
A AP-758
APPLICATION
NOTE

September, 1997

Flash Memory PCI Add-In
Card for Embedded Systems
Order Number: 273121-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without
notice. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

 Intel Corporation
 P.O. Box 7641
 Mt. Prospect IL 60056-7641

 or call 1-800-879-4683.

Many documents are available for download from Intel’s web site at http://www.intel.com.

Copyright © Intel Corporation, 1997

*Third-party brands and names are the property of their respective owners.

Contents
Flash Memory PCI Add-In Card for Embedded Systems

1.0 Introduction .. 1

2.0 System Overview ... 2

3.0 System Operations and Performance .. 6

3.1 Reading the Flash .. 6

3.2 Writing the Flash ... 6

3.3 Erasing the Flash .. 6

3.4 Scaling Memory Size .. 6

3.5 Banked Memory Configuration Considerations .. 7

3.6 Expansion ROM Operation ... 8

4.0 Hardware Considerations .. 8

4.1 Address Line Buffering ... 8

4.2 Choosing Memory Size .. 8

4.3 FPGA Options .. 8

4.4 Socketing Versus Soldering ... 9

4.5 PCB Layout .. 9

5.0 Software Overview ... 9

5.1 Software Design Considerations .. 9

5.1.1 Erasing/Programming Algorithms .. 9

5.2 Applications .. 10

5.2.1 COCHISE.EXE .. 10

5.2.2 CUPLOAD.EXE ... 10

5.2.3 CDNLOAD.EXE ... 11

5.3 Software Alternatives .. 11

5.4 Boot Execution ... 11

5.4.1 BIOS Boot Specification 1.01 ... 11

5.4.2 Expansion ROM Initialization ... 11

6.0 VHDL Code ... 11

7.0 Schematic and Material List .. 12

8.0 Vendor Contact List ... 12

9.0 Specification Summary ... 13

10.0 Related Documents .. 13

10.1 Downloadable Files .. 13
iii

Contents
FIGURES

Figure 1. Flash Memory PCI Add-In Card ...2

Figure 2. Flash Memory PCI Add-In Card Block Diagram ..2

Figure 3. Flash Memory Array Block Diagram ..4

Figure 4. Memory Block Address Map ..10

Figure 5. VHDL Code Block Diagram ...12

TABLES

Table 1. Flash Command User Interface ...5

Table 2. Memory Size versus Layout and Device Selection ..6

Table 3. Flash Programming Code Example ...7

Table 4. Related Documents ...13
iv

AP-758

ro-
ely
In
at
s-

e to

ed
ed
sh

ard
by

 to
CI
 to
1.0 Introduction

Embedded systems are typically designed to startup,
operate, and store data to and from a type of non-volatile
storage media. There are many types of non-volatile
media, such as disc and tape drives. Silicon based,
battery-backed volatile memory systems and non-volatile
memory systems are also available. A typical embedded
computing application does not require the vast amounts
of storage space available from disk and tape drives. It is
often impractical to use these media because of environ-
mental limitations. Battery-backed semiconductor
memory systems can provide suitable storage while the
system is not operating, but reliability may be sacrificed
because of limited battery lifetimes. Long term
maintenance may also be an issue. For embedded
systems, non-volatile semiconductor memory solutions
can provide significant storage and robustness at an
attractive price.

High performance embedded processors with their wide
data buses and differing bus cycle protocols present a
significant interface challenge to Flash memories. Three
possible locations for the Flash memory interface can be
considered when designing an embedded PC: the ISA bus,
the PCI bus and the host bus.

Typically, the host bus cannot be heavily loaded due to
speed considerations; this makes it impractical to add
another host-to-Flash device to the host. Using current
chipset technologies, placing the Flash on the DRAM bus
would significantly reduce the bus speed and slow system
performance.

Placing the Flash on the ISA bus would require dedicated
logic to decode addresses, and to provide buffers and data
steering. The ISA solution would be relatively slow and
would limit the total amount of Flash memory to less than
16 Mbytes.

