CD1284

IEEE 1284-Compatible Parallel Interface Controller
with Two High-Speed Asynchronous Serial Ports

Datasheet
Product Features
Parallel Port (Peripheral-side) Two Serial UARTSs
= Serial channel h tocol
High-speed, bidirectional, multi-protocol suplpor? tg”f15_gsﬁggsr(?2§i”§§f§eﬁco
parallel port: compatible and functionally identical to
» Hardware implementation of all modes of CD1400)
the IEEE STD (Standard) 1284 —Twelve-byte FIFOs for each transmitter
specification (including automatic and receiver with programmable
negotiation) threshold for receive FIFO interrupt
— Centronics-compatible mode generation
—Reverse Byte mode —Improved interrupt schemes: Good
— Reverse Nibble mode Datall interrupts eliminate the need for
— ECP (extended capabilities port) mode character status check .
with run-length encoding/decoding — User-programmable and automatic flow
—EPP (enhanced parallel port) mode contr-ol for serial channells.
—Upto 2-Mbytes/sec. transfer ratein ECP —Speaglt_character recognition and
and EPP modes genq 1on.)
« 64-byteparallel FIFO with DMA interface ~ — SPecial character processing,

particularly useful for UNIX"
environments, optionally handled
automatically by the serial channels.

— Six modem control signals per channel
(DTR, DSR, RTS, CTS, CD, and RI)

As of May 2001, this document replaces the Basis
Communications Corp. document. May 2001
CL-CD1284 — |IEEE 1284-Compatible Parallel Interface Controller

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The CD1284 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001
*Third-party brands and names are the property of their respective owners.

Datasheet

intel.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Contents

1.0
2.0

3.0

4.0

5.0

Datasheet

OVEIVIBW ...ttt ettt ettt 12
CONVENTIONS ..ottt 15
2.1 ADDIEVIALIONS. ...ttt 15
2.2 ol (0] 1Y/ 0 01 PSPPI 15
Pin INTOrMatioN ... e 17
3.1 [1o T =T =T o PP 17
3.2 PN LISttt ettt e e be e aaes 18
REQISTEr SUMIMAIYooiiiiiiiee e 24
4.1 Register SUMMArY TabIES.....cciiii it 24
4.2 [T o 1Y (=T U Y= o = PSR 27
Functional DeSCIIPLION ..o 31
5.1 DEVICE AFCIItECIUIEveiie ittt et et eneees 31
5.2 CPU INTEITACE ...ttt e et e e s snnbeeae e 33
5.2.1 REAU CYCIES ..ottt 33

5.2.2 WIEE CYCIES ..ottt ettt e e e e e e e s e e 34

5.2.3 Service-Acknowledge CYCIES........cccvvivieiieiie e 34

B5.2.4 DMA CYCIES. ittt see ettt e e e e et 34

5.3 Serial POrt SErviCe REQUESESuuuiiiiiieei et e e e r e e e e e e e ee e 35
5.3 L INEITUPLS e et 36

5.3.2 DMAREQ* as Parallel Interrupt SOUICe.........cccvvvvicvriiiiieiiee e 36

5.3.3 Serial Service Request PolliNgccccvviiiiiieeeii e 40

5.3.4 Daisy-Chaining Service Requests with CD1400Scccccceeeeeviicinnvnnnnn. 41

5.4 Parallel Port SErvice REQUESES.........ccoiiiiiiiiiiiii e r e aeeea e e 43
5.4.1 Hardware-Activated Context Switch, Parallel..............ccccoooiiiiiiinnnnns 48

5.4.2 Software-Activated Context Switch, Parallelccccccooviiiiiiiinens 49

5.5 Serial Data Reception and TranSMISSIONcueiieeieeiiiiiiiiiiiiereeeee e s s e sseeneneee e 49
5.5.1 RECEIVEr OPEIAtIONvuviiiiiiiieeieeiiiiiiieeeeereeeeeesss st ereeeeeeseesnnennreaeeees 50

5.5.2 Receiver Timer OPErationscccccvirriiiieeeeesiisseiniieereesae e e s e ssesnnneeeeees 51

5.5.3 RECEIVE EXCEPLONSuutiiiiiiieeei ittt e e e e e s ee e 52

5.5.4 Transmitter OPErationcceeeeeieiiiiiiiiiiireieeeeee s sssnrraerere e e e e e s s e snenneees 54

5.6 FIOW CONEIOL ...t e e ettt e e e neees 55
5.6.1 In-Band FIOW CONIOl.....ccoiuuiiieiiiiiiie et 55

5.6.2 Receiver In-Band FIOW CONtrolcoocviieiiiiiiiiieiiiiiee e 55

5.6.3 Out-of-Band FIOW CONIOL.........ccocuiiiiiiiiiieee e 58

5.6.4 Modem Signals and General-Purpose /Occcociviviiieei e, 59

5.7 Receive Special Character ProCeSSINGuuvviiiiieeieiiiiiiiiie e eeiree e e e 61
5.7.1 UNIX, Character ProCeSSINGcccccuriiiiiiieeie e i scieiieeee e e e e e e s snaneae e 61

5.7.2 Non-UNIX, Receive Special Character Processing..........ccccccoeeevvvvvvnnnnn. 63

5.8 Transmit Special Character ProCeSSINGcoccuvirririiieeieeeieeiiinrieeeeeeee e s s e ssnnnes 67
5.8.1 Line Terminating CharacCters.........ccccvuureiiieeeeeiiie st e e ee e e e seanaeee s 67

5.8.2 Embedded Transmit COMMANAS.........cccuuirieiiiiiiieeniiiie e 67

5.8.3 Send Special Character Command..........cccccceoeiiiiiiiiiiieeeee e 68

5.9 Baud RAte GENETAtION.cicuiiiie ittt e e e 72
3

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.10 Serial Diagnostic Facilities — LoOpbaCKccoooiiiiiiiiiiiii e 73
5.11 Parallel Port FIFO and Data Pipeline OVerviewcccceeevieeeiiiiiiiiiiiieeee e 73
5.11.1 |EEE STD 1284 PrOtOCOIScccuutiiiiiiiiiite ettt 73
5.11.2 BUS INEITACE ...coiiiiieiii ettt e 74
5.11.3 Parallel POt FIFOcooiiiiiiiiiie et 74
5.11.4 RECEIVE DIr€CHONeuiiiiiiiiiie ettt 75
5.11.5 Receiving CompressSed Data.........cceuiieeiiiiiiiiiiiiiee e 75
5.11.6 Stale Data (Stale, OneChar, and Timeout Status BitS)ccccceeeenee. 76
5.11.7 TranSmit DIF€CHONcoiiuuiiie ittt 76
5.12 CD1284 Parallel POrt OVEIVIEWcueiiiiiiiieieeiieieee ettt 77
5.12.1 TerMiNOIOQYeeeeiiriiiieiiiiiiee ettt et e e 77
5.12.2 SigNal NBMESooiiiiiiieiitie ettt 77
5.12.3 State MaAChINecoueiiiieii e 78
5.12.4 CONFIQUIALIONcciiiiiiieiiiiee ettt 78
5.12.5 INEITUPLES ..ttt 79
5.12.6 MANUAI MOTE ...ttt 79
5.12.7 CoNtrol SIgNaIS........ceviiiiiiiiie e 79
5.12.8 Parallel Port Interface to the FIFO ..o 80
5.12.9 1284 NEQOLALIONSeiiiiiiiie ettt et 80
5.12.10 Data TraNSFEIS ...co.uveiiieiiiiiee ettt e 81
5.12.11 Compatible MOde StatUScuvviiiiiiiiee e 81
5.13 1284 Parallel ProtoCol SUPPOITcvveiieiiiiieieeiiiieee ettt 82
5.13.1 Compatibility MOE.........ccuveiiiiiiiiic e 82
5.13.2 Reverse-Nibble and Reverse-Byte MOdeS...........cccoveeiiiiiiiiiiiiiieeeee, 82
5.13.3 ID REQUESTciiiiiiiiiiiiee et 82
B5.13.4 ECP MOUEeiiiiiiiiiiiii ettt 82
B5.13.5 EPP MOEooiiiiiieii ettt 83
5.14 ProtoCOl TIMING «.oiueeeeteiieiie ettt ettt ettt ettt e ss et e e abb e e e snnnnee s 83
5.15 General-Purpose /O POITeeiiiiiiiiiee et 83
5.16 Parallel POrt INtErfaCe........cooiiiiiiiiiiiiiiee et 84
5.17 Hardware COonfigUrationscceeiiiiirieiiiiiieee ittt e st e e sbneeeeeanes 86
5.17.1 Interfacing to an Intel, Microprocessor-Based System.............cccccceeeeee. 86
5.17.2 Interfacing to a Motorola, Microprocessor-Based System..................... 86

5.17.3 Interfacing to a National Semiconductor,
Microprocessor-Based System86

6.0 ProgrammMing ..ot 90
6.1 OVEBIVIBW ettt ittt e e e s e e e e e e e eeeeaeeeeeeeeeeseeeeeaabsberaararen 90
6.2 [aT) ATz 1= i (o] o E P PRPPRRTRPRIN 90

B.2.1 DEVICE RESEL....ccoeiiieieeeeee ettt 90
6.2.2 Global Function Initializationccccceeeieieiiiieiiieeeeeeeeeeeeeev 93
6.2.3 Serial Channel Initialization...........cccccooeiiiiiiii 93
6.3 Serial Poll Mode EXAMPIEScccoveeiiiiiiieee et 94
6.3.1 Polling ROULING EXAMPIESccccviiiiiieiiee et e e e 94
6.4 Hardware-Activated Service EXamples...........ooocvviiiiiiiiee e 97
6.4.1 Serial RECEIVE SEIVICEuuuvuriiiiiiiiiiieieieie e 97
6.4.2 Serial TranSMIt SEIVICEuuuuruiieieiie et 98
6.4.3 MOUEIM SEIVICE ...coeevveveieritiritit e eeeie s e te s e e e e e e e e e e e e e e e eeeeeeeeeeeeesereresbararaaaaanes 99
6.5 Parallel Channel Service ROULINES...........uuuiiiiiiiiiiiiieieieie e ee e ee e eveeeens 99
6.5.1 Software-Activated Service Examples (POIl)......cccccceeeiiiiiiiiiiiiineeeen, 100

4 Datasheet

7.0

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

6.5.2 Hardware-Activated Service EXamplescccccooviiiiiiiiiiiiiiieeiiiiiee 102

6.6 Baud Rt DEIVALIONccoiiiiiiieiiiiiie ettt e e srre e e e e e 102
6.7 Baud Rate TabIes..........oooiiiiiiiii e 103
6.8 ASCIH COAE TADIES.....eiiiiiiiiie et 106
6.8.1 Hexadecimal — Charactercccuvieiiiiiiiiiiiiiiee e 106

6.8.2 Decimal — CRArACLErcuvviiiiiiiiiiie e 107
Detailed Register DESCIIPIONScco i 108
7.1 (€1 [0] o Tz LI = =T o 15 (=] £SO 108
7.1.1 Channel ACCESS REJISIENcceeie it 108

7.1.2 Global Firmware Revision Code RegiStercccccvvvveveeeeeeiniiiiciiiinnen 108

7.1.3 General-Purpose I/0O Direction REQISter..........cccecvvviiireeeeeeiei e 109

7.1.4 General-Purpose /O REQISTENueieiiiiiiiieiiiieie e 109

7.1.5 Modem Interrupting Channel Registerccociiiiiiiieiiiiiiiiiiieeeen 109

7.1.6 Modem Interrupt REGISIEr......coi i 110

7.1.7 Parallel Interrupt REQISIEIcoi i 111

7.1.8 Prescaler Period REgISLErcoiiiiiiiiiiiiieee e 111

7.1.9 Receive Interrupting Channel Register ..o 112

7.1.10 Receive Interrupt REGISIEr.......ooi i 112

7.1.11 Service Request REQISIE......cooi i 112

7.1.12 Transmit Interrupting Channel Register ... 113

7.1.13 Transmit INterrupt REQISTENcovuiiiiiiiiiii e 113

7.2 VIFUAL REGISTEIS ...ttt 113
7.2.1 Modem Interrupt Status REGISTErcccoueiiiiiiiiiiieiiiie e 114

7.2.2 Modem Interrupt Vector REJISTErcocuviviiiiiiiiieiieeee e 114

7.2.3 Parallel Interrupt Vector REQISTEroovuevviiiiiiiiieiiieee e 115

7.2.4 Receive Data/Status REQISIEISccciiiiiiiiiiiiiiieeeitiieee e 115

7.2.5 Receive Interrupt Vector REQISIErvviviiiiiiiiiiiiiiiees e 116

7.2.6 Transmit Data REJISIENeviiiiiiiiiie it 117

7.2.7 Transmit Interrupt Vector REQISTErccuevviiiiiiiiieiiiie e 117

7.2.8 End of Service Request REJISTENcuuviiiiiiiiiiiiiiiieeee e 118

7.3 Channel REJISTEIS.....ccciiiiiiieiiiee e s 118
7.3.1 Channel Command REQISIEruurieiiiiiiiieiiiiiie e 118

7.3.2 Channel Control Status ReQISIErcccvcuiiiiiiiiiiiie e 122

7.4 Channel Registers — Parallel PIipelineccoooieiiiiiiiiiie e 123
7.4.1 Channel Option ReGISIEr Lccoiiiiiiiiiiiiiiiie e 123

7.4.2 Channel Option REJISIEr 2ccoiiiiiiiieiiiieie e 124

7.4.3 Channel Option ReGISIEr 3coiiiiiiiiiiiiiiee e 125

7.4.4 Channel Option REJISIEr 4coiiiiiiiiiiiiieiee e 126

7.4.5 Channel Option REGISIEr 5ooiiiiiiiiieiiieeie e 128

7.4.6 Local Interrupt Vector REJISIEr..........oviiiiiiiieiiiiiiee e 128

7.4.7 LNext Character REQISIErcciiiiiiiiiiiiiie et 129

7.5 Modem Change Option REGISTEISicuiriiiiiiiiiee et 129
7.5.1 Modem Change Option Register L.........ccccvveiiiiiiieiiiiiee e 129

7.5.2 Modem Change Option REQISIEr 2........cuviviiiiiiiiieiiieee e 130

7.5.3 Modem Signal Value RegiSter 1.........cccocuviiiiiiiiiieiiiiiie e 130

7.5.4 Modem Signal Value RegiSter 2.........coooiviiiiiiiiiieiiiee e 131

7.5.5 Receive Baud Rate Period RegiSter..........cccviuiiiiiiiiiiiie e 131

7.5.6 Receive Clock Option REQISIENccciiiiiiiiiiiiiiieeee e 131

7.5.7 Received Data CoUNt REJISTENccciiiiiiiiiiiiiiie et 132

5

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

7.5.8 Receive Timeout Period Register.............ccccvveeee...
7.6 Special Character Registers ..o,
7.6.1 Special Character Register 1cccccceeviiiiiiininnneen.
7.6.2 Special Character Register 2cccccceeeeiiiiiininnneen.
7.6.3 Special Character Register 3cccccceeeeiiiiiiiniinneen.
7.6.4 Special Character Register 4cccccceeeiiiiiuninnnnen.
7.6.5 Received Character Range Detection.....................
7.6.6 Special Character Range — High.............ccccenee
7.6.7 Special Character Range — LOW.........ccoeiviiinnnnnnee.
7.6.8 Serial Service Request Enable Register
7.6.9 Transmit Baud Rate Period Register.......................
7.6.10 Transmit Clock Option Registercccocvuvveeeenn.
7.7 Channel Registers — Parallel Pipelinecccccooinnnnnee.
7.7.1 Data Error Registerooooiiiiiiiiiiiiieeees e
7.7.2 DMA Buffer Data Register — High.............c...oc......
7.7.3 DMA Buffer Data Register — LOW............cccvvrernnne.
7.7.4 Firmware Revision Code Holding Register Status Register
7.7.5 Local Interrupt Vector Registercccccvvveveeennnn.
7.7.6 Parallel Auxiliary Control Register..............ccceeenneee.
7.7.7 Parallel Channel Reset Register.........ccccccovcuvieeenns
7.7.8 Parallel FIFO Control Register..........cccccovviveriennnnnn
7.7.9 Parallel FIFO Empty Pointer Register.....................
7.7.10 Parallel FIFO Fill Pointer Register.............cccvveennee.
7.7.11 Parallel FIFO Holding Register 1........cccccccoviiiveenns
7.7.12 Parallel FIFO Holding Register 2..........cccccovvvveeenns
7.7.13 Parallel FIFO Quantity Registerccccoecvveeennnnn
7.7.14 Parallel FIFO Status Register..........ccccceeeviiieeeennnnnn
7.7.15 Parallel FIFO Threshold Register..........ccccvveeennnen.
7.7.16 Run Length Count Register...........ccocuvveeriiiiniennnnn.
7.7.17 Stale Data Timer Count Registerc..cccvveennne.
7.7.18 Stale Data Timer Period Register..............cccceeennen.
7.8 Channel Registers — Parallel POrtcccooviveiiiiiinieenen
7.8.1 EPP Address Registercccccoveeiiiiiiieeniiiieeeei
7.8.2 Host Timeout Value Registerc.cccocveeviiiiniennnnn
7.8.3 Input Value RegiSter........ccceeiiiiiiiiiiiiiiee e
7.8.4 Manual Data RegiStercccoveeiiiiiiieeiniiiieeee
7.8.5 Negotiation Enable Registerccccocveveiiiiiieenne
7.8.6 Negotiation Status Registerccccovcveeeeiiiiierennns
7.8.7 Ones Detect RegiSter........ccccvviiiieiiiiiiieeiiieeee e
7.8.8 Output Value Register.........cccocvveeeiniiieeniiieeeee
7.8.9 Parallel Channel Interrupt Enable Register
7.8.10 Parallel Channel Interrupt Status Register
7.8.11 Parallel Configuration Register...........ccccevvivveeennns
7.8.12 Special Command RegiSter...........cccvvveeriiiieeennnn.
7.8.13 Short Pulse RegiSterccceeiiiiiieeiiiiiieee e
7.9 Pin Control REQISIErSvviiieiiiiiiee et
7.9.1 Signal Status Register........ccccoovvviieiniiiieeeiieiee s
7.9.2 Zeros Detect RegiStercccoovvvieeiiiiiieeiiieeeee,

Datasheet

intel.

