
Digital Signage Media Player Application:
Media Decode Using Intel® Media SDK and
Compositing Using DXVA-HD*

Table of Contents
1. Introduction �3

2. Digital Signage Media Player Application �3

 2�1 A Short Description of Digital Signage Media Player Architecture �3

3. Compositing �4

 3�1 What is compositing and why is it required?: �4

 3�2 Threading Architecture �4

 3�3 Usage of Direct 3D* �5

 3�4 Compositing using DXVA-HD* �8

 3�5 Custom EVR Presenter for Video Compositiong � 11

4. Media Decode Using Intel® Media SDK � 13

 4�1 Why Intel® Media SDK? � 13

 4�2 Intel® Media SDK usage in D SMP � 13

5. Conclusion � 15

6. Abbreviations � 15

7. Appendix A: Platform Configuration � 15

2

White Paper - Media Decode and Compositing

Figure 1. Digital Signage Media Player Architecture

1. Introduction
Intel® Core™ processors have an integrated GPU that provides hardware acceleration for various types of media processing, including
video decoding. Developers of digital signage media player application software can take advantage of this capability to significantly
increase graphics performance� For example, testing at Intel showed the hardware acceleration reduced CPU loading from 70 percent
to 10 percent as compared to software-only video decoding, around a seven times improvement (See Appendix A for platform
configuration information).1 This white paper describes how to transition from software-based media processing to hardware-based
processing and provides several code examples to facilitate this migration� The white paper also proposes a mechanism for hardware-
based compositing of various media content on a synchronized display to create a rich user experience�

The digital signage media player (DSMP) software architecture described in the following uses the Intel® Media SDK 2012 to invoke
hardware-based video decode on Intel® Core™ processors, and Microsoft* Direct3D* and Microsoft DirectX Video Acceleration High
Definition* (DXVA-HD*) for composition.

2. Digital Signage Media Player Application

 2.1 A Short Description of Digital Signage Media
 Player Architecture

A generic digital signage media player (DSMP) architecture is
shown in Figure 1� The software runs on an Intel Core processor-
based platform with support for multiple displays, Intel®
High Definition Audio and Intel® HD Graphics, which includes
hardware-accelerated video decoding and post processing� The
Intel Media SDK, Microsoft DXVA-HD and Microsoft Direct 3D
provide APIs for accessing the media acceleration capabilities
of the hardware platform� Developers are responsible for the
compositor, media content creators and DSMP controller�

The following briefly describes the main components of the
DSMP�

• DSMP controller – This handles the state machine of the
DSMP�

• DirectShow* framework and Intel Media SDK – The video
display framework of the DSMP is based on DirectShow� The
Intel Media SDK provides the DirectShow plugin for media
decoding and encoding�

• Media Content Creators – These contain the processing logic
to create decoded media content (e�g�, video, image and
text) that can be rendered.

• Compositor and DXVA-HD – The media content is composed
using DXVA-HD�

• Direct3D – The rendering pipeline of the DSMP
communicates with the graphics driver using Direct3D�

Media

Content

Creator1

Media

Content

Creator2

Media

Content

Creator-n

Intel® HD Graphics

Intel® Processor-based

Hardware Platform

Media

Decode

Post

Processing

Display

Device

Audio

Device

Graphics Driver

Microsoft DXVA-HD*

Microsoft

Direct3D*

Compositor

Intel® Media SDK

Microsoft* DirectShow* Framework* (DXSDK*)

Digital Signage Media Play (DSMP) Controller

Components created by developer

3

White Paper - Media Decode and Compositing

Figure 2. Compositing

3. Compositing

 3.1 What Is Compositing and Why Is It Required?

Compositing is a technique of combining visual elements from
separate sources into a single frame to create an illusion that all
the elements are part of the same scene� This process involves a
primary stream and multiple secondary streams� The secondary
streams are mixed together with the primary stream to form a
single frame that gets rendered to the display�

In the DSMP, various types of media content needs to be
combined into a single frame in a synchronized way, hence
compositing comes into play�

The following diagram shows the composition of multiple
streams into a single stream�

 3.2 Threading Architecture

The compositor in the DSMP is responsible for compositing the
various media content�

Compositor as a thread

The compositor is designed as a thread, and it gets media data
from various media content creators� As a thread, the compositor
performs concurrent processing of media data and outputs the
composed stream to the display� The compositor runs in a loop,
obtaining media data from the various content creators at timed
intervals and assembling a final frame to be displayed on the
screen�

Refresh interval of compositor

The refresh rate of the compositor is the number of times
in a second the compositor draws into the display hardware�
Generally, this is equal to the display refresh rate�

Compositor in real-time

It is necessary to ensure the compositor assembles a frame
in real time. A pre-defined threshold [in time] is set for the
compositor to render the current frame� When this threshold is
exceeded, the compositor skips a presentation cycle�

Media content creator

This entity is responsible for all the processing involved in the
generation of its media content� Media content could be any of
the following: image, video, text ticker, etc�

Individual media content creator as threads

All media content creators run as separate threads� Each thread
is responsible for creating and preparing its media content with
the help of a dedicated D3D surface� The compositor, when
compositing, collects the surfaces from all content creators�

DisplayCompositor
Composited

Stream

Sub Stream 1

Sub Stream 2

Sub Stream n

.

.

.

.

.

Primary Stream

4

White Paper - Media Decode and Compositing

 3.3 Usage of Direct 3D*

Direct3D exposes a set of API’s for rendering two and three
dimensional graphics in applications where performance
is important� Direct3D uses hardware acceleration when
available, allowing hardware acceleration of the entire or
partial rendering pipeline�

Device and surface creation in Direct3D*

The platform hardware is enumerated for Direct3D
capabilities� Based on these capabilities, a Direct3D device
context is created in the compositor� If creating a context
with hardware acceleration fails, then a software-based
context needs to be created� This device is shared across
all content creators and is enumerated for available surface
formats� A8R8G8B8 format is generally used as a sub-
stream format. This format provides the flexibility of using
alpha blending for different contents� Appropriate memory
pool and surface format is selected for surface creation�
The compositor considers the surface corresponding
to one media content as primary and all the surfaces
corresponding to the other media content as secondary�

HRESULT CreateD3DDevice(HWND hWnd, IDirect3DDevice9Ex **ppD3DDevice)

{

// PresentationInterval specifies how frequently the back buffer

 // should be presented to the primary surface� Use parameter:

 // D3DPRESENT_INTERVAL_IMMEDIATE if you would like to render

// as fast as possible” above this line “d3dpp�PresentationInterval =

 // D3DPRESENT_INTERVAL_ONE

 // D3D object creation for subsequent D3DDevice creation�

 if (FAILED(hr = Direct3DCreate9Ex(D3D_SDK_VERSION, &pD3D)))

 {

 *ppD3DDevice = NULL;

 return hr;

 }

 // Set up the structure used to create the D3DDevice�

 D3DPRESENT_PARAMETERS d3dpp;

 ZeroMemory(&d3dpp, sizeof(D3DPRESENT_PARAMETERS));

 d3dpp�Windowed = TRUE;

 d3dpp�SwapEffect = D3DSWAPEFFECT_DISCARD;

 d3dpp�BackBufferFormat = D3DFMT_A8R8G8B8;

 d3dpp�BackBufferCount = BACK_BUFFER_COUNT;

 d3dpp�hDeviceWindow = hWnd;

 d3dpp�Windowed = TRUE;

 d3dpp�Flags = D3DPRESENTFLAG_VIDEO;

 // For windowed mode,the refresh rate must be 0 that is

 // D3DPRESENT_RATE_DEFAULT

 d3dpp�FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;

 // D3DPRESENT_INTERVAL_ONE improves the quality of vertical sync, but

 // consumes slightly more processing time� This parameter attempts to

 // synchronize vertically�

 d3dpp�PresentationInterval = D3DPRESENT_INTERVAL_ONE;