The PCI bus solution presents an easy to implement
interface that can use current chipset technologies from
the host processor bus. The PCI bus has good perfor-
mance, industry standard protocols and provisions for
system boot control.

Since typical chipsets do not directly support Flash
memory interfaces, but commonly support host-to-PCI
interfaces, a PCI-to-Flash solution was chosen for the
proof of concept design.

The Flash Memory PCI Add-In Card was created to
demonstrate the feasibility of interfacing Flash memory to
the PCI bus in an embedded system. In such a system,
Flash memory devices are used for high density and high
performance mass storage for user code and data.

This application note describes a Flash Memory PCI Add-
In Card design. This design is a proof-of-concept only. It
is not a production product, nor is it being offered by Intel
as such. This application note discusses design and
software considerations specific to a prototype card
assembled by Intel to demonstrate the feasibility of the
PCI-to-Flash interface for various memory densities. This
design and prototype can serve as a basis for customer
designs. Several software utilities were developed for the
prototype; these are described in this application note.
Schematics of the prototype design and field program-
mable gate array (FPGA) are available for customers
desiring to “copy exactly” the design presented here.

The PCI bus provides the interface between the microp
cessor and the Flash memory. Since the PCI bus is wid
accepted in the industry, the Flash Memory PCI Add-
Card can be easily integrated into existing systems th
support the PCI bus, or it can be used in new PCI-bu
based designs. This easy integration can decrease tim
market for new and retrofit designs.

An example of creating a new system with a shorten
development time would be to use the Intel Embedd
Processor Module (which supports PCI) and the Fla
Memory PCI Add-In Card design. Designing a system
using these components and appropriate basebo
support electronics saves considerable design time
eliminating the need to custom design the processor
Flash interface. For space sensitive systems without P
connectors, the PCI-to-Flash interface can be designed
fit the system’s form factor.
 1

AP-758
Figure 1. Flash Memory PCI Add-In Card

2.0 System Overview

The Flash Memory PCI Add-In Card Block diagram is shown in Figure 2.

Figure 2. Flash Memory PCI Add-In Card Block Diagram

PCI Bus

FPGA

5 Volt

Flash

Memory

Array

Expansion

ROM (Flash)

FPGA

Programming

Header

Serial

EEP ROM/

EPROM

Data

Address
Data
2

AP-758

e
to

e
-
M

-
e

h
ted
:

The Flash Memory PCI Add-In Card supports the PCI
Local Bus Specification, revision 2.1, in both electrical
characteristics and logical bus cycles. In accordance with
allowable PCI protocols, it operates at 5 V on a standard
32-bit, 33 MHz bus. The card conforms to the specifica-
tions for a PCI Raw Variable Height Short Card as shown
in Figure 5-3 of the PCI specification. This allows a
maximum height of 4.2” and maximum length of 6.6”.
The card has a standard 32-bit PCI connector and operates
on 5 V-only supply.

The card is designed around the Xilinx XC4000* family
field programmable gate array (FPGA) with the PCI
LogiCORE* interface. The PCI LogiCORE interfaces to
the PCI bus and responds to all commands on the bus. The
remaining FPGA logic responds to the commands from
the PCI LogiCORE and generates appropriate address,
data and control signals and sends them to the Flash array.

A programming header is available for FPGA
programming alteration. You can write the program to the
FPGA via a PC serial port. The serial ROM stores the

FPGA program for configuration at power up. Once th
ROM is downloaded to the FPGA, the card is ready
function.

The Flash Memory PCI Add-In Card supports th
expansion ROM function. This function facilitates dead
start loads from the card at power up. The physical RO
is an Intel 2 Mbit (128 Kbit × 16 configuration) Boot
Block Flash memory. This memory is set up in a ×16
mode to speed up data transfers.

The Flash Memory PCI Add-In Card supports plug-and
play operation and non-plug-and-play operation. Th
FPGA contains all necessary header information.