8.0

9.0
10.0
11.0

12.0
Index

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Electrical SPecCifiCatioNS........cccooiiiicee e 155
8.1 Absolute Maximum RatiNGS.......ccuuuuiiieiieeeie e e e e s s s rr e e e e e e s e snnnnnees 155
8.2 Recommended Operating ConditionSuuuiveieeeriiiiiiiiee e 155
8.3 F O O ¢ - = ol (= 13 1o PRSP 157
8.3.1 ASYNChronNOUS TiMINGceueereiiiiiiiiiiiiieeireeeeeess st aere e e e e e s s e s snnreneeneeees 157

8.3.2 SYNCIIONOUS TIMING...uuiieiieeeeeii it e e e e e s e e e e e e e e e srererrneeee s 163
Package DIMENSIONSc.covoiiiiieeeeeeceee e e 169
Ordering INFOrmMatioN ... 170
APPENUIX A oottt 171
11.1 Commonly ASKed QUESTIONSuuiiiiiiaaaaeeie ettt tee e e e e e e e e e e e e ennees 171
APPENTIX B oo 172
... 173
7

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figures

O©CoOoO~NOOOTA, WNPE

Functional BIOCK DIiagramocouuiiiiiiiiieaaae e e e e 11
CD1284 Sample System BIOCK Diagramcooviiiimiiiiieiieee e 14
CD1284 Functional BIOCK Diagramccoeiieaiiiiiiiiiiieieeeee e e e e 32
Internal Address GENEIatioNccoiuriiieiiiiiiie et 32
Control SigNal GENEIALIONc.iiiiiiiiii e e e e e e e 38
CD1284 Daisy-Chain CONNECHONSuuuiiiiiiiieaaie e e e e e e e e e e 42
INterrupt GENEration LOGICuuueeieiiiiaaeiee it a e e 45
FIFO TimMer PrOCESSING .cceeiiiiiiiiiieieieee e ee ettt e e e e e e e e eee e e e aaae e e e e nanes 53
CD1284 Receive Character PrOCESSINGccoceieeiiiiiiiiiiiiiieieeeae e e eiiiiiieeeeeeaee s 64
CD1284 Transmit Character ProCeSSINGcooviiiiiiimiiiieieieee e 70
FIFO Data Path Functional Diagram — RECEIVEcccuereieiiiiiiiiiiiiiieeeaeeeeeeeeas 78
FIFO Data Path Functional Diagram — TranSmitccccceriiiiiiiiiiiiiiieneeeeeenn, 80
Cable CONNECLION.......uiiiiiiiii et s e e e 85
External Buffer CONLIOl...........oouiiiiiiiiiii s 86
Intel, 80x86 Family INtErfacecoccuiiiiiiiiiiii e 87
Motorola, 68020 INTEITACEcuuuiiieiiieie e 88
National Semiconductor, 32000 INtErfaceocccvevieriieieeeiiee e 89
Flow Diagram of CD1284 Master Initialization Sequence.............ccccovvvveeeennnnen. 92
POIING FIOW CRAITciiiiiiiiiie e e 100
RESEE TIMING -.eetiieittiiee e 158
ClOCK TIMING .ttt e et 159
Asynchronous Read Cycle TimMiNgoovouiiiiiiiiiiieiiiee e 159
Asynchronous Write CyYCle TimMiNgeeeeiiiieiieiiiiiee s 160
Asynchronous Service Acknowledge Cycle Timingccccvvevivrieeiiiiieie e, 161
Asynchronous DMA Read Cycle TimMiNgcooouueiieiiiiiinieiiiiiee e 162
Asynchronous DMA Read Cycle Timing (Two Back-to-Back DMA Reads)...... 162
Asynchronous DMA Write Cycle TiMiNgoevveiiiiiieiniiiie e 163
Asynchronous DMA Write Cycle Timing (Two Back-to-Back DMA Writes)....... 163
Synchronous Read Cycle TimMiNgcocueveiiiiiiiieeniiee e 165
Synchronous Write Cycle TiMINGooceiiieiiiiiieei et 166
Synchronous Service Acknowledge Cycle Timingccoccvvveeiiiiiieiniieeeenee 167
Synchronous DMA Write Cycle Timing
(Two Back-to-Back 3-Cycle DMA WIES)uviviiiiiiiiie ittt 168
Synchronous DMA Read Cycle Timing
(Two Back-to-Back 3-Cycle DMA REAUS)cocviiuvriiieiiiiiiie e 168
UART to RS232 and IR Port Interface Motherboard Example Schematic 172
Datasheet

intel.

Tables

Datasheet

OO, WN B

10
11
12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

IEEE 1284-Compatible Parallel Interface Controller — CD1284

PiN DESCIIPLIONS ...ttt ettt e e e e e e e et eeaeeaae e e s 20
LC1(0] oF= T R y=To S (=] U UT TR 24
Virtual Registers — Serial ... 24
Virtual Registers — Serial and Parallelccccooiiiiiii e, 24
Channel RegiSters — Serial........cooouiiiiiiiiiiic e 25
Channel Registers — Parallel Pipeline
(Selected by Channel 0N CAR) ... 26
Channel Registers — Parallel Port
(Selected by Channel 0N CAR)coociiiiiiiiieee e 26
L€ (0] o F= LI = =T 0 15 (=] £ 27
VAT (0 T L =T o £ =T £ PRSI 27
Virtual Registers — Serial and Parallel ..., 28
Channel RegiSters — Serial........cooouiiiiiiiiiii e 28
Channel Registers — Parallel Pipeline
(Selected by Channel 0N CAR)coociiiiiiiiieee e 29
Channel Registers — Parallel Port
(Selected by Channel 0N CAR) ...t e e ee e 29
Request-Type Bit ASSIGNMENTScccuiiiiiiiiieee e e e e e e 38
(01 @35] (S5 I =1 g eTo o [To TR 56
L1 @3] 223 I = g oo o [o SR 57
(610 = 0] 41 170] I 271 TP PPPTOTRRRR 58
Out-0f-Band Pin CONNECHIONS.......coiiiiiiieiiiiiie ittt seereee e 59
Modem Control Pin FUNCHONSccoiiiiiiie it 60
Y 1o [T= Ul N F= 10 0= USSR 77
System CIOCK SEtHNGS ..o e 83
Baud Rate Constants — CLK = 25 MHZccccoooiiiiiiiiiee e 103
Baud Rate Constants — CLK = 20.2752 MHZcccccoovviiiieiiiiiee e 104
Baud Rate Constants — CLK = 20.00 MHZcccooeiiiiiieeeiiieee e 104
Baud Rate Constants — CLK = 18.432 MHZccccceiiiiiiieieiieee e 105
Baud Rate Constants — CLK = 16 MHZccccoooviiiiiiiiiiie e 105
Asynchronous Timing Reference Parameters........cccccveeeeievciiiiieeeeeeeee e ees e 157
Synchronous Timing Reference Parameterscccoovvvevcviviieeeee e 164
9

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Revision History

10

Revision

Date

Description

1.0

May 2001

Initial release.

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 1. Functional Block Diagram

GENERAL-
_ | PurPOSE I/
< 1 OPORT
Compression/
DMA Decor$1pressi0n | | | | | Control Level-2
<> 64 Bytes <] State Electrical
ow CONTROL DATA Mover I I I I I Machine || Interface
5
L
3:] o DATA PIPELINE FIFO IEEE1284 PERIPHERAL
oy PARALLEL PORT
Sz
€ L SERIAL
¢ PORT #1
Y
REGISTERS
MPU AND FIFO ‘ SERIAL
RAM ™ PORT#2
MODIFIED CD1400 CORE
Datasheet 11

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

1.0

Overview

12

Ideal for printers, scanners, tape drives, set-top boxes, and data acquisition applications, the
CD1284 is amulti-function interface controller that implements a high-speed, multi-protocol
parallel port and two asynchronous serial ports. The device has both programmed 1/0 and DMA
operation (parallel port only), providing flexibility in local CPU interface design and high-speed
data transfers between the device and main memory.

The parallel port implements all modes of the IEEE STD 1284 Sandard Sgnaling Method for
Bidirectional Parallel Peripheral Interface for Personal Computers specification, including EPP,
ECP, Reverse Byte, Reverse Nibble, and Compatible. Data transfer rates (up to 2 Mbytes/sec.) are
achievable on the parallel port when the device operates with a 25-MHz clock. The parallel port
data and control signalsimplement the IEEE STD 1284-defined Level-2 interfacein drive type
(symmetrical), current capability (+x14 mA), slew rate (0.4 V/ns), and 0.8 V hysteresis(2.0V to
+7.0 V protection is not implemented).

The two serial portsimplement the standard asynchronous protocol. Functionally, the serial ports
are identical and register-set-compatible with the CD1400. The table below, shows the differences
between the CD1283 and CD1284.

Device Number of Number of
Serial Channels Parallel Channels
CD1283 0 1
CD1284 2 1

Also included is a general-purpose port that provides eight bits of individual direction
programmable 1/O that can be used for status and control of external functions.

Theory of Operation

The CD1284 is an efficient high-performance communications controller using an on-chip RISC
processor, which off-loads much of the work of sending and receiving data from the CPU.
Specifically for data communications applications, the RISC processor employs a high-
performance architecture developed by Intel. Thisinternal CPU executes all instructionsin one
clock cycle, and uses a windowed architecture to ensure zero-overhead context switching for each
type of internal interrupt. The processor is transparent to the user and does not require any
programming. It manages all serial data movement between the CPU and the two serial channels
and provides aflexible interrupt interface for the parallel channel. The parallel channel, being
separate and having its own intelligence, implements a very high-speed, peripheral-side parallel
data interface.

Each of the serial channels consist of separate 12- byte receive and transmit FIFOs. The paralel
channel has a single 64-byte FIFO to support the higher speeds obtainable on the parallel data port.
The serial receive FIFOs all have programmable thresholds to minimize interrupt latency
requirements. The parallel port FIFO has a programmable DMA threshold in both the receive and
transmit directions. The deep FIFOs reduce both the number of interrupt requests made of the CPU
and the time required to service them. The time required to service the requestsis reduced by four
unique vectors that provide internal interrupt conditions. Whether it is receive, transmit, modem
signal change, or parallel port, the system spends | ess time determining the source of the
interrupt. The seria receive interrupt servicetimeis further reduced by providing two types of
receive vectors: onefor ‘good’ data and the other for ‘exception’ data. The CPU does not spend

Datasheet

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

time determining the status of every character. When the receive vector signifies good data, the
CPU removes the data from the FIFO. Checking status is not necessary. Exception data (framing
error, overrun, break, etc.) causes an interrupt with a vector that the CPU can immediately identify
and manage.

The RISC processor is assisted in the process of sending and receiving serial data by specialized
hardware called ‘bit engines . These logic blocks perform the actual task of sending and receiving
the individual bits of a character, thus removing the task of timing the bit duration from the on-chip
processor. The processor assembles the bits into characters and tests various parameters (for
example, parity, framing, etc.) then places the charactersin the FIFO. Since it is managing every
character, special character processing is possible such aslooking for and responding to flow-
control characters (X ON/XOFF) and performing UNIX"-style character substitutions and range
checking. Thisreducesinterrupt overhead by automatically performing many of the operations that
the CPU normally does. Flow-control, for example, can be performed without CPU involvement.
Those operations can be completely removed from its responsibility.

The CD1284 can be daisy-chained with other CD1284 or CD1400 devices to implement larger and
more complex systems. The Fair Share feature assures equal access for service requests across
multiple devices (Fair Shareis not implemented on a parallel port interrupt request).

The parallel channel within the CD1284 implements all protocols defined for the peripheral side by
the IEEE STD 1284. This specification defines four bidirectional protocolsthat allow a peripheral
device to communicate with a host system (IBM" PC or equivalent) through the parallel printer
channel. The modes include Reverse Nibble, Reverse Byte (IBM" PS/2" style), ECP, and EPP (as
implemented on the Intel™ 80386SL processor). ECP and EPP both operate at data rates as high as
2 Mbytes/sec.

The |IEEE 1284 port isimplemented as two functional blocks: a data pipeline, which includes the
64-byte FIFO and the DMA interface, and a high-speed state-machine, which controls the parallel
port and implements the slave-side IEEE 1284 protocols. The internal RISC processor assists the
parallel channel by providing interrupt generation, acknowledgment functions, and a data interface
to the Parallel Port registers.

Asdefined in the |IEEE 1284 specification, the CD1284 in ECP mode, provides RLE (run length
encoded) data compression in both directions. This data compression is performed automatically
(if enabled) and is capable of compressing long strings (up to 128 bytes) of identical datainto a
two-byte sequence (command/count and data). Since it is common for bit patternsto have large
amounts of identical data, the CD1284 greatly reduces data transmission timesin printer
applications.

EPP mode defines a means of sending address and data over the parallel channel much like a
processor address and datainterface. This has found widespread use in LAN and SCSI interface
adapters that provide these services on laptop computers.

Thefollowing figure shows a possible configuration for a CD1284 in alaser-printer application. In
this example, the CD1284 provides a parallel and serial datainterface to ahost system or server. It
also provides a serial channel for control communication with the printer console, aswell as
genera-purpose /O for static control/status.

13

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Figure 2. CD1284 Sample System Block Diagram

intel.

ROM RAM
A A ADDRESS BUS A
conTROL | >
PROCESSOR Y DATA BUS Y
-
A
\ y
IEEE 1284
<€— pARALLEL CHANNEL
GP 1/O: CD1284
INTERNAL STATUS <———3 HIGH-SPEED
AND CONTROL <——» SERIAL CHANNEL #1
A (RS-232, INFRARED)
HIGH-SPEED

SERIAL CHANNEL #2

LASER
PRINTER
CONSOLE

14

Datasheet

2.0

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Conventions

2.1

2.2

Datasheet

Abbreviations

Symbol Units of Measure

°C degree Celsius
Hz hertz (cycles per second)

Kbyte kilobyte (1,024 bytes)

kHz kilohertz
kQ kilohm

Mbyte megabyte (1,048,576 bytes)

MHz megahertz (1,000 kilohertz)
UF microfarad
us microsecond (1,000 nanoseconds)
mA milliampere
ms millisecond (1,000 microseconds)
ns nanosecond
pVv picovolt

Theuse of ‘tbd’ indicates values that are ‘to be determined’, ‘n/a designates ‘ not available’, and
‘N/C’ indicates a pin that isa‘no connect’.

Acronyms
Acronym Definition

(Sheet 1 of 2)

AC alternating current

BIOS basic input/output system

CIsC complex instruction set computer

CMOS complementary metal-oxide semiconductor

DC direct current

DMA direct-memory access

DRAM dynamic random-access memory

ECP extended capibilities port

EPP enhanced parallel port

FIFO first inffirst out

GPIO general-purpose 10

15

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

16

Acronym Definition
(Sheet 2 of 2)

HCMOS ZLgrgigg:s)Jggrnce complementary metal-oxide
HDLC high-level data link control
IC integrated circuit
IDC instruction and data cache
ISA industry standard architecture
LSB least-significant bit
MPU microprocessing unit
MSB most-significant bit
PIO programmed 1/O
PPP point-to-point protocol
MQFP metric quad flat pack
RAM random-access memory
RLE run-length encoded
R/W read/write
SDLC synchronous data link control
SRAM static random-access memory
SWI software interrupt instruction
TLB translation look-aside buffer
TTB translation table base
TTL transitor-transitor logic
VRAM video random-access memory
WwB write buffer

Datasheet

INlal.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

3.0 Pin Information

3.1 Pin Diagram

E
______ z 2
LEE A0 N8 SN a 0 e s oo 2o,
$EEEEEEE85255232883 5
trrrrrrrrrrrrrnnntnnl
8885833365338 86583333
GND —— mm g go wmm ——P CLK?2
DB <3 wmm 2f O 7)) mem <€—— RESET*
DBf] <t mm ; 7g] w—m -—— Cs*
DB[5] -3 wmm , 77| wmm <€—— DS*
DBM] -—3» mwm 5 76| w—m @ €—— RW*
DB[S] <> mwm ¢ 75| W= ——3 DTACK*
DB2] <3 mm 7 74] w—m ——— NC
DB[l] <> mm g 73] =m €—— CLK
DB0] <-¢—3» wm o 72| mmm — GND
GND ———— w1 71| wmm —F DPASS*
Vee ——— w4 70| w=m <€—— DGRANT*
DMAACK* — - mmm 13 69] wmm <€—— SVCACKP*
DMAREQ* -—— mm 17 63| mmm —P SVCREQP*
RIZ* — 3 mm 14 CD1284 67] w=m <€—— SVCACKM*
RI2* —> mm 14 66| wmm —P SVCREQM*
TXD3 -€—— mmm . 65| Wmm —— v .
RXD3 — p» mmm 17 100-Pin MQFP 64] wmm —— SVCACKT*
TXD2 <—— wmm 19 63] =mmm —P SVCREQT*
RXD2 — 3 mm g 62] wmm <€—— SVCACKR*
DTR3* —3» mmm 2 61] wmm —P SVYCREQR*
RTS3* -—— wum) 60| = € cp[
CTS3* —»» mm 23 so| wem <€« cpy
DSR3* -¢—— mm 2 sg| wm <€ Gp[
CD3* ——p» mm 24 57| == <€ cpp
DTR2* -€—— wmm 2§ 56| mm <€ Gppy
RTS2* <-—— wmm 2! 55| wmm <€ Gp[5)
CTS2* ——3 mm 2] 54 wmm P GP[5]
DSR2* ——3» mmm 2 53| mm <€ GP[7]
CD2* —3» m=mm g 52] wmmm — GND
GND ——— wmm 30\ sf == —— P PDBEN
5883888 LIITIILeLTee
trrrrnnrrernnrennntl
= X s 00 F B o & o=
TEQEIIfjISFEETEEEE]S
T I T é a o 8 | w
NOTE: (*) Denotes negative-true signal. _»
‘N/C’ indicates no connection;
make no connection to these pins. (Seetable on next page.)