 // Direct3D device creation�

 if (FAILED(hr = pD3D->CreateDeviceEx(AdapterOrdinal,

 D3DDEVTYPE_HAL,

 hWnd,

 D3DCREATE_SOFTWARE_VERTEXPROCESSING |

 D3DCREATE_MULTITHREADED |

 D3DCREATE_FPU_PRESERVE,

 &d3dpp,

 NULL,

 &pDevice)))

 {

 *ppD3DDevice = NULL;

 return hr;
 }

 *ppD3DDevice = pDevice;

 return hr;

}

Code snippet for device creation

5

White Paper - Media Decode and Compositing

Code snippet for surface creation for primary and secondary
streams

Media content creation

Individual content creators process media data and load this
content onto Direct3D surfaces� These Direct3D surfaces are
created by the individual content creators� The following is an
example of video media content creation:

HRESULT CreateSurfaces(IDirect3DSurface9 **pMainStream, IDirect3DSurface9

 **ppSubStream)

{

 //Surface creation for primary stream�

 if (FAILED(hr = m_pDXVAHD->CreateVideoSurface(

 rcMonitorWindowRect�right, // Width of display resolution

 rcMonitorWindowRect�bottom,// Height of display resolution

 D3DFMT_X8R8G8B8,

 caps�InputPool, // Memory pool returned by DXVA-HD capability

 0,

 DXVAHD_SURFACE_TYPE_VIDEO_INPUT,

 1,

 pMainStream,

 NULL))

 {

 return hr;

 }

 // Texture surface creation for each secondary stream

 for (INT32 ui32Count = 0; ui32Count < ui32NoOfMediaContent; ui32Count++)

 {

 hr = m_D3D�m_pDevice->CreateTexture(

 ui32Width,

 ui32Height,

 1,

 D3DUSAGE_RENDERTARGET,

 D3DFMT_X8R8G8B8,

 D3DPOOL_DEFAULT,

 &m_Texture[ui32Count],

 NULL);

 // Get surface from texture

 if (m_Texture[ui32Count])

 {

 m_Texture[ui32ZoneNo]->GetSurfaceLevel(0, &ppSubStream[ui32ZoneNo]);

 }

 }

}

HRESULT VideoMediaContentCreation()

{

 // Get the device handle from compositor

 GetD3DDevice(&pID3DDevice9);

 // Check for file extension�

 // Depending on file extension create an instance of source filter.

 // Accordingly create an instance of Intel® Media SDK demuxer�

 // Connect source filter with Intel® Media SDK demuxer�

 // Check for output pin (audio/video) of Demuxer�

 // Depending on the video content, create an instance of Intel® Media

 // SDK decoder filter. Connect the Demuxer video output pin with input
 // pin of decoder�

 hr = CoCreateInstance(CLSID_EnhancedVideoRenderer, NULL,

 CLSCTX_INPROC_SERVER, IID_IBaseFilter, (void**)&pVideoRendr);

 hr = pVideoRendr->QueryInterface(IID_IMFVideoRenderer, (void**)
 &pIMFVidRend);

 if(hr == S_OK)

 {

 hr = pIMFVidRend->InitializeRenderer(NULL, pEVRPresenter);

 if(hr != S_OK)

 {

 return hr;

 }

 }

 // Create a child window and set its status to SH_HIDE�

 // Assign that window to EVR to render the output�

 VZM_SetWindow2EVR(pVideoRendr, hWnd);

 // Connect Decoder output pin to EVR input pin�

 hr = pGraph->ConnectDirect(DecoderOutPin, InputVidRndr, NULL);

 // Query the Decoder to get VPP interface� Set the VPP parameters�

 hr = VideoDecoder->QueryInterface(IID_IConfigureVPP, (void**)
 &pVPPConfig);

 if (hr == S_OK)

 {

 pVPPConfig->SetVPPParams(&stVppParams);

 }

 // Set the pipeline state to Run

 hr = mediaControl->Run();