The Flash memory array is divided into four banks, wit
four devices in each bank. This banked array is suppor
by four memory density modes within the FPGA
2 Mbyte, 8 Mbyte, 16 Mbyte and 32 Mbyte. Figure 3
shows the Flash memory array block diagram.
 3

AP-758
Figure 3. Flash Memory Array Block Diagram
A4482 01

Flash

Array

Flash

Device 3

CE3#

CE2#

CE1#

CE0#

A2-22

D16-D23

D0-D7

D8-D15

D24-D31

Bank 0

Flash

Device

Flash

Device

Flash

Device 0

1

2

Flash

Array

Flash

Array

4

16

CE Selects

Bank 3

CE12#-

CE15#

Bank 2

CE8#-

CE11#

Bank 1

CE4#-

CE7#

4 4 4

Data Bus

Address Bus
hat
ed

o

nd
ine
ifi-
of
The arrangement of the Flash devices represents a double
word aligned memory array. This means that for a given
4 byte read/write starting on a double word boundary
(address x00H) within bank 0, the 4 bytes reside in the
Flash devices selected by CE0# through CE3# respec-
tively. This is an important system consideration when
defining software utilities and when programming and
erasing the Flash. Refer to “Software Design Consider-
ations” on page 9 for more information.

Intel’s High-Density FlashFile™ Memory components
are recommended for the memory array. These are
symmetrically-blocked FlashFile architecture devices.
They allow selective block locking and are pin compatible
with other families of Intel Flash memory. This compati-
bility allows for upgrades to higher performance devices.

The card is operated using standard software routines t
write and read Flash devices. Standard software may ne
to be modified to account for the following:

• The FPGA does not contain algorithms that automati-
cally perform the multiple operations necessary t
program and erase the Flash devices.

• The card does not support burst PCI transfers.

Table 1 describes the commands used to read, write, a
erase the Flash, and the commands used to determ
Flash status. Consult the applicable Flash device spec
cation and user guide to fully understand the operation
Flash devices.
4

AP-758
Table 1. Flash Command User Interface

Command(1)
Bus

Cycles
Required

Notes
First Bus Cycle Second Bus Cycle

Oper(2) Addr(3) Data(4) Oper(2) Addr(3) Data(4)

Read Array/Reset 1 Write X FFH

Read Identifier Codes ≥2 5 Write X 90H Read IA ID

Read Status Register 2 Write X 70H Read X SRD

Clear Status Register 1 Write X 50H

Block Erase 2 6 Write BA 20H Write BA D0H

Program 2 6,7 Write PA 40H or
10H Write PA PD

Block Erase and
Program Suspend 1 5 Write X B0H

Block Erase and
Program Resume 1 5 Write X D0H

Set Block Lock Bit 2 7 Write BA 60H Write BA 01H

Set Master Lock Bit 2 7 Write X 60H Write X F1H

Clear Block Lock Bit 2 8 Write X 60H Write X D0H

NOTES:

1. Commands not listed in this table are reserved by Intel for future device implementations; use only
the signals listed.

2. Bus operations are defined in the Flash datasheet.

3. X= Any valid address within the device
IA= Identifier Code Address
BA= Address within the block being erased or locked
PA= Address of memory location to be programmed

4. SRD= Data read from status register.
PD= Data to be programmed at location PA. Data is latched on the rising edge of WE# or CE#,
whichever goes high first
ID= Data read from identifier codes

5. Following the Read Identifier codes command, read operations access manufacturer, device, lock
block, and master lock codes.

6. When the block is locked, RP# must be at VHH to enable block erase or program operations.
Attempts to issue a block erase or program to a locked block while RP# is VIH will fail.

7. Either 40H or 10H are recognized by the WSM as the program setup.

8. When the master lock bit is set, RP# must be at VHH to clear lock-bits. The clear lock-bits operation
simultaneously clears all block lock bits. When the master lock bit is not set, the Clear Lock Bits
command can be done while RP# is VIH.
 5

AP-758
3.0 System Operations and
Performance

The next few sections provide a general description of
reading, writing and erasing the Flash. See the datasheet
for your Flash devices for specific instructions and
programming flow diagrams.