Datasheet

17

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

3.2

18

)) Reverse | Reverse
o | Compati- | Nibble Byte |ECPMode| P0
y Mode Mode
Inputs
A28 | SLCTIN® | A1284 | A1284 | A_1284 | nAStb
HstBsy | AUTOFD* HstBsy HstBsy HstAck nDStrb
HstClk STROBE* HstClk HstClk HstClk nWrite
ninit INIT* ninit ninit nRevReq ninit
Outputs
AklaaR PError AkDaRqg | AkDaRq nAkRev USER1
PerBsy BUSY PerBsy PerBsy PerAck nWait
PerClk ACK* PerClk PerClk PerClk Intr
nDatAv FAULT* nDatAv nDatAv nPerReq USER2
XFlag SELECT XFlag XFlag XFlag USER3

Pin List

The following conventions are used in the pin-description tables:

¢ (*) after aname indicates that the signal is active-low

* ‘I’ indicates the pinisinput-only

¢ ‘O indicatesthe pin is output-only

e ‘|/O' indicatesthe pin is bidirectional

* ‘OD’ indicates an open-drain output that the user must tie to V ¢ through a pull-up resistor
(usually about 1 kQ)

* ‘AR’ indicates active release (pin drivesto ‘1’ and releasesto ‘OD’)

* ‘TS indicatestristate

¢ a'— indicates ascending pin numbers

* a'’ indicates descending pin numbers

Pin Name Tvpe Number Pin Reset
yp of Pins Number State
(Sheet 1 of 3)
11, 50, 65,
v - 5 81, 100
1,10, 30,
GND - 7 40,52,72,
91
RESET* | 1 79

Datasheet

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Pin Name Type Num_ber Pin Reset
of Pins Number State
(Sheet 2 of 3)

OUTEN | 1 83
CLK | 1 73
CLK/2 O 1 80 n/a
DB[15:0] 1o 16 9299, 2= 1 15
A[6:0] I 7 84-90
R/W* | 1 76
cs* I 1 78
DS* | 1 77
BYTESWAP | 1 82
DTACK* AR 1 75
DMAREQ* o 1 13 High
DMAACK* | 1 12
SVCREQR* ob 1 61
SVCACKR* | 1 62
SVCREQT* oD 1 63
SVCACKT* | 1 64
SVCREQP* oD 1 68
SVCACKP* | 1 69 High
SVCREQM* oD 1 66
SVCACKM* | 1 67
DGRANT* | 1 70
DPASS* O 1 71 High
PDI[7:0] 110 8 41-48 TS
GPJ[7:0] 1/0 8 53-60 TS
A 1284 I 1 31
HstBsy [1 32
HstClk I 1 33
ninit | 1 34
AkDaRq (@] 1 35
PerBsy O 1 36 Low
PerClk O 1 37 High
nDatAv (@) 1 38 High
Xflag O 1 39 Low
EBDIR (0] 1 49 High
PDBEN (@) 1 51 Low
TXD3 (@] 1 16 High

19

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

Pin Name Type Num_ber Pin Reset
of Pins Number State
(Sheet 3 of 3)
RXD3 | 1 17
TXD2 o) 1 18 High
RXD2 | 1 19
RTS2* (0] 1 26 High
RTS3* (0] 1 21 High
DTR2* (0] 1 25 High
DTR3* (0] 1 20 High
CTS2* I 1 27
CTS3* | 1 22
DSR2* I 1 28
DSR3* | 1 23
CD2* I 1 29
CD3* | 1 24
RI2* | 1 15
RI3* | 1 14
N/C - 1 74

Table 1. Pin Descriptions (Sheet 1 of 4)

Symbol Pin No. Type Description

ACTIVE-LOW RESET: This input initializes the device to the default condition. All
RESET* 79 | internal registers are set to their reset condition and all transfer operations are set to
the default state.

OUTPUT ENABLE: This pin must be ‘1’ to enable output pin functions. When OUTEN
OUTEN 83 | is ‘0, it forces all output pins to remain in a tristate condition. Typically, OUTEN is used
only for test purposes. User designs must tie this pin to V¢ through a pull-up resistor.

SYSTEM CLOCK: This input has a 25-MHz maximum; 16 MHz is the recommended

CLK 73 | - h)

minimum for satisfactory device performance.

SYSTEM CLOCK DIVIDED BY TWO OUTPUT: This signal is equivalent to the
CLK/2 80 (0] ; . .

internal operating clock of the device.

BIDIRECTIONAL DATA BUS: Only DMA transfers and writes to the DMA Buffer
DB[15:0] 92-99. 2-9 /o register are true 16-bit operations. During all register writes other than to the DMA

Buffer register, bits [7:0] are written to the addressed register. Register reads duplicate
the register contents on both the lower byte [7:0] and upper byte [15:8].

ADDRESS BUS: Together with CS* or one of the SVCACK* inputs and DS*, this input
A[6:0] 84-90 | selects an On-Chip register for a read or write operation or an acknowledgment to an
service request.

READ/WRITE*: This input must be ‘1’ for a register read operation, and must be ‘0’ for

%
RIW 76 I a register write. R/W* is ignored for DMA operations.
ACTIVE-LOW CHIP SELECT: When active, the input CS* combines with DS*,
CSs* 78 | initiates an 1/0 cycle with the CD1284. CS* must be ‘1’ during DMA read/write

operations.

20 Datasheet

In

Table 1.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Pin Descriptions (Sheet 2 of 4)

Symbol

Pin No.

Type

Description

Ds*

77

ACTIVE-LOW DATA STROBE: During an active /O cycle, the input DS* strobes data
into On-Chip registers on write cycles or enables data onto the data bus during read
cycles. DS* is ignored during DMA operations.

BYTESWAP

82

BYTESWAP: This input determines the byte order for 2-byte DMA transfers and for
writes to the DMA Bulffer register. When BYTESWAP is ‘1’, then Data Bus bits [15:8]
are driven with the byte transferred first on the parallel port bus. Data Bus bits [7:0] are
driven with the byte transferred second on the parallel port bus. When BYTESWAP is
‘0", the data order is reversed, bits [7:0] are driven with the byte transferred first and
bits [15:8] are driven with the byte transferred second.

DTACK*

75

AR

ACTIVE-LOW DATA TRANSFER ACKNOWLEDGE: This output indicates: 1) when
the device completes the requested I/O operation, and, 2) when the current cycle can
finish. This signal can implement wait-state insertion for the local CPU. DTACK* does
not activate on DMA cycles.It is an active-release output, driving to a logic ‘1’ then
releasing to OD. DTACK* must be ties to external V. through a pull-up resistor.

DMAREQ*

13

ACTIVE-LOW DMA REQUEST: When the internal control bit DMAen is set, the output
DMAREQ?* is asserted if internal FIFO conditions warrant a DMA transfer. DMAREQ*
is deasserted on the falling edge of DMAACK* when DMA transfers cannot continue
past the current transfer.

DMAACK*

12

ACTIVE-LOW DMA ACKNOWLEDGE: This input is never asserted unless in
response to a DMAREQ* from the chip. DMAACK?* is the only bus handshake signal
recognized during a DMA transfer. (CS* must be high whenever DMAACK?* is
asserted). The direction of DMA transfer is determined by internal control bit DMAdir.

SVCREQR*

61

oD

ACTIVE-LOW SERVICE REQUEST RECEIVE: This is an open-drain output and must
be tied to external V¢ through a pull-up resistor. When active, the device serial-
receive FIFO has either reached the programmed threshold or an exception condition
exists that requires CPU attention.

SVCACKR*

62

ACTIVE-LOW SERVICE ACKNOWLEDGE RECEIVE: This input is driven low during
service acknowledge cycles to begin servicing a receive-service request. It must not
be driven active except in response to a receive-service request presented by the
device.

SVCREQT*

63

oD

ACTIVE-LOW SERVICE REQUEST TRANSMIT: This is an open-drain output and
must be tied to external V¢ through a pull-up resistor. When active, the device serial
transmit FIFO or serial transmitter is empty and requires CPU attention.

SVCACKT*

64

ACTIVE-LOW SERVICE ACKNOWLEDGE TRANSMIT INPUT: This input is driven
low during service acknowledge cycles to begin servicing a transmit-service request. It
must not be driven active except in response to a transmit-service request presented
by the device.

SVCREQP*

68

oD

ACTIVE-LOW SERVICE REQUEST PARALLEL: This is an open-drain output and
must be tied to external V¢ through a pull-up resistor. SVCREQP* is not activated by
FIFO threshold or FIFO full/lempty conditions.

SVCACKP*

69

ACTIVE-LOW SERVICE ACKNOWLEDGE PARALLEL: This input cannot be driven
active except in response to a parallel service request presented by the device.

SVCREQM*

66

oD

ACTIVE-LOW SERVICE REQUEST STATUS (Modem): This is an open-drain output
that must be tied to external V¢ through a pull-up resistor. When active, a
programmed modem signal change occurs and requires CPU attention.

SVCACKM*

67

ACTIVE-LOW SERVICE ACKNOWLEDGE STATUS (Modem): This input is driven
low during service acknowledge cycles to begin servicing a modem-service request. It
must not be driven active except in response to a modem-service request presented
by the device.

DGRANT*

70

ACTIVE-LOW DAISY GRANT: This input is driven active during service acknowledge
cycles to enable the daisy-chain function. This input, when qualified with DS* and a
valid service acknowledge (SVCACKR*, SVCACKT*, SVCACKM*, or SVCACKP?¥),
activates the CD1284 service-acknowledge cycle.

Datasheet

21

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

Table 1. Pin Descriptions (Sheet 3 of 4)

Symbol Pin No. Type Description

ACTIVE-LOW DAISY PASS: This output is driven active during service acknowledge
cycles to enable the next device in the daisy chain. It is driven active when no valid
DPASS* 71 O service request exists for the type of service acknowledge input active. In multiple
CD1284 designs, this signal is normally connected to the DGRANT* input of the next
device in the chain.

PARALLEL PORT DATA LINES [7:0]: Bidirectional (depending on the protocol being
PD[7:0] 41-48 110 used), these signals are used to transfer data through the interface between the
master and slave.

GENERAL PURPOSE 1/O [7:0]: General-purpose input/output port data lines. These
signals are individually direction programmable and act as inputs or outputs. The

GP[7:0] 53-60 Vo corresponding bit in the GPDIR register controls the direction of each signal. The
GPIO register provides the control/status of the actual signals.

A_1284 31 | 1284 ACTIVE INPUT: (SLCTIN* in Compatibility mode). Active-high.

ninit 34 | INIT SIGNAL: (INIT* in Compatibility mode). Active-low.

HstBsy 32 | HOST BUSY: (AUTOFD* in Compatibility mode). Active-high.

HstClk 33 | HOST CLOCK: (STROBE* in Compatibility mode). Active-low.

The above four parallel handshake signals are driven by the master in an IEEE STD 1284 interface, and as such are inputs to
the CD1284. Their functions depend on the transfer protocol selected. Refer to the IEEE STD 1284 document for protocol
functions.

PerClk 37 (@) PERIPHERAL CLOCK: (ACK* in Compatibility mode). Active-low.
PerBsy 36 O PERIPHERAL BUSY: (BUSY in Compatibility mode). Active-high.
AkDaRq 35 (@) ACKNOWLEDGE DATA REQUEST: (PError in Compatibility mode).
Xflag 39 O EXTENSIBILITY FLAG: (SELECT in Compatibility mode).

nDatAv 38 (@) DATA AVAILABLE: (FAULT* in Compatibility mode). Active-low.

The above five parallel handshake signals are driven by the slave in an IEEE STD 1284 interface and are outputs from the
CD1284. Their functions depend on the transfer protocol selected. Refer to the IEEE STD 1284 document for protocol functions.

EXTERNAL BUFFER DIRECTION: This signal is controlled by the internal parallel-
port-control state machine and is used to control the direction of an external buffer
connected to the parallel-port data bus. An external buffer could be desirable in
applications that require higher drive capacity than those provided by the CD1284.
EBDIR can be used in conjunction with PDBEN to control this buffer. EBDIR is a logic
‘0’ when the parallel data bus is in an output mode and a logic ‘1’ when in an input
mode. It can be connected directly to the direction control input of a 74245-type
device.

PARALLEL DATA BUS ENABLE: This signal can be used to control a buffer on the
parallel port data lines in applications requiring more signal drive capability than that
provided by the CD1284. The signal is controlled by the internal parallel port control
state-machine. When low, the parallel port data bus is off (not driving); when high, the
port is in an output mode and is actively driving. The signal toggles between on and off
states during output modes and is active (high) only when the data bus pins are in the
active driving state. This signal can be logically connected to the enable control of
74245 (or equivalent) bidirectional buffers.

EBDIR 49 O

PDBEN 51 O

TXD[3,2] 16, 18 (@) TRANSMIT DATA: TXDI[3,2] are outputs of serial channel numbers two and three.

RXDI[3,2] 17,19 | RECEIVE DATA: RXDI[3, 2] are outputs of serial channel numbers two and three.

REQUEST TO SEND: These are active-low outputs of serial channel numbers two

RTS[3,2]* 21,26 o and three.

DATA TERMINAL READY: These are active-low outputs of serial channels two and

DTRI[3,2]* 20, 25 o) three.

CTS[3,2]* 22,27 | CLEAR TO SEND: These are active-low inputs for serial channels two and three.

22 Datasheet

In o IEEE 1284-Compatible Parallel Interface Controller — CD1284

Table 1. Pin Descriptions (Sheet 4 of 4)

Symbol Pin No. Type Description
DSR[3,2]* 23,28 | DATA SET READY: These are active-low inputs for serial channels two and three.
CD[3,2] 24,29 | CARRIER DETECT: These are active-low inputs for serial chanels two and three.
RI[3,2] 14,15 | RING INDICATOR: These are active-low inputs for chanels two and three.

Datasheet 23

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

4.0 Register Summary

4.1 Register Summary Tables

Table 2. Global Registers

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
CAR 68 Poll Poll Poll Poll Poll 0 C1 Co 108
GFRCR 4F Firmware Revision Code 108
GPDIR 71 Dir 7 Dir 6 Dir 5 Dir 4 Dir 3 Dir 2 Dir 1 Dir 0 109
GPIO 70 Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0 109
MICR 45 X X X X C1 (60] X X 109
MIR 69 Mdlreq Mdbusy Mdunfair 0 1 0 ch[1] ch[0] 110
PIR 61 PPlIreq PPort Pipeline 0 0 0 0 0 111
PPR 7E 8-Bit Binary Value 111
RICR 44 X X X X C1 (60] X X 112
RIR 6B Rxlreq Rxbusy Rxunfair 1 1 0 ch[1] ch[0] 112
SVRR 67 DMAREQ ExtM ExtT EXtR SRP SRM SRT SRR 112
TICR 45 X X X X C1l Cco X X 113
TIR 6A TxlIreq Txbusy Txunfair 1 0 0 ch[1] ch[0] 113

Table 3. Virtual Registers — Serial

Name | Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
MISR 4C | DSRch | cTsch Rich CDch 0 0 0 0 114
MIVR 41 X X X X X IT2 IT1 ITO 114
PIVR 40 X X X X X IT2 IT1 ITO 115
ZZ;R 62 Received Character 115
(ngig 62 | Timeout | SCDet2 | SCDetl | SCDet0 | Break PE FE OE 115
RIVR 43 X X X X X IT2 IT1 ITO 116
TDR 63 Transmit Character 117
TIVR 42 X X X X X ‘ IT2 ‘ IT1 ITO 117

Table 4. Virtual Registers — Serial and Parallel

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

EOSRR 60 X X X X X X X X 118

24 Datasheet

In

IEEE 1284-Compatible Parallel Interface Controller — CD1284

@
Table 5. Channel Registers — Serial

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
CCR? 05 Res Chan | COR Chg | Send SC | Chan Ctl D3 D2 D1 DO 118
CCSR 0B RXEN RxFloff RxFlon 0 TXEN TxFloff TxFlon 0 122
COR1 08 Parity ParM1 ParM0 Ignore Stopl Stop0 ChL1 ChLO 123
COR2 09 IXM TXIBE ETC LLM RLM RtsAO CtsAE DsrAE 124
COR3 OA | SCDRNG SCD34 FCT SCD12 RxTh3 RxTh2 RxTh1 RxThO 125
COR4 1E IGNCR ICRNL INLCR IGNBRK | -BRKINT PEHI[2] PEHI[1] PEHIO0] 126
CORS5 1F ISTRIP LNE CMOE 0 0 EBD ONLCR OCRNL 128
LIVR 18 X X X X X IT2 IT1 ITO 128
LNC 24 LNext Character 129
MCOR1 15 DSRzd CTSzd Rlzd CDzd DTRth3 DTRth2 DTRth1 DTRthO 129
MCOR2 16 DSRod CTSod Rlod CDod 0 0 0 0 130
MSVR1 6C DSR CTS RI CD 0 0 0 RTS 130
MSVR2 6D DSR CTS RI CD 0 0 DTR 0 131
RBPR 78 Binary Divisor Value 131
RCOR 7C 0 0 0 0 0 ClkSel2 ClkSel1l ClkSelo 131
RDCR OE 0 0 0 0 CT3 CT2 CT1 CTO 132
RTPR 21 Binary Count Value 133
SCHR1 1A Special Character 1 133
SCHR2 1B Special Character 2 133
SCHR3 1C Special Character 3 134
SCHR4 1D Special Character 4 134
SCRH 23 Character Range — high 134
SCRL 22 Character Range — low 134
SRER 06 | MdmChg ‘ 0 0 ‘ RxData ‘ 0 ‘ TxRdy ‘ TXEmpty ‘ NNDT | 135
TBPR 72 Binary Divisor Value 135
TCOR 76 0 ‘ 0 0 ‘ 0 ‘ 0 ‘ Clksel2 ‘ ClkSell ‘ Clkselo | 136
NOTE:

1. The CCR contents and offsets apply to any of the channels; the channel being access at any given time is controlled by the
CAR. See Section 7.3.1.1 through Section 7.3.1.4 for channel-specific bit settings.