Code snippet for content generation

6

White Paper - Media Decode and Compositing

Figure 3. Data Sharing Between the Media Creator and the Compositor

Data sharing between compositor and media content creator

When the compositor makes a request for media data, the latest available processed data from the media content creator’s surface is
blited onto the compositor’s secondary surface to prepare the final frame. The blit takes care of the color conversion and scaling. The
compositor loops at the display refresh rate to assemble the next frame� If media content creators are not ready with new data, the
compositor assembles a frame using the data from the previous frame�

Video Media

Content Color

ConversionData

Exchange

Image Media

Content Color

ConversionData

Exchange

Text Media

Content Color

ConversionData

Exchange

Video Media

Content Color

ConversionData

Exchange

Text Media

Content Color

ConversionData

Exchange

Threads

Surface

Video

Scaling

Color

Conversion

Compositor

DXVA-HD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Primary
Stream

Sub Stream (max upto 15)

Surface

Surface

Surface

Surface Surface

Surface Surface

’

Surface Surface

Intel, the world

Surface Surface

Intel, the world

Intel, the world
leader in silicon

innovation,
develops

Intel, the world
leader in silicon

innovation,
develops

Display

Intel, the world
leader in silicon

Intel,

.

.

.

.

.

.

.

7

White Paper - Media Decode and Compositing

 3.4 Compositing using DXVA-HD*

The Microsoft DXVA-HD is an API for hardware-accelerated video
processing� DXVA-HD encapsulates the functions of the graphics
hardware that are devoted to uncompressed data processing
such as compositing, deinterlacing, color-space conversion, alpha
blending, frame rate conversion, luma keying, etc�

DXVA-HD provides a flexible composition model that enables
the compositor to composite different media contents into a
single video stream before rendering, thus enhancing the user
experience� DXVA-HD is also used for color conversion between
different color formats� DXVA-HD helps perform multiple blits in
one go�

In DXVA-HD, the main video processing operation is the video
processing blit� A video processing blit combines the primary
stream and the secondary stream to create an output frame�
The API used for performing a video processing blit is IDXVAHD_
VideoProcessor::VideoProcessBltHD().

The following sequence of operation is performed before calling
video processing blit�

• The compositor gets the back buffer handle�

• The DXVA-HD stream data structure is initialized�

• DXVA-HD treats the first entry of the ‘DXVA-HD Stream
Data’ structure as the primary stream and all other entries
as secondary streams� The stacking order during video
processing blit will be as per the secondary stream order�

• The stream data structure is initialized for the primary
stream�

• The primary stream destination rectangle is set to the
display screen resolution�

• The stream data structure is initialized for each of the
secondary streams�

• DXVA-HD properties, like planar alpha, video format, frame
format and luma key, for each of the secondary streams are
set�

• The latest data from each of the media content creators is
obtained for the secondary stream surfaces�

• The video processing blit does the composition of all
secondary streams and the primary stream�

• The composed frame is presented for display�

All sub-streams can have per-pixel transparency information, as
well as any specified z-order. The primary stream cannot have
transparent pixels, and it has a fixed z-order position at the back
of all streams. The final frame is assembled onto a single surface
by coloring each pixel according to the color and transparency of
the corresponding pixel in all the streams�

8

White Paper - Media Decode and Compositing

 hr = DXVAHD_SetDestinationRect(

 pDXVAVP, //DXVAHD_VideoProcessor Interface

 stream_count, //Stream Number

 TRUE,

 rect

);

 if (FAILED(hr))

 {

 // Handle error;

 }

 /* Set the DXVA-HD properties like planar alpha, video format,

 Frame format and Luma Key */

 hr = DXVAHD_SetStreamFormat(pDXVAVP, stream_count,

 enD3DFormat);

 if (FAILED(hr))

 {

 // Handle error;

 }

 // Frame format (progressive)

 hr = DXVAHD_SetFrameFormat(pDXVAVP, stream_count,

 DXVAHD_FRAME_FORMAT_PROGRESSIVE);

 if (FAILED(hr))

 {

 // Handle error;

 }

 hr = pDevice->SetRenderTarget(0, ppSubStream[stream_count]);

 hr = pDevice->BeginScene();