3.1 Reading the Flash

PCI-to-Flash read transactions are handled by the FPGA.
DEVSEL# is asserted back to the bus master during the
fourth PCI clock cycle (slow DEVSEL# timing). Wait-
state timing occurs during clock cycles 5-9; on cycle 10
the Flash data is valid and TRDY# and STOP# are
asserted. This forces a target disconnect because burst
transfers are not supported in this design. With this read
timing, assuming 4 byte transfers, this design supports up
to 12 Mbyte/s transfers. The host must recognize the PCI
disconnect and keep track of addressing during what
normally would be a burst transfer.

3.2 Writing the Flash

PCI-to-Flash write operations are similar to read
operations (slow DEVSEL# timing) but complete in five
PCI clock cycles; the assertion of STOP# signals that
burst transactions are not supported. The maximum write
rate to the Flash is 11 Mbyte/s, assuming 4 byte writes
that are double-word aligned. The write performance is

slightly less than the read performance because it takes
two write cycles to complete the write operation (12 PCI
cycles total, including the turnaround cycles per write
transaction).

Execute a read command to return to reading the array.

3.3 Erasing the Flash

Erasing the Flash is accomplished by sending appropriate
commands to the Flash array. This is no different than
writing to the array, except that the first write to the array
indicates a command to erase; the second write command
confirms the erase command and indicates the block
address to be erased. Similarly, commands to the array to
determine Flash status are sent via writes, and status is
read through normal read operations. Table 1 lists the
transactions necessary to perform all Flash operations.

Execute a read command to return to reading the array.

3.4 Scaling Memory Size

The Flash Memory PCI Add-In Card supports four
different memory sizes. Table 2 describes the devices and
banks used in each of the memory size types.
Table 2. Memory Size versus Layout and Device Selection

Total Size Device Layout Flash Density Product number Access Time

2 Mbyte 4 × 1 4 Mbit 28F004S5 85 ns

8 Mbyte 4 × 1 16 Mbit 28F016S5 95 ns

16 Mbyte 4 × 2 16 Mbit 28F016S5 95 ns

32 Mbyte 4 × 4 16 Mbit 28F016S5 95 ns
6

AP-758

ut
y.

 32
t a
For size-sensitive applications, the 4 × 1 bank option
provides memory densities of 2 Mbyte and 8 Mbyte
simply by changing out memory types. This can result in
considerable cost savings over the life of a product, since
no redesign is necessary for the memory upgrade. In
applications for which larger amounts of memory are
required and physical size limitations are not an issue, the
designer may opt for the 2 or 4 bank solution.

The proof of concept design and FPGA support up to the
full 4x4 memory configuration. In a custom design based
on the proof of concept, the designer may opt to use only
1 or 2 banks when there are physical size limitations in the
design.

3.5 Banked Memory Configuration
Considerations

The memory system employed uses four separately
selectable Flash memory devices connected to a 32-bit
data bus. This presents a number of considerations that
must be accounted for in system development, especially
software.

It is possible to write single bytes to the Flash array, and
there are no restrictions on addressing. However, when
writing words or double words, the double-word
boundaries must not be crossed in a single transaction.
This causes unpredictable results.

For contiguous address read and writes, the user must be
aware that the bytes are being stored across four separate
Flash devices and not in one device. For instance, four
byte writes to address (x)00H are written to Flash devices
0-3 at address represented by the (x) decoded value.
Therefore, from a system standpoint, the Flash memory
“block” is not 64 Kbytes as defined by each device, b
rather 256 Kbytes as defined for the bank of memor
Similarly when it is desired to lock the first “block” of
256 Kbytes, the command must be available across all
bits of the write data to indicate to each Flash device tha
block lock is requested.
Table 3. Flash Programming Code Example

MOV EAX, 77777777H ;Place lock block command across all 4
;bytes to signal all 4 devices to lock the
;block

MOV [address], EAX ;Write lock block command

MOV EAX, D0D0D0D0H ;Place confirm command across all 4
;bytes to signal all 4 devices to confirm
;lock block command

