
Document Number: 320053-001US

White Paper

Intel® EP80579
Integrated
Processor with
Intel® QuickAssist
Technology

Integrating a Voice
Application with the TDM
Infrastructure of the Intel®
EP80579 Integrated
Processor with Intel®
QuickAssist Technology
July 2008

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology
WP July 2008
2 Document Number: 320053-001US

Abstract

This paper describes the main challenges when integrating a Linux* user space voice application with
the TDM infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology, examining decisions that are needed when adding features. As an example, the choices
made when integrating Asterisk® with this integrated processor are detailed.

The authors present a brief overview of the processor’s TDM Infrastructure interface for Linux user
space voice applications.

They describe the different options available for adding FXS, FXO and E1/T1 features, along with the
choices made during Asterisk integration. The authors show how an open source DSP software library
can be used to add an additional feature to the voice application.

The authors conclude with a summary of recommendations on the design decisions for integrating
voice applications with a particular architecture.

Contents

Abstract ... 2

Contents... 2

Introduction ... 3

TDM Infrastructure of the Processor......... 3

Programming Models................................ 4

Adding Features 8

Conclusions .. 9

References ... 9

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel’s Web Site.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus,
OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel
Corporation in the U.S. and other countries.

Asterisk is a registered trademark of Digium, Inc.

*Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation. All rights reserved.

http://www.intel.com

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology

July 2008 WP
Document Number: 320053-001US 3

Introduction

VoIP is becoming more and more prevalent
across voice bearing networks and infrastructure
devices from the core network to the end user.
The main driving force of this is that VoIP
providers can take advantage of IP networks to
offer extremely cost effective call rates.

However, there is still a need to integrate legacy
interfaces into VoIP and IP PBXs to be backward
compatible with existing PSTN infrastructure and
provide fail safe telephony services in the event
of power outages. These legacy interfaces play a
major part in IP PBXs for the SMB market with
multiple use cases ranging from analog to IP PBX
connections, to E1/T1 digital trunks from the IP
PBX to the ISP.

The TDM Infrastructure of the Intel® EP80579
Integrated Processor with Intel® QuickAssist
Technology offers IP PBX products an ideal
opportunity to incorporate legacy interfaces
while benefiting from a simpler design with a
reduced amount of components and Intel®
QuickAssist technology acceleration. This
reduces product BOM cost, form factor, platform
integration and software complexity, and
increases the availability of processor cycles for
applications.

The processor’s TDM Infrastructure provides a
flexible interface and as such, engineers writing
or porting a voice application utilizing this
interface have a variety of design choices. This
whitepaper is designed to offer assistance and
make recommendations for these choices and
design trade-offs. It discusses at a high level the
options available and the type of voice
applications they are suitable for. By way of
example, the choices made when integrating the
Asterisk PBX application are highlighted.

The authors assume that the reader has a solid
background in telephony and Linux*. Further
related documentation including a detailed
description of the processor’s TDM Infrastructure
interface is listed in the references section.

TDM Infrastructure of the
Processor

The processor’s TDM Infrastructure for voice
allows TDM connectivity through three High
Speed Serial (HSS) ports. Each of these HSS
ports can be independently configured to be E1,
T1 or H-MVIP (4 E1s or 4 T1s). In total, they can
support a maximum of 128 voice channels.

These ports can be used to connect external
telephony circuitry and equipment. External
circuitry containing Subscriber Loop Interface
Circuit (SLIC/Codec) and Data Access
Arrangement (DAA) can be connected to support
FXS and FXO lines respectively. Additionally,
external circuitry containing a framer can be
connected to support digital lines.

There are two mezzanine cards that can be
connected to the Intel® EP80579 Integrated
Processor Development Platform (Customer
Reference Board):

• The Intel® EPAVM80579 Analog Voice
Mezzanine Card has 4 SLIC/Codec chips and
a DAA which in total support 4 FXS lines and
1 FXO line.

• The Intel® EPTEM80579 T1/E1 Mezzanine
Card has a quad span framer and supports 4
E1/T1 links.