Datasheet

25

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

@
Table 6. Channel Registers — Parallel Pipeline
(Selected by Channel 0 in CAR)

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O Page
DER 33 | DMAwrerr | DMArderr | Bufwrerr | Bufrderr | HR1wrerr | HR1rderr HR2wrerr HR2rderr 136
DMABUF
) 30 15 14 13 12 11 10 9 8 137
DMABUF
L 30 7 6 5 4 3 2 1 0 137
HRSR 34 HR1full HR1tag HR2full HR2tag DMAfull DMAmMpty DMAact Ctnot0 138
LIVR 18 User-Defined Bits IT2 IT1 ITO 138
PACR 3F ShrtTen ShrtStal | StaleOff | FIFOlock | ClearTO 0 AsyncDMA Unfair 139
PCRR 6C 0 0 0 0 0 0 0 PChReset 140
PFCR 31 FIFOres DMAen DMAdir IntEn RLEen setTAG ErrEn DMAbufWe | 140
PFEP 39 0 0 6-Bit Binary FIFO Pointer Value 141
PFFP 38 0 0 6-Bit Binary FIFO Pointer Value 142
PFHR1 35 8-Bit Character Data 142
PFHR2 36 8-Bit Character Data 142
PFQR 3A Data or Space Available in FIFO — Max 0x'40 143
PFSR 32 FFfull | FFempty ‘ Timeout ‘ HRtag ‘ HRdata ‘ Stale OneChar | DataErr | 143
PFTR 3B 0 DMA Transfer Threshold 144
RLCR 37 0 7-Bit Unsigned Binary Count 144
SDTCR 3D 8-Bit Stale Data Timer Count 145
SDTPR 3C 8-Bit Stale Data Timeout Value 145

Table 7. Channel Registers — Parallel Port
(Selected by Channel 0 in CAR) (Sheet 1 of 2)

Name Hex Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
EAR 25 8-Bit Binary Value 146
HTVR 24 HTVR[7] | HTVR[6] | HTVR[5] | HTVR[4] | HTVR[3] | HTVR[2] | HTVR[1] | HTVR[0] | 146
IVR 2E 0 0 0 0 Al1284 ninit HstBsy HstClk 147
MDR 21 8-Bit Binary Data 148
NER 28 0 RID 0 EPP RLE ‘ ECP ‘ RVB RVN 148
NSR 29 NegOK NegFl HostTO ImedTerm 4-Bit Negotiation Result Code 148
ODR 2D 0 0 0 0 Al1284 ninit HstBsy HstClk 149
OVR 2B PerBsy PerClk AkDaRq xFlag nDatAv 0 0 0 150
PCIER 22 0 TimEn NegCh SigCh EPPAW DirCh IDReq nINIT 150
PCISR 23 0 TimeOvr NegCh SigCh EPPAW DirCh IDReq nINIT 150
PCR 20 ManMd E1284 ETxfr Ig_SEL HTmrTst[1:0] MMDir ManOE 151
SCR 2A 0 0 0 TstMux ClrPs SetPs EPIrq RevRq 152

26 Datasheet

intel.

Table 7.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Channel Registers — Parallel Port

(Selected by Channel 0 in CAR) (Sheet 2 of 2)

Name

Hex

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Page

SPR

26

8-Bit Binary Value

153

SSR

2F

0

A1284

ninit

HstBsy

HstClk

154

ZDR

2C

0

A1284

ninit

HstBsy

HstClk

154

4.2

Table 8.

Register Usage

Table 8 through Table 13 present register tunctionality.

Global Registers

Name

Reset

Parallel Init

Parallel Tx

Parallel Rx

Serial Init

Serial Tx

Serial Rx

GPIO Pin
Control

CAR

v

v

v

v

v

GFRCR

GPDIR

GPIO

MICR

MIR

PIR

PPR

RICR

RIR

SVRR

TICR

TIR

Table 9.

Virtual Registers

Name

Reset

Parallel Init

Parallel Tx

Parallel Rx

Serial Init

Serial Tx

Serial Rx

MISR

MIVR

PIVR

RDSR (data)

RDSR
(status)

RIVR

TDR

TIVR

Datasheet

27

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Table 10. Virtual Registers — Serial and Parallel

INlal.

Name

Reset

Parallel Init

Parallel Tx

Parallel Rx

Serial Init

Serial Tx

Serial Rx

EOSRR

v

v

v

v

Table 11. Channel Registers — Serial

Name

Reset

Parallel Init

Parallel Tx

Parallel Rx

Serial Init

Serial Tx

Serial Rx

CCR

v

v

<

CCSR

v

COR1

COR2

COR3

COR4

CORS5

LIVR

LNC

MCOR1

MCOR2

< L] <

MSVR1

MSVR2

RBPR

RCOR

RDCR

RTPR

SCHR1

SCHR2

SCHR3

SCHR4

SCRH

SCRL

SRER

TBPR

TCOR

28

Datasheet

intel.

Table 12. Channel Registers — Parallel Pipeline

IEEE 1284-Compatible Parallel Interface Controller — CD1284

(Selected by Channel 0 in CAR)

Name

Reset

Parallel Init

Parallel Tx

Parallel Rx

Parallel Error

Parallel Status

Serial Init

DER

v

DMABUF(H)

DMABUF(L)

HRSR

HTVR

LIVR

PACR

PCRR

PFCR

PFEP

PFFP

PFHR1

PFHR2

PFQR

PFSR

|] < <

PFTR

RLCR

SDTCR

SDTPR

Table 13. Channel Registers — Parallel Port
(Selected by Channel 0 in CAR) (Sheet 1 of 2)

Name

Reset

Parallel Init

Parallel Tx

Parallel Rx

Parallel Error

Parallel Status

EAR

Vv
(EPP)?

IVR

v

MDR

v

NER

NSR

ODR

OVR

v
(Manual)

v
(Manual)

PCIER

PCISR

PCR

Datasheet

29

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Table 13. Channel Registers — Parallel Port
(Selected by Channel 0 in CAR) (Sheet 2 of 2)

intel.

1. ltems in parentheses () denote Operational mode.

Name Reset Parallel Init Parallel Tx Parallel Rx Parallel Error Parallel Status
v
SCR
(RevRequest)
SPR v
SSR v v
ZDR v
NOTE:

30

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Functional Description

5.1

Datasheet

Device Architecture

The CD1284 can be described as asmall computer system designed for the purpose of sending and
receiving both serial and parallel data. It comprises a RISC processor (Multi-Channel Processing
Unit or MPU), RAM, ROM, local CPU businterface logic, two serial data channels, and one IEEE
1284-compliant parallel port with a specialized data pipeline designed for high-speed transfers.

Architecturally, the CD1284 is two devices merged into a single unit. One part is a modified, two-
channel version of the Intel CD1400. The other part is a specialized parallel interface port
supported by its own deep FIFO and DMA interface logic. The interrupt structure of the CD1400
has been enhanced to include the interrupt requirements of the parallel port. This section describes
the modified CD1400 core and overall device architecture. Further sections provide details specific
to the parallel channel. Chapter 7.0 provides detailed bit descriptions and encoding for the registers
discussed in this chapter.

The MPU isatrue RISC processor. In addition to having compact and efficient instructions, the
MPU hasa‘windowed' architecture that allows it to handle one channel and itsregisters at atime.
Before beginning operations on a given channel, it loads an internal Index register that forces all
accesses to the appropriate set of registers. The Index register becomes part of the internal address
and allows direct addressing of the register bank and all hardware resources of the selected
channel. No address computation is required to select the proper channel.

This same windowed scheme is carried through to the CPU interface as well (Figure 4). For all
channel-specific accesses, the CPU first loads the CAR (Channel Access register) with apointer to
the channel to be accessed. Thereafter, all read and write operations occur with the proper channel.
The software defines the register address once and thisisvalid for all channels because the CAR is
part of the internal addressing.

31

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 3. CD1284 Functional Block Diagram

-~ PARALLEL L PARALLEL
> PORT FIFO -~ PORT LOGIC
A \
‘ | controOL sTATE
< > MACHINE
BUS
INTERFACE | T
AND DMA
Locic | INTERRUPT |
- LOGIC <
CHANNEL 2
<« »| LOGICANDBIT
Y TIMING
MPU
»| RAM
} CHANNEL 3
<«—»| LoGicANDBIT
ROM TIMING

Figure 4. Internal Address Generation

RAM REGISTER

ARRAY
PARALLEL PORT
REGISTERS
(CHANNEL 0)
CPU >
ADDRESS ADDRESS CHANNEL 2 REGISTERS
GENERATION
o
CHANNEL 3 REGISTERS
CAR

32

The serial data channels are made of *bit engines' that off-load the task of receiving and

transmitting each bit from the MPU. When receiving data and after processing a complete bit, the
bit engines interrupt the MPU so that it can perform the next required task. For example, the MPU
takes the bit and adds it to a character being assembled. When transmitting, it sends the bit engine
the next bit of the character being transmitted. The MPU is not concerned with basic bit timing; this

task is handled by the bit engines, leaving the MPU freeto perform higher-level processing, such as
detecting special characters.

Datasheet

5.2

5.2.1

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

As described above, Channel 0 is a separate entity comprised of its own FIFO and DMA data
interface, as well as a high-speed state machine that handles all of the modes defined in the IEEE
STD 1284 specification. Channel 0 performsthe slave, or peripherd, function of the IEEE STD
1284 interface and can be programmed to accept negotiations into any or all of the defined modes.
The MPU aids the parallel port by providing the local access (through the CAR) and provides
interrupt support (generation and response). However, thisis the only action where the MPU is
involved in parallel port service-request activities.

CPU Interface

The CPU interface comprises an 8-hit bidirectional data bus, a 7-bit address bus, a 16-bit DMA
port and control inputs to identify the tyBe of 1/0 cycle occurring. Although the strobe names and
basic timing match that of the Motorola~ 68000 family, the CD1284 fits easily into any CPU
environment.

In most cases, when the CPU reads or writes an internal CD1284 |ocation, it actually accesses a
location in aRAM array to serve as abank of registers. Some locations however, are mapped to
actual hardware resources for example, when a hard output signal is required (such as a service-
request output in the SVRR) or when it is necessary to read the actual state of an input (such asa
modem input).

The CD1284 isasynchronous device. All internal operations occur on edges and levels (phases) of
theinternal clock. Theinternal clock is generated by dividing the external (system) clock by two.
When the CPU performs an |1/O cycle with the CD1284, it strobes; address, and data are sampled
on the rising edges of the internal clock. Asillustrated in Chapter 8.0, the external control signals
must meet setup times with respect to system clock edges. Once a cycle starts, the sequence of
eventsislocked to the clock of the CD1284. With events (address setup, write data setup, and read
data available) occurring at predictable times.

It isnot necessary to design a synchronous interface to the CD1284. In an asynchronous design, the
DTACK* (Data Transfer Acknowledge) signal indicates that the CD1284 has completed the
requested data transfer for all 1/0 cycles except DMA. DTACK* can be an input to wait-state
generation logic that pauses the CPU until the operation is complete. If the CS* and DS* strobes
(Chip Select and Data Strobe) do not meet the minimum setup time with respect to the system
clock edge, the CD1284 does not detect the I/O request, and the cycle delays for two full-system
clock cycles, meeting the setup time. The 1/O cycle commences and follows the predictable timing
with DTACK* signaling the end.

Read Cycles

Read cycles are initiated when both the CS* and DS* inputs are activated and the R/W* (read/
write) input is high. All strobes and address inputs must meet the setup times as specified in
Chapter 8.0. Both the CS* and DS* signals must be valid for acycle to start. Cycle times are
measured from whichever of the two signals goes active last. The CD1284 signals the completion
of the read cycle (placing the data from the addressed register on the data bus pins) by activating
DTACK*. The read cycle terminates when the CPU removes CS* and DS*.

33

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.2.2

5.2.3

Warning:

5.24

34

Write Cycles

Write cycletiming and strobe activity is nearly identical to read cycles except that the R/W* signal
must be held low. Write data, strobes, and address inputs must meet setup and hold times as
specified in Chapter 8.0. DTACK* indicates that the cycleis complete and the CD1284 has
accepted the data. Removing both CS* and DS* terminates the cycle.

Service-Acknowledge Cycles

Service-acknowledge cycles are a special-case read cycle. Timing isbasically the same asanormal
read cycle, but one of the SVCACK* inputsis activated instead of the CS* input (adlightly longer
setup time is required on the SVCACK?* input than on the CS* input). The data that the CD1284
provides during the read cycle is the contents of the Interrupt Vector register associated with the
type of request being acknowledged (RIVR for receive, TIVR for transmit, M1V R for modem, and
PIVR for parallel port) of the channel requesting service (see Section 5.3.1 for more information).
Aswith read and write cycles, DTACK* indicates the end of the cycle. When the CPU removes
DS* and SVCACK?* the cycle terminates.

When the CPU has completed the service routine and writes to the EOSRR, a subsequent 1/0 cycle,
if started immediately, is delayed by approximately 1 ps. Thisis due to the time required by the
internal processor to compl ete activities associated with the switch out of the service-acknowledge
context. These activities involve FIFO pointer updates and restoration of the environment prior to
the service-request/service-acknowledge procedure. These must be completed before any internal
registers are modified by the CPU.

If the situation occurs that the CPU attempts an access before the internal procedures are compl ete,
the CD1284 holds off the cycle until it isready. This does not cause a problem in system designs
that monitor DTACK?*; the cycle is extended until DTACK* becomes active and the delay is
automatically met. If asystem design does not monitor DTACK*, a mechanism must be provided
to introduce the required del ay.

Failure to observe the delay requirement can cause a device malfunction.

DMA Cycles

The CD1284 provides abidirectional 16-bit DMA interface to the paralel port. Thisisthe only
direct datainterface to the port; other 8-bit register accesses use of the normal CPU interface, as
described above.

The handshake between the CD1284 and the DMA circuitry uses two signals: the DMAREQ*
(DMA Request) and the DMAACK* (DMA Acknowledge). The address busis ignored during
DMA transfers. When internal conditions warrant a DMA transfer (as when the FIFO falls below
the programmed threshold in the forward direction or rises above the threshold in the reverse
direction) and DMA transfers are enabled by the PFCR, the device requests aDMA service by
driving the DMAREQ* signal low. DMAREQ* remains active until the FIFO has less than two
empty locations remaining (forward direction) or until the FIFO has less than 2 bytes remaining
(reverse direction).

In the forward direction, the DMA controller logic responds by placing data on the 16-bit data bus
and driving DMAACK* low. This cycleis repeated until the FIFO has less than two empty

locations remaining or there is no more data to send. In the reverse direction, the CD1284 responds
to the active DMAACK™* signal by driving the contents of the DMABUF register onto the data bus.

Datasheet

5.3

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Odd-byte transfers in the reverse direction are handled on an interrupt basis. When the number of
bytesin the FIFO is odd, al bytes, except the last, are transferred by a number of 16-bit DMA
cycles (two bytes per cycle). The odd byte remaining is held in the PFHR1 and an interrupt
generated when the stale data timer expires. Status indicating that PFHR1 has datais shown in the
PFSR. The CPU interrupt service routine must manually remove the remaining byte from the
interface. In the forward direction, an odd remaining byte can be directly written to the PFHR1
oncethelast DMA cycleis complete.

One additional input signal determines the endian format (whether the least-significant byteison
data bits 7:0 or 15:8) of the 16-bit DMA buffer. BY TESWAP selects whether the lower or upper
byte of the DMA buffer movesinto the FIFO data pipeline first in the forward direction or from the
FIFO data pipeline to the DMA buffer first in the reverse direction. If BY TESWAP islow, the
least-significant byte (DB[7:0]) immediately movesinto or out of the data pipeline. If BY TESWAP
is high, the opposite occurs (DB[15:8] move into or out of the pipeline first).

The effective duration of the DMA transfer block (burst) is determined by the threshold value in
the PFTR. Regardless of where the port is moving data, when thisthreshold is reached (exceeded in
receive; less than in transmit) a DMA cycle begins and remains active until the FIFO has less than
2 bytes remaining (receive) or less than two empty locations remaining (transmit).

The SVRR provides away to determine if aDMA cycle is being requested. SVRR[7] istrueif a
DMA cycleis currently being requested. This status indication is provided as a general system
status.

Refer to Chapter 8.0 for detailed information on DMA cycle options and timing values.

Serial Port Service Requests

This section describes the service-request structure of the serial portsin the CD1284. Refer to
Section 5.4 for a detailed description of the parallel port service-request architecture.

From the CPU point of view, the CD1284 operates in one of three modes: normal operation,
service request/acknowledge, and DMA. Normal mode allows the CPU to make changes and
obtain current operating status on a globa and per-channel basis. Service-request/acknowledge
mode determines when a particular channel requires service, for example, when a seria receive
FIFO has reached its programmed threshold and requires emptying.

A unique behavior of the CD1284 isthat aservice request can only be responded to after the device
is placed in a service-acknowledge ‘ context’ . This context switch occurs when the request is
acknowledged, either by activating the appropriate SV CACK* input pin or by proper manipulation
of two internal registers (software-activated mode).

When the MPU detects a condition on a channel that requires CPU attention, it posts a service
request internally and externally. The external request is the activation of one of the SVCREQ*
output pins, depending on whether the type of service needed is for receive, transmit, or modem
signal change. Included with the internal request is a channel pointer to the channel requiring
service. When the service acknowledge begins, this pointer isloaded into the CAR, thus the request
automatically services the proper channel. Thisis the purpose of the context switch, it prepares the
CD1284 for servicing of the proper channel.

35

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.3.1

5.3.2

36

At the completion of the acknowledge procedure, the CD1284 must be taken out of the
acknowledge context by informing it that the procedure is complete. This restores the original
internal state before the context change. This operation occurs after the CPU performs a ‘ dummy’
write to the EOSRR.

Several registers within the serial channel portion of the CD1284 can only be accessed when the
context switch has been made. These are the Virtual registers. For example, the CPU cannot place
data directly in the seria transmit FIFO at an arbitrary time. It must wait for a transmit service
request indicating that the FIFO is empty, then acknowledge it. Once the acknowledge procedure
begins, the transmit FIFO is available for loading.

The CD1284 makes requests for service when an enabled need exists. The two basic ways that the
CPU can be made aware of these service requests is through hardware (interrupt) or software
(polling internal CD1284 registers). Which method is dependent on the hardware/software design
of the system; the CD1284 functions well in either environment. The following section discusses
the trade-offs of either basic method and how to combine the two for maximum performance.