MOV [address], EAX ;Confirm lock block

MOV EAX, FFFFFFFFH ;Place read array command across all 4
;bytes to signal all 4 devices to go to
;read mode

MOV [address], EAX ;return to read mode for all of bank
 7

AP-758

r

lt
s.
he
6
on

st
s

e
y

e
by
ry

e is
 is
he
er
ate
er
The system programmer can overcome this addressing
system and use a single Flash block (64 Kbytes) for code
or data by offsetting each of the byte writes/reads by 4.
This ensures that the data is assigned to a single Flash
device as long as the bank boundary is not crossed. The
user must decide which system suits the application best.
The penalty for such a system is decreased throughput
performance, since only 1 byte at a time can be read or
written per PCI cycle. This reduces the performance to 3
Mbyte/s for reads and 2.75 Mbyte/s for writes.

The system designer/programmer should consider Flash
wear leveling. If sections of the Flash are going to be
erased and programmed many times over the life of the
product, and others not used at all, some provision should
be made to spread the program/erase cycles evenly
between devices. This increases system data retention
reliability and life.

3.6 Expansion ROM Operation

An Intel Boot Block Flash memory device is
recommended as the PCI expansion ROM. This device
operates in ×16 bit mode to speed boot load operations.
The expansion ROM is accessed at power-up through the
system BIOS. The ROM PCI cycle can provide the
4 bytes in 12 PCI clock cycles for a maximum read
performance of 11 Mbytes/s.

During initialization the system BIOS checks the
Expansion ROM header. The BIOS verifies that the
header is correct (using signatures and checksums).
Depending upon the capabilities of the BIOS and the data
contained within the ROM header, the BIOS shadows the
expansion ROM contents to shadow RAM and calls the
initialization routine. The initialization routine is
responsible for card specific initialization functions. Once
the initialization is complete, the ROM initialization code
returns to the BIOS for completion of the system initial-
ization.

4.0 Hardware Considerations

4.1 Address Line Buffering

Since the address lines on the Flash side of the FPGA
connect to as many as 17 devices, additional buffering is
needed to accommodate the load. Each address line from
the FPGA goes to two buffers and is distributed to
memory. Address lines are routed through the address

pins to minimize load reflections. Series resistors are
employed to reduce reflections in the long lines connected
to the memory arrays.

4.2 Choosing Memory Size

The Flash Memory to PCI Add-In Card has two sets of
jumpers that select the configuration.

JP1: This block selects the Flash memory array size. This
size is selectable from 64 Kbytes to 2 Gbytes. Only four
sizes are currently supported by the chip-enable code
within the FPGA: 2 Mbyte, 8 Mbyte, 16 Mbyte, and
32 Mbyte. Refer to the schematics for these jumper
settings. (Schematics are available from the Intel World
Wide Web site; see “Downloadable Files” on page 13 fo
more information.)

JP2: This configures the expansion ROM size. By defau
(all jumpers open) the expansion ROM is set at 64 Kbyte
The FPGA supports all sizes up to 2 Gbytes, although t
PCI specification limits the Expansion ROM size to 1
Mbytes. Since there is only one socket for the expansi
ROM, this size is really limited by the size of available
Flash memory.

Jumpers or hardwired through-holes provide a co
effective configuration change mechanism for design
that support more than one memory size.

4.3 FPGA Options

The FPGA is programmed by a bitstream from either th
serial ROM or from a PC. This bitstream was created b
compiling the VHDL code and the LogiCORE netlist with
the FPGA software tools from Xilinx. Once the FPGA is
programmed with this bitstream it acts as the bridg
between the PCI bus and the Flash memory array
converting the PCI bus transactions into Flash memo
control signals.

The FPGA supports master and slave modes. The mod
selectable through jumper JP3. When the jumper block
open, the FPGA is in slave mode. In slave mode, t
FPGA must be programmed through the head
connection on the board using a PC and the appropri
tools. When the jumper is installed, the FPGA is in mast
mode and automatically downloads its configuration from
the serial ROM.
8

AP-758

 in

m
 to
m.
e,
ws
nd
-
to

m

ash
is
en

s
ard
ase

ck
4.4 Socketing Versus Soldering

This proof of concept design uses Flash devices soldered
to the board to improve signal reliability and to reduce
cost. Socketing provides the advantage of quick
replacement, which might be required when one Flash
device is erased or programmed more often than the other
devices. The Expansion ROM device is socketed so that it
can be easily swapped, since the device is not rewritable
in-circuit.