Linux User Space Interface

The processor’s TDM Infrastructure can be
accessed by Linux user space voice applications
through a set of software components. Together
with the TDM setup driver that initializes
underlying components on loading, two drivers
and a library provide an API to Linux user space
applications for the initialization, configuration
and operation of the processor’s TDM
Infrastructure.

The analog FXO/FXS driver provides a control
path interface to the FXO/FXS interfaces on
analog voice mezzanine cards. It enables the
user to send commands to and receive events
from the SLIC/Codec and DAA chips, for
example, ring a POTS phone connected to the
SLIC/Codec or detect that there is an incoming
call from a Central Office (CO) connected to the
DAA.

The HSS voice driver provides a control and data
path interface to the HSS ports. It enables the
user to configure the voice channels as well as
transmit and receive voice samples.

The framer library provides a control path
interface to the framer devices on T1/E1
mezzanine cards. It enables the user to send
commands to and receive events from the
framer devices, for example, set the signalling
bits on a particular timeslot or detect loss of
sync. This software component resides in Linux
user space.

Figure 1 shows the primary TDM Infrastructure
components of the processor.

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology
WP July 2008
4 Document Number: 320053-001US

Programming Models

Different programming models are discussed
below for the key TDM features. They refer to
the use of the software provided by Intel for
operation of the HSS ports and analog voice
mezzanine cards and the T1/E1 mezzanine
cards.

FXS

Voice applications that need to integrate the FXS
functionality use the analog FXO/FXS and HSS
voice drivers Linux user space API.

Control Path

The analog FXO/FXS driver is responsible for the
control path. The voice application opens a
single file descriptor for this driver. This file
descriptor can then be used to monitor and

control all the FXS lines. The voice application
initializes the analog voice mezzanine card
during setup. As part of this process, the SLIC/
Codec chips are configured with the necessary
PCM parameters.

While the system is running, the voice
application needs to monitor the events reported
by the analog FXO/FXS driver to setup and tear
down calls. This can be done by creating a
thread that calls the read() function in blocking
mode on the file descriptor. This function blocks
until an event occurs. It then returns this event
which is processed by the voice application.
Alternatively, the voice application can poll for
events using the read() function provided by
the analog FXO/FXS driver in non-blocking
mode. To ensure that events are processed in a
timely fashion without introducing unnecessary
overhead, it is recommended that voice
applications use the analog FXO/FXS driver’s
blocking read() function.

The analog FXO/FXS driver is capable of playing
tones that are needed to indicate call state and
call progress over FXS lines, for example the
busy tone. The use of this feature is
recommended since it offloads the tone
generation to the SLIC/Codec chips and removes
the need to implement a tone generator in the
voice application.

To release the analog voice mezzanine card, the
file descriptor should be closed.

Data Path

The HSS voice driver is responsible for the data
path for voice traffic. It is also responsible for
configuring the HSS ports. The voice application
needs to open at least one file descriptor in
order to configure an HSS port. This can be done
independently of other HSS ports using
extendible predefined configurations that are
provided for the most commonly used
configurations. The voice application can then
add channels that allocate the resources needed.
When adding a channel, the interval of the voice
codec, combined with the voice packet size,
determines how often voice samples are ready
for reception by the voice application. The
following formula is used to calculate the voice
packet size that should be set for a known codec
and a desired read rate:

Voice packet size in bytes = (Codec sampling
frequency in Hertz) * (Desired read rate in
seconds) * (Codec sample size in bytes)

Figure 1. TDM Infrastructure Overview of
the Processor

HSS Voice
Driver

Analog
FXO/ FXS

Driver

Framer
Library

TDM
Setup Driver

Voice Application

Lower Level TDM Infrastructure Components

Linux User Space

Linux Kernel Space

Intel® EP80579 Integrated Processor
with Intel® QuickAssist Technology

External Hardware:
Analog Mezzanine Card

External Hardware:
Framer Mezzanine Card

Framer
Driver

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology

July 2008 WP
Document Number: 320053-001US 5

For example, the G.711 codec samples at 8 kHz
and each sample is coded as 8 bits. Therefore, if
the desired read rate is 10 ms, the voice packet
size needs to be set to 80 bytes.