Interrupts

Theterm interrupt is ageneralized description of the method where the CD1284 gains the attention
of the CPU. Interrupt is used interchangeably with ‘ service request’ as the two are the same
function. Interrupt often describes an unconditional response on the part of the CPU. Whether or
not this is the case, the source is still the same — a service request from the CD1284. Hardware
signals generated by the CD1284 (SVCREQR*, SVCREQT*, and SV CREQM?*) can be connected
to the CPU interrupt input to start an interrupt service routine. The service routine can then begin
servicing the request from the CD1284 by starting an acknowledge sequence.

The SVCREQ* outputs can be connected to the interrupt circuitry individually using three unique
interrupt-level inputs or they can be logically OR’ ed together (not wire-OR' ed) into asingle
interrupt and applied to one interrupt-level input. In the latter case, the CPU can examine the
SVRR to determine which service requests are active. The method (single or multiple interrupts)
chosen by the designer is dependent on the system requirements and hardware and/or board-space
limitations. The CD1284 has no restrictions. It islikely that interrupt latency is slightly shorter with
the first method since the individual interrupt levels can cause a software vector directly to the
correct service routine without first checking for the source of the interrupt.

No matter which interrupt method is used, the end result is the same. Once the CPU has recognized
that a service request is active, a service-acknowledge routine must be executed to process the
request. There are two ways to start the acknowledge and force the context switch: by four
hardware input pins or by making specific reads/writes to internal registers.

DMAREQ* as Parallel Interrupt Source

Interrupts are not generated by FIFO threshold conditions; therefore, if the system design requires
data to move through interrupts, connect DMAREQ* directly to a CPU interrupt input or logically
OR it into the same CPU interrupt input as SVCREQP*. If DMAREQ* is used to generate
interrupts, the following are required:

* A 16-bit data interface must be implemented to support 16-bit reads of the DMABUF register.
* The DMA threshold value in the PFTR must be initialized.

* DMAREQ* remains active until the FIFO is nearly empty (Rx) or nearly full (Tx), followed
by the toggling of DMAen if datais moved to/from FIFO through PIO (refer to Section 5.2.4).

Datasheet

5.3.2.1

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

However, software can easily change this by clearing the DM Aen bit (PFCR[6]) at the start of
the interrupt service routine and resetting it at the end.

¢ |f SYCREQP* and DMAREQ* arelogically OR'’ ed together, the service routine must start by
checking the SVRR to determine which signal is active.

¢ SVCACKP* must not be activated in response to DMAREQ* and likewise, DMAACK* must
not be activated in response to SVCREQ*.

* The DMAdir bit (PFCR[5]) can determine whether to write or read to/from the DMABUF
register.

¢ The PFQR can determine how many reads of the 16-bit DMABUF register are necessary to
empty the pipeline. Note however, four must be added to the PFQR value, that number must
then be divided by two and truncated to the nearest integer (to account for the extra four bytes
in the two holding registers and the 16-bit DMABUF register, aswell as 16-bit readsinstead of
8-bit reads).

Hardware-Activated Context Switch — Serial Channels

Theinternal register manipulation involved in a context switch can be forced by SV CACK*
(Service Acknowledge input pins on the CD1284). There is one SVCACK* for each service
request type: SVCACKR* for receive service requests, SVCACKT* for transmit service requests,
and SVCACKM* for modem signal-change service requests. Each of these inputsis a special-case
chip select. These cause the MPU to set up the CD1284 for servicing that particular service request
type for the requesting channel.

Note that the CS* input is not activated on service-acknowledge cycles. Instead, the appropriate
SVCACK?* input and the DGRANT* inputs are used. Later in this section, DGRANT* is discussed
in a description about dai sy-chaining the CD1284 with one or more CD1400s. Figure 5 shows a
generalized logic diagram of the hardware interface to the SVCACK?* inputs. For a service
acknowledge, one of the SV CACK* address locations is accessed instead of the CS* location.

To the CPU, the service-acknowledge cycleisaread cycle. The datathat the CD1284 places on the
bus for an SVCACK?* during the read cycle are the contents of the appropriate Interrupt Vector
register (RIVR, TIVR or MIVR). These I VRs are associated with the active service-acknowledge
input (SVCACKR*, SVCACKT*, or SVCACKM?*). The upper five bits of the IVR are whatever
was previoudly loaded into the LIVR by the CPU. The lower three bits are supplied by the CD1284
and indicate the type of interrupt (vector).

When the CD1284 isready to post aservice request for aserial channel, it copiesthe upper five bits

of the LIVR into the appropriate vector register (RIVR, TIVR, MIVR), then places the request type
vector in the lower three bits. Table 14 shows the assignment of the request type bits.

37

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 5. Control Signal Generation

31 AD[6:0]
CD1284
cs*
—® SVCACKR*
CPU 1 > ADDRESS 9 SVCACKT*
ADDRESS DECODE
LOGIC 4 SVCACKM*
SVCACKP*
CPU
DB[7.0] €& paTA
DGRANT*
CPU I/O R/W*
CONTROL
DS*
Table 14. Request-Type Bit Assignments
Bit 2 Bit 1 Bit 0 Request Type
0 0 0 Not used
0 0 1 Group 1: Modem signal change service request
0 1 0 Group 2: Transmit data service request
0 1 1 Group 3: Received good data service request
1 0 0 Parallel port state-machine requests service (refer to Section 5.4)
1 0 1 Parallel port data pipeline request service (refer to Section 5.4)
Both the parallel port state-machine and data pipeline request service (refer to
1 1 0)
Section 5.4)
1 1 1 Group 3: Received exception data service request

38

For transmit and modem service-acknowledge cycles, the datain the lower three bits is redundant
to the software because the corresponding acknowledge has occurred. These bits are important in
the case of a serial receive-data service acknowledge because they provide an indication of whether
the requestisfor ‘good’ data or exception data. They areimportant to the parallel port because they
indicate if the state-machine or data pipeline (or both) are requesting service.

The value contained in the upper five bits of the LIVR can be used for a number of purposes. The
primary purpose of the LIVR isas a source of asoftware vector used by the system as an index into
ainterrupt dispatch table. However, systems that cannot use this or do not need it can use these bits
for any purpose. In multiple-CD1284 designs that use daisy-chaining, alogical valueto placein
these bits is a chip identification number. Thisis detailed in the daisy-chaining description in
Section 5.3.4.

Datasheet

5.3.2.2

5.3.2.3

5.3.2.4

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Another use for these bitsis channel encoding. Thisis applicable in a single-CD1284 design and
any design not using daisy-chaining (requiring a unique address range for each device). This
applieswhere the value in the LIVR as a vector for a hardware interrupt response is not necessary.
Since each channel hasits own LIVR, these five bits have a unique value identifying the channel.
There is no need to read the RICR, TICR, or MICR to find the channel number; in asingle I/O
operation, the CPU determines both the type of interrupt and the number of the channel requesting
service. With five bits available, systems with small numbers of CD1284s are able to encode both
the channel number and chip identification number in the LIVR.

Once the acknowledge procedure is complete, the CD1284 is ready to be serviced for the type of
interrupt acknowledged. For example, if the interrupt was for receive good data, the CPU would
read the RDCR to determine the number of characters available in the receive FIFO. It then reads
the same number of characters, by successive reads, from the RDSR. Other tasks, such as disabling
future interrupts or changing channel parameters, could also be performed at thistime.

Once dll tasksinvolved in servicing the interrupt are complete, one more operation is performed.
To inform the CD1284 that the service acknowledge is complete, the CPU writesadummy valueto
the EOSRR. Although the data written does not matter, the write operation isimportant. Thiswrite
forcesthe internal context switch back to normal operating mode.

Summary of Interrupt Driven Service Requests, Serial Channels

The actions that occur during an interrupt request/service are:

¢ The CPU senses service request from one of the CD1284 service-request outputs through its
interrupt request input.

¢ The CPU responds by performing aread cycle to activate the appropriate SV CACK* input
pin.

* The CPU decodesthe value read from the vector register during step 2, and decides on the type
of service request (if necessary).

* The CPU readsthe R/T/M/ICR to determine the channel humber.

¢ The CPU services the request (load transmit FIFO, read receive FIFO, and so on).

¢ The CPU writes adummy value to the EOSRR to terminate the service routine.

Common Service Acknowledge

One method of hardware-activated, service-acknowledge request is the common service
acknowledge. In this method, all SVCACKx* inputs are tied together and are driven from the same
source. In this configuration, the CD1284 internally prioritizes the acknowledge as receive,
transmit, parallel, and modem. If a device has both a receive and a parallel request pending, the
common acknowledge causes it to respond with the vector for the receiver. Then a subsequent
service acknowledge allows the parallel channel request to be serviced.

Software-Activated Context Switch — Serial Channels

It is possible, by CPU manipulation of some internal registers, to cause the context switch without
activating any of the SVCACK* hardware inputs. The method is the same used in the poll-mode-
CD1284 design. Once the CPU has detected the service request through its interrupt response
circuitry, it follows the same procedures that a polling method uses when it detects an active
service request. Refer to the context switching description in the following section.

39

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.3.3

40

One reason a design might make use of this method is that limited board space is available for the
additional hardware address decoding required to generate the four SVCACK* and DGRANT*
control signals. The advantage is that the system need not constantly poll the CD1284 for active
service requests. It isinterrupted when arequest is posted, then examines internal CD1284
registers to determine the source and channel number generating the request. For this method, tie
the four SYCACK* and DGRANT* input pinsinactive (logic ‘1'). This prevents possible false
activation of a service-acknowledge cycle that occurs due to noise. Terminate these pinswith a
resistor (approximately 1 kQ) not hardwired to V .

Serial Service Request Polling

In Poll mode, the CPU periodically checks the CD1284 to see if there are any active service
requests. If it detects any, it proceeds to service them by a software-driven technique. There are
several registers within the CD1284 specifically provided to facilitate Poll-mode service-request
detection and acknowledgment. These arethe SVRR, RIR, TIR, PIR, MIR, RIVR, TIVR, and
MIVR. Chapter 7.0 provides detailed bit definitions for these registers.

The SVRR is the master service-request register. The least-significant three bits (bits 2:0 — SRM,
SRT, and SRR) reflect the inverse of the state of the three service-request output pins
(SVCREQM*, SVCREQT*, and SVCREQR*). For example, if SRR[0] is‘1’, it indicates that
thereis a pending active serial receive data service request, and that the SVCREQR* output pin is
active (low). The CPU now can determine with asingle read if the CD1284 requires any service
and which pins are active.

Each service request type has an interrupt request register: RIR for receive, TIR for transmit, and
MIR for modem. These are the special purpose registers used with the CAR to force the context
switch and start a service-acknowledge procedure. When a service request of a particular type is
pending, the corresponding Interrupt Request register is set by the MPU with the appropriate data
to cause the context switch to the requested type and the requesting channel.

When the CPU is ready to service the request, it reads the contents of the request register and
copiesit into the CAR. Thiswrite into the CAR forces the context switch and the CD1284 is ready
to be serviced. The result is the same as performing a service-acknowledge cycle with the
SVCACK* pin.

Each of the Interrupt Request registers provide the channel number by requesting service in the
least-significant two bits. The most-significant three bits provide status and control over internal
interrupt sequencing. The middle three bits contain a code used by the MPU at the end of a
hardware service-acknowledge cycle (write to the EOSRR) to indicate the type of acknowledge
cycle that is ending. Each of the three registers has a unique code in these three bits to select the
proper service-acknowledge type, but these are meaningless in Poll-mode operation.

At the end of a service-request operation, the CPU must inform the CD1284 that the request is
satisfied and to take it out of the service-request context. Thisis done by rewriting the value that
was in the interrupt request register after clearing the upper two bits.

As with the hardware-driven request/acknowledge procedure, the Virtual registers should only be
accessed after the context switch is made. Their contents are undefined until this time.

Datasheet

intel.

5.3.3.1

5.34

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Summary of Serial Poll-Mode Service Requests

The major steps involved in a Poll-mode service-request/service-acknowledge sequence are:

1. The CPU scansthe SVRR periodically, checking the threeleast-significant bits. If any of them
aretrue (‘1'), aservice request is active.

2. Depending on which of the service-request bitsis active, reads the appropriate interrupt
request register (RIR, TIR, or MIR) and copies the contents into the CAR.

3. Performs a service routine.

4. Writesthe original contents of the interrupt request register back with the most-significant two
bits cleared.

Daisy-Chaining Service Requests with CD1400s

The CD1284 can be combined with other CD1284 or CD1400 devices to form systems with more
than two serial channels and one parallel channel. There are a number of ways that these can be
connected, but one way provides a more efficient service-request/service-acknowledge sequence.
This method allows the CD1284s and/or CD1400s to arbitrate between themselves. This mode
only works if hardware-activated service acknowledges are being utilized. The Fair Share
mechanism is not functional on the parallel channel service-request (SVCREQP*) outputs.
Therefore, two CD1284s can be daisy-chained if SVCREQP* and SVCACKP* are kept separate.
The serial channel requests and acknowledges are identical to those on the CD1400 so they can be
connected to the equivalent requests and acknowledges on the CD1284.

The CD1284 provides ameans of daisy-chaining the service request and service acknowledgments
of two or more devices. This allows them to arbitrate and set priorities between themselves
regarding which one can post a particular type of service request. Thisisthe Fair Share interrupt
scheme. Figure 6 on page 42 illustrates the connection for two CD1284s to enable the Fair Share
function.

All request outputs of a particular type from the two CD1284s (SVCREQR*, SVCREQT*, and
SVCREQM*) are wire-OR’ ed together to form one combined request for each type; the
SVCREQP* of each is kept separate. This allows both devices to monitor the state of the others
output. All of the serial service-acknowledge inputs (SVCACKR*, SYCACKT*, and
SVCACKM*) are connected together to form one acknowledge of each type. Note, the
SVCACKP* aredriven individually. The DGRANT* input of the first CD1284 is connected to
ground; the DPASS* output of the first CD1284 drives the DGRANT* input of the second.

41

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 6. CD1284 Daisy-Chain Connections

ADDRESS
DECODE
LOGIC

Yvy

\/

SVCREQP* SVCREQP*
SVCREQM* SVCREQM*
SVCREQT* SVCREQT*
SVCREQR* SVCREQR*

\/

CYCLE
DGRANT* ppasst |——— » ERROR

DPASS* DGRANT*

SVCACKP* SVCACKP*

SVCACKM* SVCACKM*

SVCACKT* SVCACKT*

SVCACKR* SVCACKR*

Note:

42

Before aserial request for service of aparticular typeis posted, the MPU checksthe current state of
the request output for that type. If it isinactive, indicating that no other CD1284 is driving that
level, arequest can be posted; otherwise it waits. This guarantees that each CD1284 has an
opportunity to have arequest type serviced when required. When the CPU acknowledges the
request, both CD1284s receive the acknowledge through SV CACK*. However, only the first
receives DGRANT*. If there is an active request of this type pending, the CD1284 takes the
acknowledge and drivesits vector register (RIVR, TIVR, MIVR) onto the data bus.

If the first device does not have a request pending, it passes the DGRANT* input to the second
CD1284 through the DPASS* output. Assuming that the second device has an active request
pending, it takes the acknowledge and drives its Vector register onto the data bus.

As previously mentioned, the upper five bits of the LIVR reflects what the CPU loaded into them
during itsinitialization of the CD1284s. These bits are used as a unique chip identification number
so the CPU can determine which CD1284 responded to the service acknowledge. These five bits
can be set to binary ‘0" in the LIVRs of the first CD1284, and to binary ‘1’ in those of the second.
The CPU is able to test the bit to determine which device responded. Some examples of service-
acknowledge software routines that show one way of performing this task are provided in Chapter
6.0.

The common service acknowledge described in Section 5.3.2.3 on page 39 is a so usable in daisy-
chained environments. In this case, the common acknowledge is applied to all service-
acknowledge inputsin all devices of the chain. The daisy-grant ripples down the chain until the
requesting device receives the acknowledge.

If aCD1284 further down the chain is requesting service for areceiver and one up the chain is
requesting service for atransmitter, the transmit request is serviced first sinceit precedes the
receive requester. Thus, the Fair Share mechanism is not functional in this configuration.

Datasheet

intel.

Note:

5.4

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

The CD1284 has afairness override, the Unfair bit (PACR[Q]). If this bit is set, the Fair Share
function of the device is defeated and the MPU posts requests for service regardless of the state of
the external service-request signal. Even when adevicein the chain is asserting a request of a
particular type, if another device needsto post arequest, it proceeds to do so regardless of the
current state of the request pin because itsfair bits are forced true. If it is upstream from the device
already posting the request and if the CPU pipeline has not yet responded to the previous request
from the downstream device, then the upstream device accepts the acknowledge on arrival and
overrides the priority normally given to the device that made the first request. Thisisuseful in
system designs that wire-OR the request signals together, rather than using an external gate, since
in these cases, without overriding fairness arequest of one type within a device holds off arequest
of adifferent type. For example, an existing transmit request prevents the device from posting a
receive request.

(IMPORTANT) If no CD1284 in the chain has a pending request, the dai sy-grant passes by the last
and none respond. This causes the bus cycle to hang (no DTACK* is generated). The only timethis
happensiswhen an error condition outside the CD1284s cause the CPU to respond to arequest that
is not made. A mechanism can be provided to terminate or abort the bus cycle if this error occurs.
Thisis accomplished with timeout circuitry. Otherwise the DPASS* output of the last CD1284
activates an abort condition. Other devices, such as the CD1400, can share the daisy-chain
mechanism and can be connected to the DPASS* output of thelast CD1284 in the chain. The actual
implementation is system-dependent, but it isimportant to provide some way for the CPU to know
that the cycle did not complete normally if no device responds to the acknowledge cycle.

Parallel Port Service Requests

The parallel port service-request structure of the CD1284 is slightly different from that of the serial
ports. These differences are highlighted in this section.

Service requests can derive from two internal sources: the data pipeline or the parallel port state
machine (see Figure 7 on page 45). If the data pipeline internal service request becomes active, the
Pipeline bit (PIR[5]) is set; likewise, if the parallel port state machine internal service request
becomes active, the PPort bit (PIR[6]) is set. Internal service requests from these sources are
monitored through the Pipeline and PPort bits by microcode running in the internal MPU. When
either (or both) of these bits are detected active, the microcode sets the PPireq bit (PIR[7]). The
PPireq bit is also mirrored by the SRP bit (SVRR[3]). The SVRR isuseful in polled systems
because it allows the detection of DMA service requests, as well as parallel port service requests
with asingle register read operation.