4.5 PCB Layout

The critical signals on the PCB are the traces between the
PCI connector and the FPGA, and between the FPGA and
the Flash memory devices. The traces between the FPGA
and the PCI bus connector must be less than 1.5” long,
except the PCI clock signal which must be 2.5” (+/- 0.1”)
long. This is a requirement of the PCI Local Bus Specifi-
cation, revision 2.1.

To minimize the length of the address line traces, they are
routed through the pins (rather than having stubs
connecting the pins to the trace) of the Flash memory
array devices which were laid out in an angular fashion.

Decoupling capacitors are located next to power pins on
the devices and between the power and ground planes of
the PCB to act as filters and reduce noise in the power
signals. Refer to the schematics for information on the
placement of decoupling capacitors. Decoupling
consistent with published datasheets should always be
employed.

The resistors placed on the address lines between the
outputs of the buffers and the address lines of the Flash

devices are used to suppress the effects of reflections
the address lines.

5.0 Software Overview

Few embedded applications require a full file syste
implementation. In most cases, designers do not want
provide the storage space required for a file syste
Typical embedded systems do not run a full-siz
hardware-protected operating system, such as Windo
NT. For these reasons it was decided that a file system a
driver would not be used for the Flash Memory PCI Add
in Card. Instead, proprietary applications were used
demonstrate card functionality.

It is advisable for the card to begin executing after syste
start. An expansion ROM serves this function.

5.1 Software Design Considerations

The memory system uses four separately selectable Fl
memory devices connected to a 32-bit data bus. Th
presents several software design considerations wh
programming the card.

5.1.1 Erasing/Programming Algorithms

Standard Flash implementations provide contiguou
address space for each chip implemented. Since the c
implements a 32-bit data bus, the algorithms used to er
and program devices must change.

Figure 4 shows the address map for a 16-byte blo
within the 32-bit data bus implementation.
 9

AP-758
Figure 4. Memory Block Address Map

Addr xxxx0

xxxx4

xxxx8

xxxxC

xxxx1

xxxx5

xxxx9

xxxxD

xxxx2

xxxx6

xxxxA

xxxxE

xxxx3

xxxx7

xxxxB

xxxxF

Flash
Device 1

Flash
Device 2

Flash
Device 3

Flash
Device 0
.

e

he

e
e
ing
n

nd
e

he
The erase/programming algorithms must take this into
account since the contiguous address space spans multiple
devices.

Two methods can be used to address this issue.

• The first method is to create an algorithm that
accounts for the fact that consecutive addresses
within the same device differ by 4 instead of 1. This
method is useful only when the programmer is
running diagnostic routines on a specific device.

• The second method involves taking advantage of the
32-bit data bus. When programming/erasing is
initiated, the command code byte sent to the devices
is replicated four times within a 32-bit command/data
word. This invokes the program/erase operation on
all four devices within that address line. When using
this method, the programmer must verify that
accesses are done on double-word boundaries. Once
the command code is written, double-word accesses
must then be performed to retrieve status from all
four devices. A ready condition should not be
acknowledged until ready is returned from all
devices.

5.2 Applications

Several applications were created for the Flash Memory
PCI Add-in Card. These are available for download from
Intel’s World Wide Web site (http://www.intel.com; see

“Downloadable Files” on page 13 for more information)
The following sections describe these applications.

5.2.1 COCHISE.EXE

COCHISE.EXE is a DOS executable that provides th
following high-level functions:

• Plug and Play identification of device

• Flash part detection and identification

• Erase/Write/Read testing of entire Flash space

• Device erase capability

• Download of DOS file to Flash

• Upload of Flash contents and storage in file

The application is a menu based system that allows t
user to choose which actions should take place.