When adding channels, the voice application
must define channel IDs to identify each voice
channel. If the voice application is the sole user
of the HSS port, it may choose to add all
channels during initializing. If the HSS port is to
be shared with another voice or data application,
channels can be added and removed as needed.
This is to ensure that unused HSS channels are
available to all applications.

When the voice application brings a channel up,
data flow is enabled on the channel. Channels in
the “up” state must have their data paths
serviced. Care must be taken to service the data
path on time, otherwise, a latency or loss of
voice samples occurs. As such, it is important
that there is minimal delay between bringing a
channel up and starting data path servicing on
it. If a large number of channels need to be
brought up, a temporary thread may be created
to read and discard voice samples on the
channels currently brought up before proper
servicing can occur.

Figure 2 shows that in scenario (a) one channel
is being added and enabled. There is
insignificant latency between enabling the
channel and reading from it, hence there is
insignificant latency in the voice path. In
scenario (b) all channels are being added and
enabled. A thread is created to read voice
samples from the channels as they are enabled.
This ensures that no latency occurs on the
channels that are created earliest.

Figure 3 shows an example of when channels
should be brought up and down. In this example
FXS A calls FXS B.

When configuring voice channels, the voice
application can decide to associate one or more
voice channels with a file descriptor. When the
HSS voice driver read() function is called, the
voice application passes in a file descriptor as

Figure 2. Adding and Enabling Voice
Channels

Figure 3. FXS to FXS Call

Add Channels
0-127

Enable
Channels 0-127

Read enabled
channels

Read and Write
Channels 0-127

Add Channel 0

Enable Channel
0

Read and Write
Channel 0

(a) (b)

down

up

down

up

FXS A

FXS B

A go
es

 of
f h

oo
k

B an
sw

ers
 th

e

ca
ll

B or
 A ha

ng
s

up

(a) (b) (c) (d) (e)

(a) both lines are on hook
(b) A has gone off hook to dial an extension, the channel is
 up to retrieve the digits
(c) A has finished dialling, the PBX is ringing line B
(d) B has answered the call by going off hook, the call is up
(e) Either B or A has hung up

Voice channels states

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology
WP July 2008
6 Document Number: 320053-001US

part of the parameters. So, the choice of
associating channels to file descriptors is
important and is discussed further below.

When the HSS voice driver read() function is
called in blocking mode, the voice application is
returned voice samples as soon as they are
available for all the channels associated with the
file descriptor.

When the HSS voice driver read() function is
called in non-blocking mode, if voice samples
are available for any of the channels associated
with the file descriptor, they are returned,
otherwise nothing is returned.

In general, it is recommended that voice
applications use blocking mode, otherwise they
need to implement their own timing system to
ensure that they service the data path on time.
Using blocking mode means that as soon as data
is available on the required channels, it is
returned to the voice application.

As part of using blocking mode, the voice
application may find it convenient to use the
poll() method to monitor multiple file
descriptors and service channels without
blocking other channels.

Some voice applications use only one thread for
servicing the data path on all channels. For this
type of application, it is recommended that they
associate all the channels with a single file
descriptor, provided that the read rate is the
same on all channels. If more than one read rate
is needed, a different file descriptor should be
opened for each read rate with the poll()
method used to prevent the slower read rate
channels from introducing latency on the faster
read rate channels.

Some voice applications use multiple threads for
servicing the data path on channels. In the case
where one thread is started for each new call, it
is convenient that the application uses one file
descriptor per channel. In an alternative case
where one thread is used to service channels
with the same read rate, it is better that the
voice application uses a different file descriptor
for each read rate.

When a voice application gets an event to
indicate that the call should be finished, it will
stop servicing the data path, that is, stop
bridging the call. As soon as the voice
application stops servicing the data path, the
appropriate channels should be brought down.
Otherwise, data continues to be received and
this may lead to a receive overflow.