Both internal sources of service requests within the parallel channel have their own enable
functions. Interrupts from the data pipeline are enabled through the PFCR; interrupts from the
parallel port state machine are enabled through the PCIER.

The PFCR has two enable bits: one for normal interrupts (such as tagged data being received), and
one for data errors (such as a CPU write to aholding register that already holds data). Thefirst type
of interrupt is enabled through the IntEn bit (PFCR[4]). The second type of interrupt is enabled
through the ErrEn bit (PFCR[1]). Note that IntEn must be set for ErrEn to generate an interrupt;
however, the CPU need not enable error interruptsiif it does not require notification of these types
of errors. The error interrupt is generated if the DataErr bit (PFSR[0]) is anon-zero. In this case,
the DER indicates the cause of the error interrupt.

The parallel channel-control state machine can generate six types of interrupts. Each of these has
its own enable bit in the PCIER:

43

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

44

* NegCh for negotiation changes

* SigCh for signal changes on the port status inputs (Manual mode only)

e EPPAW for EPP protocol address writes

¢ DirCh for direction changes on the parallel channel

* |IDReqfor slave ID requests from the remote master.

e nINIT for initialization pulses from the master (Compatibility mode only)

Any or all of these bits may be set, based on the mode of operation.

The NegCh interrupt is issued whenever the remote master performs a protocol change, such as
moving from Compatibility mode to ECP; the CPU examines the NSR to determine the new state
of the parallel interface. Signal changes can be identified by reading the SSR. In response to the
EPPAW interrupt, the CPU would read the EAR to retrieve the value that was written during the
EPP address write cycle.

Datasheet

INlal.

Figure 7. Interrupt Generation Logic

IEEE 1284-Compatible Parallel Interface Controller — CD1284

KEY:[]=Curentmode
{} = Interface extensibility request value (see IEEE1284
Spec. for more details)

MODE]{40}
NSR=0x49 (RN-ID)
NSR=0x4A (RB)
NSR=0x4B (RB-ID)
NSR=0x4C (ECP)

{00} NSR=0x8A[RB

NSR=0x22 MODE}{01}
NSR=0x8C[ECP w/o

NSR=0x4D (ECP-ID) RLE}{10}
NSR=0x4E (ECP-RLE) NSR=0x8E[ECP w/
NSR=0x4F (ECP-RLE-ID) RLE]{30}

FAILED NEG HOST-TIMEOUT
MODE NOT HOST HAS NOT RESPONDED
ENABLED FOR OVER 1 SEC.)
[COMPATIBLE [COMPATIBLE MODE]
MODE]

ID requests will fail if either the negotiation type or RID is
disabled in NER. Other negotiations will also fail if the
negotiation type is disabled.

NSR=0x88[RN MODE]

(register name[x]) : x = bit #, that is PCIER[1] = PCIER, bit 1 IDREQ
PCIER[1]
FAILED NEG TERMINATION T | IDREQ
(INVALID [COMSQEBLE NEG-OK NSR=0x89[RN ID REQUEST}{04} PCISRI]
EXTCODE)] NEG-OK NSR=0x8B[RB ID REQUEST}{05}
[COMPATIBLE NSR=0x8D[ECP w/o RLE 1D
MODE] REQUEST14}
NSR=0x41 - NSR=0x8F[ECP w/ RLE ID
NSR=0x82 REQUESTI{34}
Y
A Nsr=0x46 (EPP) A NSR=0x86[EPP X \sr- NEGCH
= = NSR=0x16 (EPP)
NSR=0x48 (RN) PCIER[S] NEGCH

NSR=0x18 (RN)
NSR=0x19 (RN-ID)
NSR=0x1A (RB)
NSR=0x1B (RB-ID)
NSR=0x1C (ECP)
NSR=0x1D (ECP-ID)
NSR=0x1E (ECP-RLE)
NSR=0x1F (ECP-RLE-ID)

PCISR[5]

INVALID/medTem
HOST HAS VIOLATED
HANDSHAKING SEQUENCE
[COMPATIBLE MODE]

An immediate termination from the Host will
generate this interrupt

Datasheet

45

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Figure 7. Interrupt Generation Logic (Continued)

INlal.

NEGCH SIGCH EPPAW DIRCH IDREQ NINIT

L e

A1284 signal ninit signal HstBsy signal HstClk signal Interface must be in COMPATIBLE MODE
transition from low- transition from transition from low- transition from low- when MANMD (PCR.7) is set or MANMD wi
to-high, and low-to-high, and ~ to-high, and to-high, and have no affect
A1284(0DR[3]) =1 nInit(ODR[2]) =1 HstBsy(ODR[1]) =1 HstCIk(ODR[0]) = 1
MANMD
(PCRI[7]) SIGCH
(PCISR[4])
T SIGCH
) . (PCIER[4])
A1284 signal ninit signal HstBsy signal HstClk signal
transition from transition from transition from high- transition from
high-to-low, and high to low, and ~ to-low, and high-to-low, and
A1284(ZDR[3]) =1 ninit(ZDR[2])=1 HstBsy(ZDR[1])=1 HstCIk(ZDR[0]) =1
EPP address received
Host has reversed the direction of the interface from ECP- on parallel port EPPAW
forward to ECP-reverse by driving nReverseRequest (ninit)
signal low. EPPAW——— (PCISR[3])
(PCIER[3])
» DIRCH
(PCISR[2])
In Compatible mode, the
Host has changed the direction of the interface from ECP- host has requested the
reverse to ECP-forward by driving nReverseRequest _perlphera_l to re-initialize
(nInit) signal high. itself (nInit went Iow)-. NINIT
(PCISR[5]) (PCISR[4]) (PCISR[3]) (PCISR[2]) (PCISR[1]) (PCISR[0]) (PCIEF?['S]'; (PCISR[0])

46

Datasheet

INlal.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 7. Interrupt Generation Logic (Continued)
DMAwrerr DMArderr (DERJ[6]) Bufwrerr (DER[5]) Bufrderr (DER[4])
(DER[7]) (DMAACK* w/o (write to non-empty (Read from empty
(DMAACK* w/o DMAREQ¥) DMABUF) DMABUF)
DMAREQ¥)
ErrEn
(PFCR[1]) -] DataErr
' (PFSRIO0])
A |
HR1wrerr HRZ1rderr HR2wrerr HR2rderr
(DER[3]) (DER[2]) (DER[1]) (DER[0])
(write to non- (Read from (Write to non- (Read from
empty HR1) empty HR1)) empty HR2) empty HR2)
Interface in forward direction, onech
PFHR2 full, PFHR1 empty, and neChar
Timeout (PFSR[5]) is set. (PFSRI1])
Stale (PFSRJ[3]) transitions from false to true)
and: Timeout
o > (PFSRI[5])
DataE DMA is disabled.
atakrr OneChar Timeout ; ;
DMA is enabled, but DMABUF is empty (else, a
(PFSRIO]) (PFSR[1]) (PFSRI5]) DMAREQ* is generated, then a timeout interrupt
is generated when the DMABUF is empty and all
DMA cycles are complete.
INtEn
(PFCR[4)) Pipeline
(PIR[5])
PPort Pipeline
(PIR[6]) (PIR[5])
PPireq
————
(PIR[7])
SRP
L
(SVRRI[3])
Datasheet 47

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.4.1

48

A direction change (DirCh) interrupt occurs when the remote master has reversed the interface
from ECP forward to ECP reverse or ECP reverse to ECP forward. The IDReq interrupt is
generated when the remote master issues an ID Request command during |IEEE 1284 negotiations.
The normal response by the local CPU isto send its ID string after reversing the direction of the
data pipeline by setting the DMAdir bitto‘1’.

In an interrupt-driven system, aswith the serial channel requests, the SV CREQP* output normally
connectsto one of the local CPU interrupt control inputs. It can also be OR’ ed together, through an
external gate, with the serial request outputs to produce a single interrupt request to the local CPU.
Theinterrupt service routine scans the SVRR and determines the actual source of the interrupt.

The parallel channel has the same Vector register arrangement as the serial channels. The LIVR
must be initialized by the local CPU in the same manner as the serial channels; the upper five bits
are defined by the local CPU and can be any value appropriate to the system design. The lower
three bits should be initialized to zero during the programming of the LIVR, however they are
‘don’t cares' and masked in the PIVR to provide the vector indicating the source and type of
request from the parallel channel.

Access to the parallel channel LIVR is made by first setting the CAR to ‘x’ 00", making the
Channel Zero register set accessible. Sincethe LIVR is aread/write register, the local CPU can
read it at any time. When read during anormal read cycle, it returns the original value written to it.
When a service acknowledge is performed, the upper five bits of LIVR are copied into PIVR.

The encoding of the three least-significant bits of PIVR during a service acknowledge cycle
indicates which of the functional blocksin the parallel channel is requesting serviceand is as
follows:

IT2 ITL ITO Requestor
Bit2) | ®it1) | (Bito) q
1 0 0 Channel control state machine
1 0 1 Data pipeline

1 1 0 Both

The encoding of the parallel channel service-request status was designed using the remaining
unused states of the CD1400: *100’, ‘101’, and ‘' 110’. The other states of these three bits are
already used to indicate serial interrupt statusin RIVR, TIVR, and MIVR.

Hardware-Activated Context Switch, Parallel

When conditions within the parallel channel require attention, arequest is made by the
SVCREQP* output. If the system isinterrupt driven, this output would be connected to the CPU
interrupt generation circuitry. In a hardware-activated service-acknowledge system, the CPU
responds to the request by activating the SV CACKP* input (along with DGRANT* and DS*) in
the same manner as the serial channels; the CS* input is not used and must remain inactive (high).
The CD1284 responds to the SVCACKP* cycle by driving the contents of the PIV R onto the data
bus with IT2-1 TO encoded as shown above. The SVCACK cycle also placesthe devicein the
correct context to service the parallel channel request.

The vector supplied by the PIVR indicates which block of the parallel channel requested service;
the cause of the request isindicated in the Request Status registers of each: the PCISR in the
channel control state-machine block and/or the PFSR in the data pipeline block. Refer to Chapter
7.0 for detailed descriptions of the various status bitsin these registers.

Datasheet

intel.

5.4.2

5.5

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

The /O cyclethat activatesthe SVCACKP* input also removesthe active SV CREQP* output. The
reguest output is inactive until after the CPU terminates the acknowledge routine by writing to the
EOSRR. Aswith the serial channels, thisisadummy operation and the datawrittenis‘don’t care’.
The purpose of the writeisto clear the internal logic of the current request context and allow it to
generate another request when the need arises. Until this write occurs, no further service requests
are made from the parallel channel. When the MPU detects the write to the EOSRR, it zeros-out
the PIVR in preparation for the next service-request cycle.

Software-Activated Context Switch, Parallel

Software-activated acknowledges of the parallel channel differ somewhat from those of the serial
channels. The start of a software acknowledge of the parallel channel isthe same as for the serial
channels: the CPU copies the contents of the PIR into the CAR (after first saving the current
contents of the CAR) to set the device context. However, at this point the methods (serial versus
parallel) diverge. The CPU can read either the LIVR or PIVR (or read the status from the two status
registersin the Parallel Port register set) to determine which of the parallel channel blocksis
requesting service, copy the PIR into the CAR (or just load it with ‘x’ 00’) to set the context, then
proceed to service that request. Once the CPU has satisfied the request needs of the parallel
channel, it must toggle the IntEn bit (PFCR[4]) or clear the PIR. Toggling IntEn clears the PPort
and Pipeline bits and the PPIreq bit (PIR[7]). This action informs the MPU to clean up the PIVR
and remove the external request. The software should then restore the CAR to its previous contents
and exit the service routine.

The PPlreq hit can be cleared at any time by the CPU. If the system design requires the request be
removed quickly, the procedure can be performed at the beginning of the polled service routine. If
the CPU waits until the end of the service routine, it clears the bit itself or terminates the servicein
the manner described, letting the MPU do it.

Serial Data Reception and Transmission

The CD1284 hastwo serial channels, each with areceiver and atransmitter. Although a receiver
and atransmitter pair are associated with each channel, in many respects they operate
independently, sharing only parameter settings regarding character format including length, parity
typeif any, and number of stop bits. Each receiver and transmitter has its own baud rate generation
function, allowing a channel to send at one rate and receive at another. Shared and independent
parameters are shown in the following diagram.

RECEIVER TRANSMITTER
BAUD RATE BAUD RATE
PARITY

CHARACTER LENGTH

STOP BITS
PRESCALE PERIOD REGISTER

FIFO THRESH
RCV TIMEOUT

49

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

551

50

Channel service needs, such as an empty transmit FIFO, are indicated to the CPU by one of three
service-request indicators: one for all receivers, one for all transmitters, and one for all modem
signal changes. The internal processor (MPU) scans each channel sequentially for service needs,
posting arequest when it detects a particular type. It continues the Fair Share scheme used in the
external daisy-chain configuration by not allowing a channel to post another request of one type
until al other channels have posted their requests of that type, if any. For example, if channel twois
currently being serviced for atransmit request and channel three has one pending, the request from
channel three is posted before channel two is able to make another request for transmit service.

Each receiver and transmitter has a 12-character FIFO. The receiver has two additional character
holding locations: the Receive Character Holding and Receiver Shift registers. The transmitter also
has two additional locations, the Transmitter Holding and Transmitter Shift registers. The receive
FIFO has a programmable threshold that setsthe level at which a service request is posted. When
data reaches this FIFO-full threshold, a request is made of the CPU to empty the FIFO (for details
see Section 5.5.1). Receive FIFOs a so have a programmable threshold that, when reached, causes
the DTR output to be deasserted (see the flow-control description).

In the asynchronous serial data protocol, a message consists of one ‘ character,” made up of bits,
either high or low, representinga ‘1’ or ‘0’ value. A character can be from five to eight bits plus an
optional parity bit bracketed by a start bit and a stop bit. Each bit has atime duration that sets the
data transmission rate — or baud rate. The start bit indicates the beginning of a character bitstream
and isindicated by atransition fromalogic ‘1’ toalogic ‘0O’ (mark to space) on the transmission
media. The start bit lasts one ‘bit-time' and is immediately followed by the data bits (8:5), the
parity if any, and the stop bit.

As previously discussed, the CD1284 incorporates special hardware to receive and transmit each
bit. These are the ‘bit engines’. They perform all timing associated with sending or receiving one
seria databit. A bit engine behaves differently depending on whether it is sending or receiving.
When a complete bit is received, the bit engine interrupts the MPU so that it can handle the bit on
the character level. This usually entailsits addition to the character being assembled. For
transmitting, a transmit bit engine interrupt causes the MPU to give it the next bit to transmit. The
bit engine interrupt occurs at the end of a bit timethat is timed by the engine, thus removing that
duty from the MPU.

Receiver Operation

Each channel can be programmed to receive characters with several different parameters, such as
character length, parity, number of stop bits, FIFO threshold, and baud rate. Each receiver is
independent of any other receiver. It can also be set to a different baud rate from its corresponding
transmitter.

Before valid data can be received, the CPU must set up each channel by programming the desired
operationa parameters in the COR1-CORS5, the BRRR, RCOR, and RBPR. Once these registers
are set, the channel is enabled by issuing the receiver enable command through the CCR and
enabling service requests in the SRER.

Once areceiver is enabled, its bit engine begins to scan the RxD input for avalid start bit. It does
this by detecting a falling edge transition on the input. When the transition is detected, the bit
engine delays until the middle of the programmed bit time and rechecks the input. If theinput is
still low, the start bit is considered valid and character assembly begins. At each subsequent full bit
time, the input is checked and its level recorded as the value of the next hit. If, at the center of the
bit time, the RxD input returns to a mark state, then the start bit is considered invalid and the bit
engine returns to the start bit detect mode.

Datasheet

Note:

5.5.2

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Following a valid start hit, the bit engine begins receiving data bits. At the end of the programmed
number of bits, following bits are checked for parity (if enabled) and avalid stop bit. A valid stop
bitisdefined asamark or logic ‘1’ ontheinput. If avalid stop bit is not detected, aframing error is
noted for the character. After a properly assembled (no framing error) character has been received,
it is checked for several special conditions (see Section 5.6 and Section 5.7) and the overrun
condition before it is placed in the receive FIFO. If no errors or special character processing is
required, the character is considered ‘good’ dataand placed directly inthe FIFO. If errorsexigt, itis
placed in the FIFO as ‘exception’ data along with status indicating the type of error. As each good
character is placed in the FIFO, the RDCR (Receive Data Count register) is updated to reflect the
number of good characters currently in the FIFO.

Thereceive FIFO has a programmabl e threshold to determine the level where the CD1284 requests
receive data service. Thislevel is programmed through the RxTh[3:0] bits (COR3[3:0]). The CPU
can set the threshold to any number of characters from 1 to 12.

Thisonly sets the level where the CD1284 posts a service request and not the depth of the FIFO.

When the CPU responds to a receive good data service request, it can read any number of
characters out of the FIFO, from zero up to the number indicated in the RDCR before exiting the
service routine. If the number read is zero, the CD1284 posts another request for service almost
immediately. If the number of characters read is less than the number indicated by the RDCR, but
enough so that the number in the FIFO falls below the threshold, a new request is not made until
the threshold is once again exceeded. Since the MPU circularly scans the channels, another channel
can post areceive service request before this channel has the opportunity, thisis why the request
for service is posted ‘almost immediately’.

Receiver Timer Operations

Also associated with each receiver FIFO is atimer that has its duration set in the RTPR. Thistimer
provides two servicesin relation to the receive FIFO operation: atimeout to prevent ‘stale’ datain
the FIFO and atimeout after the last character is removed from the FIFO.

Thefirst type, type 1, occursif the receive FIFO does not reach the set threshold before the
programmed time period expires. The second type, type 2, occurs if the timer expires and no new
data has been placed in the FIFO after the last character isremoved — thisisthe NNDT (No New
Data Timeout) service request.