5.2.2 CUPLOAD.EXE

CUPLOAD.EXE is a DOS executable that transfers a fil
from the system (motherboard) to the Flash. Th
executable verifies that the card exists in the system us
Plug and Play (PnP) BIOS calls, gets the configuratio
information for the PCI device and the Flash devices, a
then copies the file from the system to the Flash. Th
executable supports other functions. To determine t
available options, type /? on the command line.
10

AP-758

le

e

the
y
est

e
d

5.2.3 CDNLOAD.EXE

CDNLOAD.EXE is a DOS executable that transfers the
contents of the Flash devices on the card to a specified
DOS binary file. The executable verifies the existence of
the card within the system (through the Plug and Play
BIOS), retrieves the Flash device information, and copies
the data from the Flash device to the specified file. To
determine available options for the executable, use the /?
Option on the command line.

5.3 Software Alternatives

The card could be used by an operating system as a
nonvolatile storage device. To do this, the user must write
a device driver that enables the operating system to
format, write and read the Flash devices on the card.
Several Flash file system alternatives exist that could be
used once the driver is written. This option is not
addressed within this application note.

5.4 Boot Execution

Typical embedded applications do not require user
interaction before they begin execution. Possible solutions
to execute the code stored in the card upon system start
are dependent upon the capabilities of the system BIOS.
The following sections describe the options based upon
the capabilities of the BIOS.

5.4.1 BIOS Boot Specification 1.01

The BIOS Boot Specification as defined by Compaq,
Phoenix Technologies and Intel provides the means for
any device in a system to be identified as an Initial
Program Load (IPL) device. If the system BIOS supports
this specification, the expansion ROM within the card can
indicate that it is an available IPL device.

The BIOS maintains a list of available IPL devices and
assigns a priority to the devices. The user can change to
the IPL order/priority of the available devices. If the
expansion ROM is used as an IPL device, the IPL code
must be contained within the expansion ROM space of the
card. The system BIOS calls the Bootstrap Entry Vector

(BEV) to boot the operating system. The expansion ROM
either copies the OS to DRAM for execution or jumps
directly to the entry point of the image contained in Flash.
Example ROM code is available which provides an
example of how to implement a Plug and Play IPL device.
Please see the BIOS Boot Specification for a complete
description of all required tables and actions to support
this capability.

5.4.2 Expansion ROM Initialization

If the system BIOS does not support the PnP Boot
Process, the expansion ROM can take advantage of the
expansion ROM initialization. During the POST process,
the system BIOS shadows all valid expansion ROMs and
calls the initialization routines. The card can determine if
the BIOS supports the PnP installation and boot process
by checking input parameters provided to the unitization
routine.

If the system BIOS does not support the BIOS boot speci-
fication (as determined at run time by the expansion
ROM), the expansion ROM can perform any necessary
initialization, and prior to returning control to the system
BIOS can perform one of the following actions:

• Provide a option screen for the user to select availab
boot options

• Automatically load the image to DRAM from Flash
and execute

• Jump to the entry point in the Flash image to provid
eXecute In Place (XIP) for the image

When this method is used, it is recommended to use
first option. If the other options are chosen, the flexibilit
of the system to boot from alternate devices upon requ
and recover from boot failure is limited.

6.0 VHDL Code

Figure 5 shows the functional block diagram of th
VHDL code used for the Flash Memory PCI Add-In Car
design. VHDL code is available from Intel’s World Wide
Web site (http://www.intel.com; see “Downloadable
Files” on page 13 for more information).
 11

AP-758

 see
Figure 5. VHDL Code Block Diagram

7.0 Schematic and Material List

Schematics and the material list are available from Intel’s World Wide Web site (http://www.intel.com;
“Downloadable Files” on page 13 for more information).