All channels should be removed to deallocate
their resources, and finally the HSS ports should
be un-initialized. If the HSS ports are also in use
by another application, they cannot be brought
down. This is the normal scenario where more
than one application shares an HSS port.

Programming Model Chosen for integrating
with Asterisk®

To integrate FXS functionality with Asterisk a
channel driver has been developed that on one
side interfaces with Asterisk, and on the other
side interfaces with the processor’s TDM
Infrastructure. On the Asterisk side, the channel
driver interfaces with the Asterisk channel API,
which is used by all VoIP protocols and
technologies that interface to Asterisk. On the
processor’s TDM Infrastructure side the channel
driver interfaces with the analog FXO/FXS driver,
HSS voice driver and framer library.

Figure 4 shows the location of this driver in the
Asterisk architecture.

To integrate the FXS functionality, the HSS
channel driver uses the analog FXO/FXS and
HSS voice drivers only.

Figure 4. TDM Infrastructure with HSS
Channel Driver Overview of the Processor

HSS Voice
Driver

Analog
FXO/FXS

Driver

Framer
Library

TDM
Setup Driver

Lower Level TDM Infrastructure Components

Linux User Space

Linux Kernel Space

Intel® EP80579 Integrated Processor
with Intel® QuickAssist Technology

External Hardware:
Analog Mezzanine Card

External Hardware:
Framer Mezzanine Card

PBX

HSS Channel Driver

Asterisk®

Framer
Driver

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology

July 2008 WP
Document Number: 320053-001US 7

When the HSS channel driver module is loaded,
it initializes the HSS ports and adds as many
voice channels as configured FXS lines. Since
Asterisk is a multi-threaded application that
creates a thread for each new call, the HSS
channel driver uses a different file descriptor for
each voice channel. All channels are configured
with a 10 ms read rate. For the control path a
single file descriptor is opened to send
commands to and receive events from the
analog FXO/FXS driver. To process these events,
the HSS channel driver starts a dedicated thread
that uses the analog FXO/FXS driver’s blocking
read() function to retrieve events
asynchronously.

Channels are brought up and down in
accordance with Figure 3.

When a call is established, the newly created
thread is responsible for bridging the call. To do
this, the thread uses the poll() method on both
legs of the call to monitor when data is available.
As soon as one side has voice samples available,
the thread reads them and writes them to the
other side of the call.

When the call is over, this thread stops bridging
the call and brings down the voice channels.
Finally, this thread is destroyed by Asterisk.

When the HSS channel driver is unloaded, the
voice channels are removed and the HSS ports
in use are released.

FXO

Using FXO is very similar to using FXS. Different
commands and events are sent to and received
from the analog FXO/FXS driver, but the
methods in sending and receiving them are
similar.

There may be some differences in sending
commands and handling events depending on
whether the telephony system plugged into FXO
provides answer and disconnect supervision
events, and the analog FXO/FXS driver can
detect these events or not.

In the case where these events are supported, a
similar model for bringing channels up and down
can be used as FXS, since the application is
notified when the call is answered and
disconnected using events. This is shown in
Figure 5 where a call is placed from an FXO
interface to a CO. Note that the CO is external
equipment that is connected to the FXO
interface.

In the case where answer and disconnect
supervision events are not supported by the DAA
or CO, it is possible to detect tones in the voice
samples to simulate these events. When this
occurs, a different model for bringing channels
up and down is needed, so that the tones can be
detected.

Figure 6 shows an example of a call from an FXO
interface to a CO providing tone-based answer
and disconnect supervision only.

