkable Intel OMF object
file by processing all line number entries in a text section of a COFF relocatable object file. In the
mean time, update SEGDEF section as to catch the definitions for the LINES and SRCLINES
segments.

The segment LINES consists of offset values. Each offset is the byte offset of the start of a line in the
code segment. The segment SRCLINES records information for the byte offset value for the start of
each line in the source file. However, COFF line number entries only have offset values for the code
segment provided by either l_paddr in a lineno entry data structure, or  by n_value in struct syment
pointed by l_symndx in struct lineno. It  needs an extra tool to process a source file as to translate each
l_lnno in struct lineno into byte-offset values of the source lines.

Before building LINES segment and SRCLINES segment, allocate storage structures for lines and
srclines, also allocate memory space for a  structure of src_line as a field of struct srclines. Set src_file
in struct srclines to record the source file name and initialize count in struct srcline to be zero. Start
from COFF file header to process each sections’ header, if s_nlnno > 0, go to a component in COFF
file which contains the section’s lineno entries. Then start a loop to split each lineno entry into an
offset record in LINES segment and a source line offset record  for SRCLINES segment, i.e., for LINE
segment, allocate storage for lines and let it be pointed by the field next  of current struct lines, then set
its field offset = l_paddr, if it is appropriate; for SRCLINES segment, increment count, i.e., count++,
then process the source file to convert the l_lnno into a byte-offset value for the start of the line in the
source file and let it be offset in srcline. At the end of each loop, update TXTDEF_len, i.e.,
TXTDEF_len += sizeof(lines) +sizeof(srclines).

At the last stage of this step, we need to update SEGDEF section to define LINES and SRCLINES
segments in the TXTFIX section. To do this, first to increment num_segs, i.e., num_segs++, let the
associated SEGDEF section to record LINES segment, i.e., set slimit = sizeof(lines), and
combine_name = “LINES”, update the length for  SEGDEF, i.e., SEGDEF_len +=
sizeof(SEGDEF_num_segs). To record the definition for SRCLINES segment, again need to increment
num_segs, also use current SEGDEF section SRCLINES segment, i.e., set slimit = sizeof(srclines), and
combine_name = “SRCLINES”, update the length for SEGDEF.

Step 4 is to build SYMBOLS segment in TXTFIX section from both COFF symbol table and COFF
string table. In this step, we also need to build MODULES segment in TXTFIX section and then as
usual to update SEGDEF to record the definitions for both segments added into TXTFIX section.

To record a block start entry for the SYMBOLS segment, we need both .file entry and its auxiliary
entry in the COFF symbol table. At first, set the field kind in struct sym to be zero, since it is for a
block start entry. The union entry then goes to blk_start, allocate memory space for  struct blk to
blk_start, set its field offset to be zero and blk_len to be the sum of tsize, dsize and bsize from the
COFF optional header, then copy  the x_fname, provided by .file auxiliary entry, into blk_name.
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To record a procedure start entry for the SYMBOLS segment, we need use function entry and its
auxiliary entry from the COFF symbol table. Allocate storage for struct sym and let it be pointed by
next of the current sym. Then set kind = 1,  let the union entry points to prc_start. Allocate storage for
struct proc and let it be pointed by prc_start,  set offset to be n_value of the current syment, convert
n_type of syment into type_IN for defining the internal name of the TYPDEF associated with the
procedure, set kind to be 0x3 for specifying 32-bit near, set ebp_offset to be 0x4,  also set proc_len to
be x_fsize  from the function’s auxiliary entry, finally copy the string in a string table, pointed by
_n._n_offset in syment, into proc_name.

The .bf entry and its auxiliary entry in a COFF symbol table should be converted into an EBP relative
base entry and a symbol base entry. For an EBP relative base entry,  simply set struct sym ‘s field kind
= 4. However,  we need to define offset and s_IN for the symbol base entry. Here, the field offset and
s_IN in struct sbase, which is the data struct for a symbol base entry, gives a general address for the
start byte of the current function. Therefore, set s_IN = txt_IN, the internal name for the text segment
converted from the COFF section which n_scnum in syment specifies.  Also set offset to be the byte-
offset value in a COFF code section which can be converted from x_lnno in the .bf  auxiliary entry.

Filename
 .file entry
 .file auxiliary entry

Functions

 function

.bf

 local symbol entries

 .ef

 function entry
 auxiliary entry

 .bf entry
 .bf auxiliary entry

 .ef entry
 .ef auxiliary entry
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 Figure 4  COFF symbol table sequence vs. Intel OMF SYMBOLS segment sequence & their correspondence relationship
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All local symbol entries, global symbol entries and external symbol entries in a COFF symbol table
should  be converted into symbol entries in a SYMBOLS segment for an Intel OMF object file. To do
this, allocate storage for  struct sym and let it be pointed by next of the current sym, set its field kind =
5, since it is for a symbol entry. The union entry goes to s_ent which is declared as struct symbol. The
field offset  for a symbol entry should record the byte-offset value in the text segment where this
symbol is defined, hence it equals n_value of  syment. Similiar to the way we dealt with type_IN, we
need to convert n_type provided in COFF syment into type_IN for defining an internal name of the
TYPDEF associated with this symbol. Finally, copy  the string in a COFF string table which contains
the symbol’s name into sym_name.

The procedure or block end entry in SYMBOLS segment is very simple, what we need to set is to let
the field kind in struct sym equal to 0x2.

After building the SYMBOLS segment, we need to setup the MODULES segment in the TXTFIX
section of the linkable Intel OMF file. From struct mod, it is quite clear that a MODULES segment
inquires information on general addresses for segments or sections in this object module. We leave
local descriptor table (LDT) selector and all the general addresses to be resolved during the binding and
building processes. What we need to set at this stage is to set kind =1, (since it is for 386 architecture,)
to set first_line = 1, to bring trans_id into correspondence with the translator which generates this
object module(cf. [1]). Also set  the trans_vers to record the translator’s version number and the
mod_name to record the module name.

The final stage of this step is to update SEGDEF to define the SYMBOLS and MODULES segments
defined in the TXTFIX section, as well as to update the sizes for SEGDEF and TXTFIX sections.

Step 5 is a wrapping up step. In this step, we just need to update struct lmh, the linkable module
header, and fix all fields in struct toc_p1, the table of contents for first partition. To build  struct toc_p1,
set SEGDEF_len = 0xE4, set both GATDEF_loc and GATDEF_len to be zeros, set TYPDEF_loc to be
the sum of SEGDEF_loc and SEGDEF_len. Similarly, set PUBDEF_loc to be the sum of TYPDEF_loc
and TYPDEF_len,  EXTDEF_loc to be the sum of TYPDEF_loc and TYPDEF_len,  and also set
TXTFIX_loc to be the sum of  EXTDEF_loc and EXTDEF_len. The rest of the fields in the toc_p1
remain to be zeros. To update struct lmh,  only we need to make sure is that the tot_length equals the
total length of the entire current module, i.e., it is the sum of the length for struct lmh, struct toc_p1
and all the lengths for the sections in this module.

At the final stage of the step, we need a tool to setup the byte for the checksum.
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