8.0 Vendor Contact List

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
(408)559-7778

Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052-8119
(408) 765-8080

DATA_VLD

PCI Bus
Signals

LogiCORE*
PCI Target
Interface

Flash
Memory
VHDL

Interface

ADIO[31:0]

ADDR[22:2]

S_CBE[3:0]

PCI_CMD[15:0]

BASE_BIT[7:0]

PCI_CLK

S_WRDN

S_DATA

READY

TERM

RSIZE[3:0] FSIZE[3:0]

FWE#

FOE#

CE#[15:0]

FLASH_DATA[31:0]

ADDRESS[22:2]

RAD0
ROE#

ROM_DATA[31:0]

Expansion
ROM

Flash
Memory

Array

Xilinx XC4013* FPGA
12

AP-758

l.com.
ept
9.0 Specification Summary

10.0 Related Documents

These documents are available for download from Intel’s World Wide Web site at http://www.intel.com.

10.1 Downloadable Files

Files mentioned in this document are available for download from the Intel World Wide Web site at http://www.inte
Search for FL_AIC.EXE to find the following information related to the Flash Memory PCI Add-In Card proof of conc
design:

• Bill of Materials for the card

• VHDL source code and description

• FPGA Serial ROM code used on the card

• Software executables discussed in this application note

• Schematics for the card

PCI compatibility: Revision 2.1

Logical PCI Interface: Xilinx LogiCORE PCI Slave Interface (LC-DI-PCIS-C)

Programmable Logic: Xilinx XC4013E-2PQ208C

Configuration PROM: XC17256DPD8C, 256 Kbit Serial PROM

Development Software: Synopsys* VHDL FPGA-Compiler, Xilinx Foundation Series 6.0.2, XACT* 6.0 for PC

Flash Array Devices: Intel FlashFile™ Memory Architecture 28F004S5, 28F016S5

Flash access time: 85 ns (28F004S5), 95 ns (28F016S5)

Expansion ROM: Intel Boot Block Flash Memory (E28F200-B5-B60)

Electrical voltage: 5 Vcc, 5 Vpp

Operating Frequency: 33 MHz

Data Path: 32 bits

Table 4. Related Documents

Document Order Number

Byte-Wide Smart 5 FlashFile™ Memory Family datasheet 290597

2-Mbit Boot Block Flash Memory Family datasheet 290448

Intel Embedded Processor Module datasheet 273105

Intel Embedded Processor Module Evaluation Board
Developer’s Manual 273122

PCI Local Bus Specification, Revision 2.1
This document can be ordered from the

PCI Special Interest group at:
http://www.pcisig.com
 13

	Flash Memory PCI Add-In Card for Embedded Systems
	Contents
	Figures
	Figure 1. Flash Memory PCI Add-In Card
	Figure 2. Flash Memory PCI Add-In Card Block Diagr...
	Figure 3. Flash Memory Array Block Diagram
	Figure 4. Memory Block Address Map
	Figure 5. VHDL Code Block Diagram

	Tables
	Table 1. Flash Command User Interface
	Table 2. Memory Size versus Layout and Device Sele...
	Table 3. Flash Programming Code Example
	Table 4. Related Documents

	1.0 Introduction
	2.0 System Overview
	3.0 System Operations and Performance
	3.1 Reading the Flash
	3.2 Writing the Flash
	3.3 Erasing the Flash
	3.4 Scaling Memory Size
	3.5 Banked Memory Configuration Considerations
	3.6 Expansion ROM Operation

	4.0 Hardware Considerations
	4.1 Address Line Buffering
	4.2 Choosing Memory Size
	4.3 FPGA Options
	4.4 Socketing Versus Soldering
	4.5 PCB Layout

	5.0 Software Overview
	5.1 Software Design Considerations
	5.1.1 Erasing/Programming Algorithms

	5.2 Applications
	5.2.1 COCHISE.EXE
	5.2.2 CUPLOAD.EXE
	5.2.3 CDNLOAD.EXE

	5.3 Software Alternatives
	5.4 Boot Execution
	5.4.1 BIOS Boot Specification 1.01
	5.4.2 Expansion ROM Initialization

	6.0 VHDL Code
	7.0 Schematic and Material List
	8.0 Vendor Contact List
	9.0 Specification Summary
	10.0 Related Documents
	10.1 Downloadable Files