Thetimer isdriven by the prescaled clock selected in the PPR in the Global register set. Thistimer
isloaded with the value contained in the RTPR each time a character is placed in the receive FIFO
or when the last character is removed from the FIFO. Each ‘tick’ of the prescaler decrements the
timer. If the timer reaches zero and the receiver interrupts are enabled, the MPU generates areceive
data service request for the valid timeout condition.

Type 1

If there are characters in the FIFO but the threshold level has not been reached, a good data service
request is posted when the timer expires. Thisfunction is provided to prevent datafrom remaining
in the FIFO for long (potentially infinite) periods of time because the remote did not send enough
datato fill the FIFO to the threshold level. Thistimeout cannot be disabled.

51

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.5.3

52

Note:

Type 2

If there is no datain the FIFO when the timer expires and the NNDT service request is enabled in
the SRER, areceive exception service request is posted with status indicating the timeout
condition. Thistimeout is optional and is provided so that driver software can detect the possible
end of ablock of dataand allow its buffers to be flushed to the higher, operating system level. The
NNDT is posted only on the first occurrence of atimeout after the FIFO becomes empty. Also note
that the NNDT timer is not started if the last character removed from the FIFO was an exception
character, such as abreak or parity error.

Figure 8 on page 53 shows the timer process eval uation performed by the MPU when the timer
reaches zero.

Receive Exceptions

Several conditions can cause the CD1284 to post the receive exception service request. If an
exception condition occurs, two bytes are placed in the receive FIFO. The first byte contains the
status indicating the type of error; the second byte contains the data.

Exception datais sent to the CPU one event at atime. That is, there is a separate service request for
each character received with special conditions. If, when an exception condition occurs the receive
FIFO contains good data, agood data receive service request isimmediately posted upon receipt of
the bad data. This happens regardless of the number of charactersin the FIFO and the programmed
threshold. This allows the CPU to remove the data in the FIFO ahead of the exception data so that
the CD1284 can post the service request for the error condition. Once the service-acknowledge
procedure for the good data is terminated, a new service request is posted for the exception data.

When the CPU acknowledges the receive exception service request, it first reads the RDSR to
determine the status and then to retrieve the data. Reading the dataiis optional: if the FIFO is not
read twice during the service routine, the CD1284 updates the internal FIFO pointers appropriately
and discards the second byte.

The CPU need not actually read any data from the FIFO during an exception service acknowledge
— the FIFO pointers are correctly updated at the end of the service routine, discarding both the
status and the data. In this way, the CPU must at least read the status or it is permanently lost.)

Another special case of exception data handling isreceived line break conditions. A linebreak isa
character with a start bit, ‘O’ data, and no parity or stop bit. In this case, anull (‘0") character is
placed in the FIFO with the break condition indicated in the accompanying status, and a receive
exception service request is posted. However, regardless of the length of the break, only one
character is placed in the FIFO. Resumption of normal character reception causes new datato again
be placed in the FIFO.

Datasheet

In IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 8. FIFO Timer Processing

BACKGROUND SCANNING
DETECTS NEW CHARACTER
ARRIVED

Y

PUT CHARACTER IN FIFO
RELOAD TIMER

RESUME BACKGROUND
SCANNING LOOP

'

¢

FROM OTHER
BACKGROUND PROCESSING

Y

POST RECEIVE ‘GOOD DATA’
SERVICE REQUEST

N
FIFO EMPTY
?
N
NO NEW DATA
TIMEOUT
ENABLED
NO NEW DATA N

Y

INTERNAL FLAG
ARMED

CLEAR NONEWDATA
INTERNAL FLAG

Y

POST RECEIVE EXCEPTION
SERVICE REQUEST

Y

\J

RESUME BACKGROUND
SCANNING LOOP

Datasheet

53

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.54

54

Transmitter Operation

Each of the two serial channels on the CD1284 are capable of transmitting characters with a
number of programmable characteristics such aslength, parity, and baud rate. The channels operate
independently and the settings in one have no effect on the operation of the other.

After being reset from either hardware (RESET* input pin) or software (by the master reset
command in the CCR), all transmitters are disabled with the TxD output held at alogic ‘1’
condition. Thisisthe‘off’ or ‘mark’ condition of the asynchronous protocol.

Before any operation of the transmitter can begin, the CPU must program the appropriate
parameters in the CORs, TCOR, and TBPR. Once these registers are set, the channel is enabled by
issuing a transmit enable command through the CCR, and enabling service requests by setting the
appropriate transmit enable request bits in the SRER.

The channel then immediately posts a transmit service request since its FIFO is empty. The CPU
responds to the request by loading up to 12 charactersinto the transmit FIFO through the TDR after
it places the CD1284 in the Service-Request Acknowledge mode (see description of service-
request/service-acknowledge procedures in Section 5.2.3).

The transmitter does not begin transmitting the characters until the CPU terminates the service
routine and writes the EOSRR. Transmission begins by sending a start bit (alogic ‘0") followed by
fiveto eight data bits (depending on the programmed value), least-significant bit first. The last data
bit is followed by the appropriate parity bit, if enabled, and a minimum of one stop bit.

All bit transmission is handled by the transmit bit engine with the MPU sending each bit as
requested. If there are till charactersin the FIFO, the next one is transmitted immediately after the
last stop bit of the previous character. This process continues until all charactersin the FIFO are
transmitted. At that time the CD1284 posts a service request for more data.

There are actually 14 transmit character holding locations for each channel: 12 in the FIFO, onein
the Transmitter Holding register, and one in the Transmitter Shift register. The CD1284 can be
programmed on a per-channel basis to request transmit data when one of two conditions exist:

1. When the last character in the FIFO is transferred to the holding register, or
2. When thelast data bit of the last character is shifted out of the Transmitter Shift register.

Option number one allows the CPU two character transmit times to rel oad the FIFO and prevent a
transmit data underrun. Thisis the normal mode of operation. Option number two ensures that the
transmitter is empty before reconfiguring the channel. It islikely that transmitter underrun occursif
option number two is selected, unless the CPU is sufficiently fast to respond to a transmit service
request and reload the FIFO during transmission of the stop bit(s) of the last character.

If the transmitter underruns, it continues to send stop bits (mark) until more datais placed in the
FIFO. Normally, when a string of characters greater than 12 is being transmitted, the software
programs the CD1284 transmitter to post a service request when the FIFO is empty. When the last
of the datato send is placed in the FIFO, the service request enable is changed so that requests are
made after the last character is sent. This notifies the CPU that all the data was transmitted before
disabling a channel.

If achannel is disabled without first being emptied, any characters other than the one currently

being transmitted are held and the transmitter enters the marking state. If the channel is
subsequently reenabled, any remaining data is transmitted.

Datasheet

5.6

5.6.1

5.6.2

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

The transmitter is capable of performing several special functions such as break generation, inter-
character delays, and automatic flow control. These functions are discussed in Section 5.6, Section
5.7, and Section 5.8.

Aswith the receiver, the transmitter has a timer associated with it. This timer generates the timing
for embedded transmit commands that send line breaks and inter-character delays. Whenever the
MPU detects an embedded transmit command specifying the delay command, thistimer isloaded
with the value contained in the parameter byte. Then the timer is decremented on each tick of the
PPR (prescaler timer) until it reaches zero. At that time, the delay terminates unless the next
character in the FIFO is the beginning of another delay command sequence.

Flow Control

In all data communications applications, data is sent from one system to another by a protocol.
Most systems have a method of buffering data for transmission and reception.

In asynchronous protocol, there is no way at the protocol level to determine the length of a data
transmission. Therefore, it is not normally possible to designate a buffer areato handle the entire
length of the transmission. Also, the hardware receiving the data generally has alimited amount of
buffer area— usualy a FIFO — and, if the CPU does not unload data fast enough, the buffer or
FIFO can overflow. For these reasons, two methods are provided to stop the remote from sending
data until there is space to receive data. Thisis known as flow control.

Flow control can be in-band or out-of-band. In-band flow control uses special characters that can
be sent to the CPU to stop data transmission. Out-of-band flow control are signals outside the serial
data channel that perform the same function: the RTS* (Request To Send) and CTS* (Clear To
Send) signal set, and the DSR* (Data Set Ready) and DTR* (Data Terminal Ready) signals.

The CD1284 supports manual flow control and has built-in capabilities for automatic and/or semi-
automatic (depending on direction and options) implementation without CPU intervention.

In-Band Flow Control

In-band flow control isimplemented by special charactersimbedded in the serial data stream; one
to request that transmission stop and one to request that data transmission resume. Any character
can be selected, although conventionally, the XON or DC1 (x’ 11) and XOFF or DC3 (x’ 13)
characters are selected if the ASCII character set is being used.

XOFF designates the character used to stop data transmission. XON determines the character used
to resume transmission. Whether these characters are used, the CD1284 allows the two characters
to be set to any value appropriate to the system design by the value programmed in SCHR1 and
SCHR2 (Special Character register 1 and 2).

SCHR1 defines the XON character and SCHR2 defines the XOFF character. These registers must
beinitialized by the CPU; the default value loaded during devicereset is‘x’'00'.

Receiver In-Band Flow Control

When the CPU senses that the sender requires flow-control due to the receive buffer filling too fast
to service, it can request the remote stop transmission by the transmitter sending an X OFF
character. Thisis accomplished by issuing a send special character 2 command through the CCR.
The CD1284 then transmits the character programmed in SCHR2.

55

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Table 15.

Note:

5.6.2.1

56

Asprevioudly discussed, the send special character command is preemptive to data currently in the
transmit FIFO. The X OFF character is transmitted immediately after the current character and the
character in the Transmitter Holding register are sent (a maximum delay of two character times).
When the CPU is again ready to start receiving characters, the XON character is sent by another
send specia character command. At thistime, the CD1284 isissued the command to send the
character programmed in SCHR1.

Send special character commands override any flow-control by a remote of the CD1284. For
example, even if the CD1284 transmitter is shut off by the remote, it can still send flow control
characters.

The current state of the flow-control condition is always made available to the CPU through the
CCSR. In addition to the enabled/disabl ed status of the receiver and transmitter, the CCSR displays
the flow-control status.

Two bitsin the CCSR pertain to receiver flow control, RxFloff and RxFlon. Whenever the CPU
issues the send specia character 2 (send XOFF) command, the CD1284 sets the RxFl off bit,
indicating a request for the remote to stop transmission.

When the CPU issues the send special character 1 (send XON) command, RxFlon is set and
RxFloff reset. RxFlon remains set until the first character is received after XON is transmitted.
Table 15 shows the bit encoding for RxFloff and RxFlon.

CCSRJ[6:5] Encoding

RxFloff RxFlon Encoded Status

Transmission resumes, the receiver is
0 0 enabled/disabled, or receiver is in the
default reset state.

XON is sent, but transmission has not

0 1 restarted.
1 0 XOFF was sent.
1 1 Not used.

RxFloff and RxFlon are cleared whenever the receiver is disabled or enabled, regardless of the
state of flow control when the disable/enable occurred.

Regardless of the current state of RxFloff, the CD1284 continues to receive characters. If the
remote ignores or is slow to respond to the XOFF character, there an overrun condition can occur.

Transmitter In-Band Flow Control

The CD1284 can automatically flow control its own transmitter when it receives the XON and
XOFF characters, as programmed in SCHR1 and SCHR2. There are control bitsin COR2 and
COR3 to enable or disable various aspects of automatic flow control.

Special-character detection must be enabled through the SCD12 bit (COR3[4]) for flow-control
charactersto be acted upon. When SCD12 is set, the CD1284 scans received charactersfor amatch
with one of the special characters programmed in SCHR1-SCHR2.

Datasheet

Table 16.

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

If enabled in SCD12 and a character matching the contents of SCHR2 is received (the XOFF
character), the CD1284 checks that automatic transmit in-band flow control is enabled in COR2[6].
If this function is enabled, the CD1284 stops transmission after the current transmitting character
and the character in the Transmitter Holding register, if any, are sent. If enabled, the CD1284 also
attemptsto match against errored characters. This function is enabled by the CMOE bit (COR5[5]).

COR2[7] enables IXM (Implied XON mode), which determines the character that restarts
transmission after a stop by automatic flow control. If IXM (COR2[7]) is'0’, only a programmed
XON character (SCHR1) can restart the transmitter; all other characters are received and placed in
the FIFO. If IXM isreset, any character received restarts data transmission. TxIBE (COR2[6])
must be set to active automatic flow control, otherwise IXM (COR2[7]) has no effect.

Aswith receiver flow control, the CPU can determine the current state of the transmitter through
TXFloff and TxFlon (CCSR[2:1]). When automatic in-band flow control is enabled and the
CD1284 receives an XOFF character, TxFloff is set. When an XON character isreceived, TxFlon
is set. Once transmission resumes, TxFlon is cleared. The encoding for TxFloff and TxFlonis
shown in Table 16.

CCSRJ[2:1] Encoding

TxFloff TxFlon Encoded Status

Transmission resumes, transmitter is
0 0 enabled/disabled, or the transmitter is
in the default reset state.

XON was received, but transmission

0 1 has not restarted.

1 0 XOFF was received, transmission has
stopped.

1 1 Not used.

TxFloff and TxFlon are cleared whenever the transmitter is disabled or enabled, regardless of the
state of flow control when the disable/enable occurred. This feature can force transmission to
resume regardless of remote-initiated flow control.

One final aspect of automatic in-band flow control is FCT (Flow Control Transparency). FCT is
enabled/disabled in COR3[5] and determines if remote-initiated flow control is transparent to the
CPU. If FCT isnot set, in addition to stopping transmission when an XOFF character isreceived,
the CD1284 places the received XOFF character in the receive FIFO and informs the CPU with a
receive exception service request. When the XON character is received, it is also sent to the CPU
by an exception service request, then restarts data transmission.

If FCT is enabled, received flow control characters control transmission, but are discarded instead
of being placed in the FIFO. If the CPU does not require to know when its transmit data has been
stopped, this bit can be set to reduce the number of service requests that must be handled.

Table 17 summarizes the control bits in the CORs that enable the various modes of in-band flow
control.

57

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Table 17. COR Control Bits

5.6.3

5.6.3.1

5.6.3.2

58

Bit Name Register Function

Enables recognition of special

SCD12 COR3 characters 1 and 2

FCT COR3 Enables transparent flow control

Enables automatic transmitter in-
band flow control

IXM COR2 Enables implied XON mode

TXIBE COR2

Out-of-Band Flow Control

Flow control can aso be accomplished through the modem handshake signal pairs RTS/CTS and
DSR/DTR. These are called out-of-band because they are external to the data channel. The
CD1284 can be programmed to automatically respond to and generate out-of-band flow control
through these signals.

Receiver Out-of-Band Flow Control

Along with the receiver FIFO threshold that sets the level where the CD1284 posts a service
request, another threshold can be set to determine when it automatically asserts/deasserts DTR*.
Thisisthe DTR threshold and is enabled in the DTRth[3:0] bits (MCOR1[3:0]). The level can be
set for any number of charactersfrom 0to 12. A threshold of zero disables the function and DTR*
is not controlled by the device. If the function and the receiver are enabled, the CD1284
automatically asserts the DTR* output whenever the number of charactersin thereceive FIFO is
less than the programmed number. Once the level reachesthe threshold, DTR* isdeasserted. DTR*
isheld in the deasserted state until the CPU removes enough characters from the FIFO to lower the
level below the threshold.

For the receiver to operate properly, the DTR threshold must be set to avalue equal to, or higher
than the receiver service-request threshold. If the levels were reversed, normal character reception
could not be completed because DTR* would always be deasserted before the receive FIFO
threshold is reached. The CPU would then not get areceive data service request until the receive
FIFO timeout is reached. Thiswould result in aseria data transmission performance limitation.

The DTR* output can also be manually controlled through MSVR2[1]. Setting thishitto ‘1’ asserts
the DTR* output.

Transmitter Out-of-Band Flow Control

Transmitter out-of-band flow control isimplemented with three modem control signals: the RTS*
output and the CTS* and DSR* inputs. The RTS* output can be programmed to be automatically
asserted whenever thereis datain the transmit FIFO and the transmitter is cleared to send. CTS*
and DSR* can be enabled to automatically control the transmitter.

RTS Automatic Output is enabled in the RtsAO bit (COR2[2)]). If RtsAQ is set, the CD1284
automatically assertsthe RTS* output when thereis datain the FIFO to send. When the datais sent
and the FIFO is empty, RTS* is deasserted until the CPU places more datain the FIFO. If RTSAO
isnot set and if required by the remote, the CPU must manually control the RTS* output through
MSVR1[0].

Datasheet

intel.

5.6.4

Table 18.

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

The CTS* input can also be monitored by the CD1284 and is atransmitter enable. The functionsis
enabled by setting CtsAE (COR2[1]). If CtsAE is set, character transmission occurs only when the
CTS* input signal is asserted. If the signal is deasserted during active transmission, the current
character plus the character in the Transmitter Holding register are transmitted and transmission
ceases. Thus, a minimum of one and a maximum of two characters can be transmitted after the
control signal is deasserted. Transmission resumes when the signal (s) is reasserted.

The send special character command does not sample the CTS* or DSR* inputs. If the CPU optsto
send one of the special characters, the character is transmitted regardless of the state of these
inputs. Thisis preferable as the CPU can still flow control aremote even if it is being flow
controlled. If the state of CTS* and DSR* are important, they should be tested through
MSVR1[7:6] before the special character send command is issued.

Modem Signals and General-Purpose I/O

Each channel of the CD1284 has four pins that can be used either as modem-control or general-
purpose input/output pins. The modem signal names assigned to these four pins provide an easy
reference for system designers. In fact, they are all ssimply general-purpose inputs and outputs (if
automati ¢ out-of-band flow-control is not used) are individually controlled in the MSVRs. Since
they are general-purpose, system designers can opt to connect the pins any way to suit the
application.

DCE, DTE Application

When the system software design opts to use automatic out-of-band flow control, then the signal
naming convention no longer holds true in some cases, depending on if the deviceis used as DCE
or DTE. For this case, use these pins within the CD1284, connect them accordingly, and disregard
their names. The RTS* and CTS* pins are associated with the transmitter; the DTR* and DSR*
pins are associated with the receiver. Table 18 shows the Intel recommended signal hook-up for
automatic out-of-band flow control.