 /* Get the data from the particular media content creator� */

 hr = GetMediaContent();

 hr = pDevice->EndScene();

 }

 // Perform the blit�

 hr = pDXVAVP->VideoProcessBltHD(

 pRT,

 frame,

 ui32TotalMediaContents + 1,

 stream_data

);

 if (FAILED(hr))

 {

 // Handle error;
 }

 // Present the frame�

 hr = pDevice->Present(NULL, NULL, NULL, NULL);

}

HRESULT MediaContentComposition(IDirect3DDevice9Ex* pDevice,

 IDXVAHD_VideoProcessor* pDXVAVP, INT ui32TotalMediaContents)

{

 // Allocate DXVA-HD stream data structure

 DXVAStreamData = new

 DXVAHD_STREAM_DATA[ui32TotalMediaContents+1];

 // Initialize the DXVA-HD stream data structure to 0

 // Get the render-target surface�

 hr = pDevice->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO,
&pRT);

 if (FAILED(hr))

 {

 // Handle error;

 }

 // Initialize the stream data structures for the primary video

 // stream

 DXVAStreamData[0].Enable = TRUE;

 DXVAStreamData[0].OutputIndex = 0;

 DXVAStreamData[0].InputFrameOrField = frame;

 // Primary video surface

 DXVAStreamData[0].pInputSurface = pMainStream;

 // Apply the destination rectangle for the main video stream�

 hr = DXVAHD_SetDestinationRect(

 pDXVAVP, // DXVAHD_VideoProcessor Interface

 0, // Stream no

 TRUE,

 Rect // Display resolution

);

 for (INT stream_count = 1; stream_count <=

 ui32TotalMediaContents; stream_count++)

 {

 // Initialize the stream data structures for the Secondary

 // video stream

 DXVAStreamData[stream_count].Enable = TRUE;

 DXVAStreamData[stream_count].OutputIndex = 0;

 DXVAStreamData[stream_count].InputFrameOrField = frame;

 // Assign the secondary stream surface�

 DXVAStreamData[stream_count].pInputSurface =

 ppSubStream[stream_count - 1];

 // Apply the destination rectangle for the secondary stream�

 SetRect(&rect, Substream_pos[stream_count].xLeft,

 Substream_pos[stream_count].yTop,

 Substream_pos[stream_count].xRight,

 Substream_pos[stream_count].yBottom);

Code snippet illustrating single blit

9

White Paper - Media Decode and Compositing

Multiple blits for handling large number of sub streams

Query the device capability with GetVideoProcessorDeviceCaps()
to get the maximum number of streams [‘MaxInputStreams’] that
a video processing blit can handle in one go� In the case where
the number of streams is less than ‘MaxInputStreams-1’ (one
being the primary), then one blit operation is sufficient. If the
number of streams is more than ‘MaxInputStreams-1’, the video
processing blit operation must be performed multiple times, with
the previously composed frame [output of previous blit] used
as the primary stream� Each consecutive video processing blit
must be able to handle the ‘MaxInputStreams-1’ number of sub
streams�

Interoperability between DXVA-HD* and Direct3D*

Surfaces created by a Direct3D device can be used by a DXVA-
HD device and vice versa� This interoperability avoids a level of
copying between the surfaces created by Direct3D and DXVA-
HD devices� The compositor creates a Direct3D surface for all
the media content that it needs to assemble� These surfaces are
passed as sub-streams to the DXVA-HD device�

Media contents to be

assembled = (media

contents to be assembled

minus MaxinputStreams)

Present the

assembled frame

Blit

Assemble

‘MaxinputStreams’

number of media

contents

Assemble all /

remaining media

contents

Media contents to be

assembled less than

MaxinputStreams

Number of media contents

to be assembled <= 0

Set the main

surface as

the render target

Query the device

capability

(MaxinputStreams)

Set the output

surface as render

target

No

No

Yes

Yes

Figure 4. Flowchart for Multiple Blit
10

White Paper - Media Decode and Compositing

Figure 5. Typical DirectShow* Pipeline

Figure 6. Custom Presenter

 3.5 Custom EVR Presenter for Video Composition

The DSMP creates video content via the DirectShow framework�
A typical DirectShow video pipeline is depicted in Figure 5�

The renderer, in this case the Enhanced Video Renderer (EVR), is
usually the last block in the pipeline. EVR filter is used to render
video onto the display� Internally, the EVR uses a mixer object
for mixing the streams� The assembled frame is handed off to
a presenter object, which schedules them for display� In order
to prevent the EVR from presenting the same data it passes to
the compositor to assemble, the presenter module in the EVR
requires customization� The custom presenter allows the sharing
of video data between the video content creator and compositor�
Customization involves maintaining a queue in the presenter,
which contains frames ready for rendering� The frame is added
to the queue when it is scheduled for rendering� Whenever the
compositor is assembling the frame, it queries a frame from this
queue�

Figure 6 illustrates the presenter queue implementation and
data sharing with the compositor�

The mixer passes the decoded video frame received from the
decoder to the presenter� The scheduler schedules the frame for
presentation as per the presentation time� The frame remains
in the scheduler queue until presentation time, after which
the frame is added to the compositor queue for display� The
compositor queries the presenter at the display refresh rate
for the video frame� The frame handler blits the video frame
to the compositor’s surface and removes that frame from the
compositor queue�

Source

Filter

File Demux

Filter

Video Decoder

Filter

EVR

Filter

Scheduler

Scheduler

Queue

Frame

Handler

Compositor

Queue

Presenter

Mixer

Compositor

EVR

Video

Frame

11

White Paper - Media Decode and Compositing

 if(hr != S_OK)

 return FALSE;

 return TRUE;
}

IDirect3DSurface9* D3DPresentEngine::GetSurface()

{

 HRESULT hr = S_OK;

 IDirect3DSurface9 *pSurface = NULL;

 IMFMediaBuffer* pBuffer = NULL;

 IMFSample *pSample = NULL;

 AutoLock lock(m_ObjectLock);

 m_pCurrentSurface�Dequeue(&pSample);

 if (pSample)

 {

 // Get the buffer from the sample�

 hr = pSample->GetBufferByIndex(0, &pBuffer);

 if (FAILED(hr))

 {

 goto done;

 }

 // Get the surface from the buffer�

 hr = MFGetService(pBuffer, MR_BUFFER_SERVICE,

 __uuidof(IDirect3DSurface9), (void**)&pSurface);

 }

 done:

 SAFE_RELEASE(pSample);

 SAFE_RELEASE(pBuffer);

 return pSurface;

 }

 BOOL EVRCustomPresenter::GetVideoData(IDirect3DSurface9
*pCurrentSurface)

{

 HRESULT hr = S_FALSE;

 IMFSample *pSample = NULL;

 CComPtr<IDirect3DSurface9> pSurface = NULL;

 AutoLock lock(m_ObjectLock);

 // Video frame is available only when the video pipeline is in running

 // state

 if (IsActive() && pCurrentSurface != NULL)

 {

 pSurface = m_pD3DPresentEngine->GetSurface();

 if(pSurface != NULL)

 {

 hr = D3DXLoadSurfaceFromSurface(pCurrentSurface, NULL, NULL,

 pSurface, NULL, NULL, D3DX_FILTER_LINEAR, NULL);

 if (FAILED(hr))

 {

 goto done;

 }

 }

 }

 else

 {

 // This might be because the stop command has come�

 // We need to release all the surfaces in Queue

 while(1)

 {

 pSurface = m_pD3DPresentEngine->GetSurface();

 if(pSurface != NULL)

 {

 pSurface.Release();

 pSurface = NULL;

 }

 else

 break;

 }

 }

done:

 if (pSurface != NULL)

 {

 pSurface.Release();

 pSurface = NULL;

 }

The following code snippet demonstrates video data sharing
between the presenter and compositor:

The presenter creates and maintains multiple swap chains with
a single back buffer� The video sample object holds a pointer to
the swap chain’s back buffer surface� It is to this surface that
the mixer renders� The surface is pushed to the scheduler queue
from where it is added to the compositor queue for presentation�
In the EVR presenter, the Direct3D device created by compositor
is used instead of creating a new device instance�

12

White Paper - Media Decode and Compositing

Figure 7. Intel® Media SDK

4. Media Decode Using Intel® Media SDK

 4.1 Why Intel® Media SDK?

The Intel Media SDK is the software development library that
exposes Intel platforms’ industry-leading media acceleration
capabilities (encoding, decoding and transcoding). The library
APIs are available with software fallback option� With a
forward scalable interface, plus easy-to-use coding samples
and documentation, application developers can gain a time-to-
market, competitive advantage with respect to optimized power
and performance characteristics� Applications built with the Intel
Media SDK can consistently deliver a high-quality, feature-rich
user experience across all platforms and devices� The latest
version of the Intel Media SDK can be downloaded from http://
software�intel�com/en-us/articles/vcsource-tools-media-sdk/�

Advantage of using the Intel® Media SDK

Developers using the Intel Media SDK no longer have to write
separate code paths to tap into platform-specific hardware
acceleration to improve video performance� The Intel Media SDK
features a single API that streamlines workflow and exploits
hardware acceleration capabilities within Intel hardware�
Additionally, applications integrating Intel Media SDK today will
benefit from the hardware acceleration capabilities of future
graphics processing solutions without requiring a program code
rewrite�

Figure 8. Intel® Media SDK-based DirectShow Filter Graph

The Intel Media SDK builds on top of standard APIs like Microsoft
DXVA and Direct3D� Developers need not know the low-level
details of these complex standard APIs� Surface types created by
all three APIs are compatible�

The Intel Media SDK handles multiple simultaneous sessions for
video processing� When hardware acceleration is not available
for decode, the Intel Media SDK will fall back to software� Video
decoding from H�264, MPEG-2 and VC-1 formats is supported�

 4.2 Intel® Media SDK usage in DSMP

The DSMP uses Intel Media SDK based DirectShow filters for
decoding video content� Figure 8 shows a sample DirectShow
filter graph that illustrates the use of Intel Media SDK
DirectShow filters for video playback.

Intel® Media SDK interaction with Direct3D* and DXVA-HD*

The Intel Media SDK natively supports I/O from both system
memory and Microsoft Direct3D9 surfaces� It uses Direct3D
surfaces to handle uncompressed data during decode� In the
DSMP, this uncompressed data is composed using DXVA-HD�

Decode
Video Pixel

Processing (VPP)

Intel® Media SDK

Digital Signage

Media Player

Encode

Intel® Media SDK

Digital Signage

Media Player

EVR

Custom Presenter

Source

Filter

Compositor

13

White Paper - Media Decode and Compositing

http://software.intel.com/en-us/articles/vcsource-tools-media-sdk/
http://software.intel.com/en-us/articles/vcsource-tools-media-sdk/

Figure 9. Video Pixel Processing using the Intel® Media

 // initialize vpp configuration parameters

mfxU32 DoNotUseAlg[4];

DoNotUseAlg[0] = MFX_EXTBUFF_VPP_DENOISE;

DoNotUseAlg[1] = MFX_EXTBUFF_VPP_SCENE_ANALYSIS;

DoNotUseAlg[2] = MFX_EXTBUFF_VPP_DETAIL;

DoNotUseAlg[3] = MFX_EXTBUFF_VPP_PROCAMP;

// fill VPP external buffer structure

mfxExtVPPDoNotUse VppExtDoNotUse;

VppExtDoNotUse�Header�BufferId = MFX_EXTBUFF_VPP_DONOTUSE;

VppExtDoNotUse.Header.BufferSz = sizeof(mfxExtVPPDoNotUse);

VppExtDoNotUse�NumAlg = 2;

VppExtDoNotUse.AlgList = (mfxU32*)&DoNotUseAlg;

// store the address of VPP external buffer structure

mfxExtBuffer* pVppExtBuf;

pVppExtBuf = (mfxExtBuffer*)&VppExtDoNotUse;