Figure 5. FXO call with Answer and
Disconnect Supervision

Figure 6. FXO Call with Tone-based
Disconnect Supervision

down

upFXO (a) (b) (c)

(a) FXO goes off hook and sends the DTMF digits of the
 extension to call
(b) The channel is brought down while the CO switches
 the call
(c) FXO received answer signal, the call is up
(d) FXO received disconnect signal and hangs up the call

CO

CO re
ce

ive
s o

ff h
oo

k

CO sw
itc

he
s t

he
 ca

ll

CO se
nd

s

dis
co

nn
ec

t s
ign

al

CO se
nd

s a
ns

wer
sig

na
l

Voice channel state

down

upFXO (a) (b) (c)

(a) FXO goes off hook and sends the DTMF digits of the
 extension to call
(b) The channel stays up to receive and send voice
 samples
(c) FXO detects busy tone and hangs up the call

CO

CO re
ce

ive
s o

ff h
oo

k

CO sw
itc

he
s t

he
 ca

ll

CO re
ce

ive
s o

n h
oo

k

CO pl
ay

s b
us

y t
on

e

Voice channel state

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology
WP July 2008
8 Document Number: 320053-001US

Programming Model Chosen for integrating
with Asterisk®

The HSS channel driver does not support answer
supervision events, and this has the side effect
that all outgoing calls through an FXO interface
are reported in the CDR as answered.

The disconnection event is simulated through
the use of the busy tone. As such, the method
used when integrating Asterisk is the one shown
in Figure 6.

E1/T1

An E1/T1 line can be used as a digital trunk to
carry multiple calls on a single link. It can be
used to connect a PBX to channel bank
equipment to allow multiple POTS lines to be
used, or it can also be used to connect a PBX to
a CO to provide PSTN connectivity. In addition,
an E1/T1 line can be used to connect two PBXs
together.

When voice applications want to integrate E1/T1
functionality, they can use the framer library and
HSS voice driver Linux user space API.

The data path for E1/T1 differs slightly from the
one used for FXS, because the tone generation
cannot be offloaded to the framer device. The
voice application is now responsible for
generating tones over the digital line. Figure 7
shows a call over a digital line between two
PBXs, A and B. Both PBXs are configured to
support a voice channel to communicate over a
digital link. The figure shows how this channel
should be brought up and down at both PBXs,
when a call is made from PBX A to PBX B.

As the T1/E1 mezzanine card is being used
instead of the analog voice mezzanine card, the
framer library is needed instead of the analog
FXO/FXS driver. The framer library is in user
space so the voice application must link to it at
compilation/build time.

Each HSS port that is connected to a T1/E1
mezzanine card must be configured and
initialized. Events are reported separately for
each port through a framer library function that
can be used in blocking or non-blocking mode.
The voice application may use a thread per port
to call the function in blocking mode, to retrieve
framer events asynchronously. Alternatively, the
voice application can, in a single thread,
periodically check for events on each individual
port using calls to this function in non-blocking
mode. It is recommended that a thread for each
HSS port configured for a T1/E1 mezzanine card
is used so that events are received and
processed without delay.

The voice application can choose to use CAS or
CCS signalling over the E1/T1. The framer
library provides functions to allow signalling bits
to be transmitted and received. The voice
application is free to implement whichever
signalling protocol they choose.

Programming Model Chosen for integrating
with Asterisk®

The model used for the data path is the one
presented in Figure 7. All required voice
channels are added when the HSS channel driver
is initialized, and brought up when a call begins.

To monitor framer events, a new thread is
started for each connected T1/E1 mezzanine
card, using a blocking call to the framer library
function.

To perform signalling over E1/T1, the HSS
channel driver implements the commonly used
E&M protocol.

Adding Features

One decision that may face an engineer
integrating a voice application with the
processor’s TDM Infrastructure is whether to
write or use a ready made library for additional
features.