//Initialize VPP Frame Processor

VppParams�ExtParam = pVppExtBuf;

sts = m_pmfxVPP->Init(&VppParams);

 m_pmfxVPP = new MFXVideoVPP(m_mfxVideoSession);

Video pixel processing using Intel® Media SDK

The Intel Media SDK supports video pixel processing functions
that include inverse telecine, scene detection, deinterlacing,
denoising, resizing and color conversion�

Intel® Media SDK Decoder Filter extension to support VPP

The sample Intel Media SDK decoder filters do not support video
pixel processing (VPP). The DSMP extends the functionality by
adding VPP support to the decoder filter. A VPP frame processor
is created, which allows VPP for output video� The VPP frame
processor takes raw video frames from the decoder as input�
The output of the VPP frame processor is used for composition�
The different pixel processing operations supported include:

• Deinterlacing

• Inverse telecine

• De-noising

• Resizing

• Scene detection

• Color conversion

• Frame rate conversion

• Crop and resize

• Detail filter

• ProcAmp

Code Snippet illustrating addition of VPP functionality in
decoder
During the filter object creation, a VPP frame processor is
created�

The VPP external buffer and the VPP frame processor structure
are initialized� By default all the VPP algorithms are disabled�
Individual algorithms will be enabled based on user selection�

sts = m_pmfxVPP->QueryIOSurf(&m_pVideoParamVPP, RequestVPP);

sts = m_pMfxAllocator->Alloc(m_pMfxAllocator->pthis, &RequestVPP,

&ResponseVpp);

During the surface creation, determine the number of surfaces
required for VPP and allocate memory accordingly� The surface
requirement will vary depending upon the algorithms selected
for VPP�

do

{

 sts = m_pmfxVPP->RunFrameVPPAsync(pInFrameSurface, *pOut-
FrameSurface,

 NULL, &syncp);

 if (MFX_WRN_DEVICE_BUSY == sts)

 {

 Sleep(1);

 }

} while (MFX_WRN_DEVICE_BUSY == sts);

if (MFX_ERR_NONE == sts)

{

 sts = m_mfxVideoSession.SyncOperation(syncp, 0xFFFF);

 MSDK_CHECK_RESULT(sts, MFX_ERR_NONE, sts);

}

Once the VPP is initialized and surfaces are allocated, the
decoded video frame can be processed by the VPP frame
processor� The generated output is then passed to downstream
filter.

Video Decode
Video Pixel

Processing
Compositing

14

White Paper - Media Decode and Compositing

5. Conclusion
Software vendors who write digital signage media player application software can easily switch from a software-based
implementation to hardware-based processing using the Intel Media SDK� The development effort is streamlined by giving developers
a means to implement code that uses hardware acceleration to increase graphics performance without the need for mastering the
low-level details of the complex Microsoft APIs, like DXVA2* and Direct3D� The interoperability between the Intel Media SDK, DXVA2
and Direct3D leads to a DSMP architecture capable of delivering significant performance gains.

Compositing via DXVA-HD facilitates a rich user experience by assembling together a number of media streams and rendering them in
a synchronized way�

6. Abbreviations

API Application Programming Interface

DSMP Digital Signage Media Player

DXVA-HD* DirectX Video Acceleration – High Definition*

EVR Enhanced Video Renderer

I/O Input / Output

SDK Software Development Kit

VPP Video Pixel Processing

7. Appendix A: Platform Configuration

 Appendix A: Platform Configuration

Platform AOpen* MP67-D

Processor Intel® Core™ i5-2520M Processor (2.5 GHz)

Memory 8GB DDR3

Operating System Microsoft* Windows* 7 64-bit SP1

Graphics Driver 8�15�10�2669

White Paper - Media Decode and Compositing

1 Performance results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration
may affect actual performance.

 Copyright © 2012 Intel Corporation. All rights reserved. Intel, the Intel logo and Intel Core are trademarks of Intel Corporation in the United States and/or other countries.
 *Other names and brands may be claimed as the property of others. Printed in USA 0512/TB/TM/PDF Please Recycle 327201-001US