Since Asterisk is fully-featured, there was little
functionality that needed to be added when
integrating the HSS channel driver. A feature
that was added was echo cancellation as it is not

Figure 7. Call Over a Digital Line

down

up

PBX A go
es

 of
f

ho
ok

Call
ee

 an
sw

ers

the
 ca

ll
PBX A or

PBX B ha
ng

s

up

(a) (b) (c) (d) (e)

(a) both lines are on hook. Channel is down
(b) PBX A goes off hook and sends the DTMF digits of the
 extension to call. PBX B retrieves these digits.
(c) PBX B plays the ringback tone to PBX A while ringing
 the callee
(d) PBX B goes offhook and answers the call
(e) Either PBX A or PBX B hangs up

Voice channel states

Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology

July 2008 WP
Document Number: 320053-001US 9

supported by Asterisk. Since writing an echo
canceller is a complicated task, it was decided to
use the SpanDSP* open source library echo
canceller.

To use the SpanDSP library, the HSS channel
driver keeps a copy of the voice samples it
writes to the voice driver. These samples, along
with the samples read from the voice driver, are
passed into SpanDSP to perform echo
cancellation. SpanDSP returns the echo
cancelled voice samples and these are passed to
Asterisk for call bridging as per normal. This
process is demonstrated in Figure 8.

Integrating the SpanDSP library is an example of
where open source software libraries can be
used effectively to reduce time to market.

Conclusions

Voice applications that integrate traditional TDM
interfaces differ in their architecture and in the
nature of the interfaces they support. This
whitepaper shows that the TDM Infrastructure of
the Intel® EP80579 Integrated Processor with
Intel® QuickAssist Technology provides a flexible
interface and as such supports different voice
application programming models.

When porting a voice application, it should be
possible to use the processor’s TDM
Infrastructure interface in a way that removes
the need for re-architecting the existing voice
application.

When writing a new application, the different
programming models should be considered as
references that will influence the design of the
voice application.

One key issue to be considered when choosing a
programming model is the scalability to a large
number of channels. When using a large number
of channels, a single threaded application may
be more suitable than a multi-threaded
application, as it will reduce the number of user
to kernel space transitions and any overhead
due to thread management. Care must be taken
to ensure that the codec intervals of the
channels are the same, otherwise, voice samples
for some channels may not be available on time.

Since voice processing is time sensitive, it is
recommended that the blocking modes for
receiving events and data are used. This is to
ensure that the voice application is notified as
soon as an event occurs or there is data ready to
be received. Using the poll() method is also
highly recommended, as it can allow multiple
channels to be monitored at the same time. For
real time processing voice channels should not
be brought up until the voice application is ready
to service them.

The Intel® EP80579 Integrated Processor with
Intel® QuickAssist Technology provides a high
performance Intel® x86 core with integrated I/O
and acceleration technology to take advantage
of a robust and ever growing ecosystem of
software development. VoIP, analog voice, and
converged access appliances have seen their
capabilities expand by leaps, while their
development complexity and costs shrink. The
Intel® EP80579 Integrated Processor with Intel®
QuickAssist Technology is proud to play a key
role in the new era of VoIP communications.

References

• Intel® EP80579 Software for IP Telephony
Applications on Intel® QuickAssist
Technology Programmer’s Guide

• Intel® EP80579 Software for IP Telephony
Applications on Intel® QuickAssist
Technology Linux* Device Driver API
Reference Manual

• Intel® EP80579 Software for IP Telephony
Applications on Intel® QuickAssist
Technology TDM I/O Access API Reference
Manual

Please contact your Intel Sales Representative
for more information on these documents.

Figure 8. Echo Cancellation using Spandsp
Library

HSS Voice
Driver

Linux User Space

Linux Kernel Space

HSS Channel Driver Spandsp library

PBX

3. raw read
samples

2. raw written
samples

4. raw read samples
+

raw written samples

5. echo cancelled
samples

6. echo
cancelled
samples

1. raw
written

samples

Asterisk®

	Integrating a Voice Application with the TDM Infrastructure of the Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology
	Abstract
	Contents
	Introduction
	TDM Infrastructure of the Processor
	Linux User Space Interface

	Programming Models
	FXS
	Control Path
	Data Path
	Programming Model Chosen for integrating with Asterisk®

	FXO
	Programming Model Chosen for integrating with Asterisk®

	E1/T1
	Programming Model Chosen for integrating with Asterisk®

	Adding Features
	Conclusions
	References