Out-of-Band Pin Connections

DCE DTE CD1284 pins | Out-of-Band Flow
Control
CTS* _ DTR* Signal remote to
transmit
Not implemented in
* —_— -
RTS this direction
- RTS* RTS* Request remote _
permission to transmit
- CTS* CTS* Enable transmitter

For example, if the CD1284 is designed for DCE and automatic out-of-band flow control, connect
DTR* to theremote CTS* input. If the CD1284 isfor the DTE side, then connect the CD1284
CTS* output to the remote CTS* input.

Note, if automatic out-of-band flow control isimplemented, the activity of DTR* and DSR* do not
implement the function assigned to those signal names by the signaling conventions of the CCITT
(and other) standards organization. These pin names only apply to these pinsif they are under
program control and not under automatic CD1284 control. In fact, the defined DTR function
enables the modem to go on- and off-line, depending on the state of the pin. If automatic flow

59

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

60

Table 109.

Note:

control is used, then DTR* goes inactive when the receive FIFO reaches the programmed
threshold, causing the modem to drop the connection (carrier) to the remote, — thisis not the
correct use of this function.

Modem Control Pin Functions

Modeg}r?sontrol Function
RTS* Request to send (general-purpose output)
CTS* Clear to send (general-purpose input)
DTR* Data terminal ready (carrier detect/general-
purpose input/output)

DSR* Data set ready (general-purpose input)
CD* Carrier detect (general-purpose input)

RI Ring indicator (general-purpose input)

Modem pins are implemented as /O ports accessible by either the CD1284 internal microcode or
the host. The modem pins are not connected directly to the transmit or receive hardware. When a
user programs the out-of-band modem functions to be active, the CD1284 microcode reads from
and writes to these pins. Specifically, when RTS* and CTS* are used for transmit flow control, the
CD1284 microcode asserts RTS* and senses CTS*, as required (Table 19). Also, when the receive
FIFO isfull, DTR* is negated. The host must not reassert DTR* inadvertently.

The host isnot ‘locked out’ of accessing these bits; ensure that these bits are not written to when
auto out-of-band flow control is enabled asit could cause a system malfunction.

The user can directly control RTS* and DTR* and can probe the state of the CTS*, CD*, and
DSR* inputs through the MSVR. Since the host is accessing these pins directly, thereisno delay in
its ability to detect alevel change.

The CD1284 can be programmed to detect level changes and generate service requests when level
changes occur. It doesthisin firmware by reading DTR* and CD* and comparing them to a
previously stored value. This function is performed in the main timing loop of the firmware; the
maximum time required to detect alevel change in worst-case conditions is approximately 2 ms.

When the CD1284 is performing this function, the modem pins are periodically sampled rather
than continuously monitored. In this way they have minimal sensitivity to noise, a desirable feature
in data communication applications. However, in extremely noisy applications, reread a modem
line that caused a modem signal change service request to verify it has changed and is not
malfunctioning. This eliminates even the dightest possibility of anoise pulse causing erratic
operation.

When the CD1284 is monitoring modem pins to control transmit or receive functions, it does not
rely on the previoudly stored value, but instead checks the pins at the appropriate time. Thus, there
isvery little delay in this response. For example, before deciding to transmit another character, it
examines the CTS* pin at that time. The CD1284 makes this decision when moving characters
from the FIFO to the Holding register, not from the Holding register to the Shift register.

Note that the logical sense of the modem bitsisinverted; that is, awrite of ‘1’ to MSVR1 or
M SV R2 causes the output pin to go to nominal zero volts. Likewise, alow-voltage input is sensed
as'l.

Datasheet

intel.

5.6.4.1

5.6.4.2

S.7

5.7.1

5.7.1.1

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Generating Service Requests with Modem Pins

The CD1284 can generate service reguests when any one of the input pins changes state. Either or
both edges can be detected by setting bitsin MCOR1 and MCOR2. For each pin, the user can
individually enable an on-to-off or off-to-on transition detection of the inputs. When the CD1284
detects such atransition, the corresponding bit in the MCR is set. If the corresponding IER bit in
the channel is set, the CD1284 asserts the SVCREQM* output.

The user must clear the MCR during the service request service routine before writing to the EOIR.
The CD1284 performs this task by reading the modem input signals and comparing the current
value with the value read in the last pass through the outer scanning loop. Because thisis the
lowest-priority event in the CD1284 scanning loop, changes can not be detected unlessthey are
several hundred microseconds long.

For example, the modem input pins can be used to detect the closing of a switch. However,
consider the relatively slow speed of response when using modem input pins for this purpose. The
CD1284 does not latch the modem input signals.

Using Modem Pins as General-Purpose I/O

Since the modem pins can be directly accessed by the host, they can be used as general-purpose 1/O
pinsif they are not needed for flow control or modem interfacing. Simply read from and write to
these pins as with any 1/O port.

Receive Special Character Processing

The CD1284 has several ways to send specia characters and to process these characters when
received. Some special characters have fixed definitions and others are user-defined. Figure 9 on
page 64 defines the processing that the CD1284 performs for receive data. This flow chart
illustrates the special character handling process.

UNIX" Character Processing

The CD1284 incorporates special character processing of particul ar benefit in systems designed to
run the UNIX" operating system. The processing performs some of the functions normally handled
by the ‘line discipline’ part of a serial device driver program. This provides higher overall
performance in serial communication than could otherwise be obtained because character
manipulation occurs at the hardware level without any CPU interaction. This processing includes
CR (carriage return) and NL (new line) substitution, programmable response to errored characters
(framing, parity and overrun errors), the LNext function and ISTRIP. Each type of processing is
optional and can be enabled/disabled with control bitsin the CORs 2, 4, and 5. The following
sections describe of each of these functions.

Line-Terminating Characters

The CD1284 can be programmed to perform automatic substitution of the CR and NL characters
on both received and transmitted data. Received character processing has five unique substitutions
based on the value of IGNCR, ICRNL, and INLCR (COR4[7:5]); some combinations cause
identical actions.

61

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.7.1.2

5.7.1.3

57.1.4

62

000 Do nothing — function not enabled

001 Received NL changed to CR

010 Received CR changed to NL

011 Received CR change to NL; NL changed to CR

100 Received CR discarded

101 Received CR discarded; NL changed to CR

110 Received CR discarded

111 Received CR discarded; NL changed to CR

Errored Character Processing

The CD1284 can easily manage received characters with errors (such as, parity, framing, and
overrun). If none of the special processing functions are enabled, errored characters are delivered
to the CPU through a receive exception service request. As defined by the PEH[2:0] bits
(COR4[2:Q)]), these characters can be handled in one of the following ways:

* Parity errors can be ignored — the character is placed in the FIFO as good dataand is given to
the CPU as any other received good data.

* Anerrored character can be replaced with aNULL (x’ 00) character in the FIFO.

¢ Anerrored character can bereplaced in the FIFO with the 3-byte string X’ FF-NUL L -character.
If thismode is enabled and an actual good X’ FF character isreceived, itisreplaced in the FIFO
with the two character sequence X' FF-X' FF.

* Anerrored character can be discarded.
Received breaks are handled differently from other errored characters. They can be processed,
based on the settings of the IGNBRK and -BRKINT hits (COR4[4:3)), as.

* Reported as an errored character by areceived exception service request.

* Replaced with agood NULL (x’00) character in the FIFO.

¢ Discarded.

LNext

LNext (Literal Next) allows ‘escaping’ or ignoring any special meaning of special charactersand
considers them as normal data. The escape character is defined by the value in the LNC register. If
the CD1284 receives this character, places it and the next character in the FIFO without further
processing. As an example, this allows a flow-control character to be received without it causing
actual flow-control activity. LNext can be enabled to operate on characters received with errors
(such as, parity, framing, and overrun), otherwise errored characters are handled normally and the
next character is not escaped.

ISTRIP
ISTRIPisasimple function that, if enabled, resets the most-significant bit (bit 7) of all received

good characters. If the character has a parity or framing error, the ISTRIP function does nothing
and the character is sent to the CPU as a normal receive exception service request.

Datasheet

intel.

5.7.2

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Non-UNIX" Receive Special Character Processing

In addition to UNIX specia-character processing, the CD1284 provides other special character
recognition capabilities. The CD1284 has four registers that define special characters, SCHR1—
SCHR4. SCHR1 and SCHR2, are used in flow-control activities and (see Section 5.6). SCHR3 and
SCHR4 define two additional special characters that the CD1284 can scan for in the receive data
stream. Recognition of special characters 3 and 4 are enabled by the SCD34 hit (COR3[6]). If
either of these characters are received, a specia character detect (receive exception) service request
issent. Note that if automatic in-band flow control is not enabled, SCHR1 and SCHR2 can still be
used as specia characters. They are detected and reported as receive exceptions, but they do not
cause flow-control activities to be envoked.

The range detect function is another special character function. If thismode is enabled (COR3[7]
set), the CD1284 compares al received characters against the valuesin the SCRL and SCRH
registers. If the character received falls between these two values (inclusive), a special character
detect service request is posted.

The status shown in the RDSR indicates which of the special character recognition conditions were
met and caused the receive exception service request.

63

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

Figure 9. CD1284 Receive Character Processing

CHARACTER
RECEIVED

Y

PARITY,

FRAMING, SET ERRORED
OVERRUN CHAR FLAG
ERROR
SET BREAK =
BREAK FLAG >y

?

CHAR MATCH
ON ERROR
ENABLED

ISTRIP
ENABLED

SETD7=0

SCHR12
ENABLED

\i

CLEAR LNEXT
FLAG

Y

SET LNEXT
FLAG

Y

64 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 9. CD1284 Receive Character Processing (Continued)

CHARACTER

IMPLIED
XON MODE

SET FLOW
OFF

STATE

TOGGLE FLOW

CLEAR FLOW
OFF

Y

CLEAR FLOW

OFF

SCHR34
ENABLED

MATCH

ENABLED

CHARACTER

Y

SET SPECIAL

CHARACTER
EXCEPTION

Y

FLOW
CONTROL

SET
?

©

Datasheet

65

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

Figure 9. CD1284 Receive Character Processing (Continued)

CHAR =
CR OR NL

CORA4[7:5]

000 - No action
001 -NLtoCR
010 - CRto NL

011 -CRto NL; NL to CR
100 - Discard CR

101 - Discard CR; NL to CR
110 - Discard CR

111 - Discard CR; NL to CR

HANDLING

HANDLING
='011

IN FIFO

PUT FF00, CHAR

PUT FF, CHAR
IN FIFO

PUT CHAR
IN FIFO

HANDLING
='001

PUT 00
IN FIFO

DISCARD CHAR

PUT CHAR
IN FIFO

Y

POST EXCEPTION
SERVICE REQUEST

A

PUT CHAR
IN FIFO

DISCARD CHAR

PUT 00
IN FIFO

Y

SERVICE REQUEST

POST EXCEPTION

\

66

Datasheet

intel.

5.8

5.8.1

5.8.2

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Transmit Special Character Processing

The CD1284 also provides some special character handling on the transmit side — embedded
transmit commands and direct commands to transmit predefined special characters. Figure 10 on
page 70 illustrates the process of special character handling.

Line Terminating Characters

On transmit, there are four possible substitutions based on the setting of two flags, the ONLCR and
OCRNL bits (COR5[1:0]):

00 Do nothing — function not enabled

01 Change all <CR> characters to <NL>

10 Change all <NL> characters to <CR> <NL>

11 CR characters changed to NL or NL

When both flags are set (‘ 11'), only one trandation occurs —a CR that changed to NL is not
changed to CRNL.

Embedded Transmit Commands

The CD1284 has a special feature that optionally allows specific ‘escape’ character sequencesin
the transmit data stream to be interpreted as commands. These are called ETCs (embedded transmit
commands) and are enabled in COR2[5]. These sequences can insert programmed time delays
between characters and generate a line break on the transmit data output.

If enabled, an ETC is detected when the two- or three-character escape sequence is detected in the
transmit FIFO. An escape-character sequence is comprised of the special escape character followed
by the command character and an optional count for the delay period. The escape character isan
all-zero character (null or NUL inthe ASCII character set map). Five commands are supported in
the ETC command set:

¢ NUL NUL
* NUL x'81
NUL x’82 X’ xx
NUL x’83
NUL x’01-x"3F

NUL NUL — Send One NUL Character

This command sequence allowsthe NUL character to be sent alone. Thus, this‘ escapes’ the escape
when it isdesired to send anull character.

NUL x’81 — Send BREAK

This sequence forces the transmitter to enter the line-break condition for at least one character time.
Several conditions control the continuation and/or termination of the line break.

67

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.8.3

68

¢ If thereisno more datain the FIFO following the send break command, the break continues
indefinitely until terminated by a stop break command.

¢ |If thereisan insert delay command (see the next command) immediately following the send
break command, the break duration is set by the value programmed in the delay command.
Any other character in the FIFO immediately following the send break command carries an
‘implied’ end-of-break condition, causing the break to be terminated and the next character to
be sent.

NUL x’82 x'xx — Insert Delay

This command causes a delay between the previous character transmitted and the next character to
be transmitted. The hex value contained in the third byte of the sequence determines the time of the
delay based on the basic time period set by the PPR. The value is treated as an unsigned binary
value loaded into an internal counter. The counter decrements once for each tick of the prescale
period timer. Thus, if the PPR sets abasic timing period of 10 ms and the val ue set by the command
is100 (x’64), then adelay of 1 second is generated. Multiple insert delay commands can be placed
in the FIFO if time delays longer than that generated by a single delay period are needed.

This command is useful when adelay is required after sending a carriage return. A printer isan
example of thistype of situation. Often, the carriage return causes the printer to start a print cycle
and the sending device must wait for the print to compl ete before sending the next line of text
(unbuffered input). Using the insert delay command allows the delay to be performed
automatically without the need for the CPU to time it. The delay command is placed in the FIFO
directly following the carriage return and preceding the first data for the next line. The CD1284
automatically executes the delay following the carriage return, then restarts sending characters.

Another useful application of the delay command is as a built-in timer that the CPU uses as an
interrupt source causing it to periodically check itsinternal buffers for data to transmit. This
assumes that the channel is not currently transmitting data. When the CPU services the transmit
FIFO service request after a delay timeout (as set by the delay value) it can start transmission of a
buffer if datais available or resend the insert delay command and wait for the next service request.
Aninternal timer interrupt set by the CPU is now unnecessary to perform this function.

NUL x’83 — Stop BREAK

This command terminates abreak in progress regardless of other conditions. This command can be
preceded by insert delay commands to set a specific, programmed break period if more than one
character timeis required. Any character in the FIFO causes the break to terminate. NUL x’83 is
required only if it is necessary to stop the break and there is no more data to be sent. A break
continues until another character is sent or ESC x’ 83 is encountered in the FIFO.

NUL x’01-x’3F — Send Repeat Space
This command causes the CD1284 to send repeated space characters. The character following

NUL isinterpreted as a binary count specifying the number of ASCII space (x’ 20) charactersto
send. The count must be in the range of x’ 01 through x’ 3F (1-63 decimal).

Send Special Character Command
One command of the CD1284 transmits any one of the four special characters programmed in

SCHR1-SCHR4. The command isissued by the CCR[5] set to ‘1', and the |east-significant three
bits encoding a selection of one of the four characters. This function is preemptive, meaning that

Datasheet

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

the selected character istransmitted immediately following the currently transmitting character and
any character in the Transmitter Holding register. This preempts any characters in the transmit
FIFO. If there are characters in the transmit FIFO, transmission resumes after the special character
is sent.

One important use of this command is that it allows the CPU to flow-control a remote without
having to wait for the transmit FIFO to empty before the flow control character isplaced init. This
isaspecia case different from the normal transmitter operation of the CD1284, in that the
character can be sent without waiting for a transmit service request. The only requirement is that
the transmitter must be enabled (interrupts need not be enabled).

69

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Figure 10. CD1284 Transmit Character Processing

READY FOR NEXT
CHARACTER

REPEAT
CHAR MODE

»|COUNT, SEND

DECREMENT

ACTIVE

EMBEDDED
COMMAND IN
PROGRESS

RESET EMBEDDED
COMMAND IN

PROGRESS

‘SPACFE’

Y

CLEAR REPEAT

CHAR MODE

SEND _

BREAK o
SET DELAY

TIME USING >
NEXT CHAR

/

C

70

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 10. CD1284 Transmit Character Processing (Continued)

©

STOP BREAK

Y

SEND ‘00’
AS CHAR

Y

1. INITIALIZE REPEAT
CHAR COUNT
2. SET REPEAT

CHAR ='SPACFE’
3. SET REPEAT

\i

CHAR MODE
ILLEGAL CONDITION: _
SEND THIS AS A CHAR o
ETC SET EMBEDDED
ENABLED COMMAND IN >
2 PROGRESS FLAG

Datasheet

71

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 10. CD1284 Transmit Character Processing (Continued)

CHAR

PERFORM CR, NL
PROCESSING AS
SPECIFIED

»
'

Y

SEND CHAR

A

=

5.9 Baud Rate Generation

The CD1284 provides a separate baud rate generator both directions of each channel. Each receive
and transmit baud rate generator can be driven from one of five available clock sources. The source
being used is selected by the valuein the RITCOR. The selected clock isdivided by the valuein the
R/TBPR to yield the desired bit rate.

Note: R/T is used as a register abbreviation indicating Receive / Transmit followed by the register
acronym.

The five clock sources are:

CIkO System clock + 8, RITCOR =0
Clkl | System clock + 32, RITCOR =1
Clk2 System clock + 128, RITCOR =2
Clk3 System clock + 512, RITCOR =3
Clk4 System clock + 2048,

72 Datasheet

intel.

5.10

5.11

5.11.1

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

The system clock is the external clock driving the CLK input of the CD1284. Three example baud
rate tables are provided at the end of Section 6.7 on page . A sample program for automatically
deriving the baud rate clock selection and divisor is also provided in Chapter 6.0.

Serial Diagnostic Facilities — Loopback

The CD1284 provides the capability to perform internal loopback testing for both local and remote
loopback modes. Loopback mode is enabled by the LLM (Loca Loopback mode) and RLM
(Remote Loopback mode) bits (COR2[4:3]).

In Local Loopback mode, the output of the transmitter bit engineis directly connected to the input
of the receiver hit engine; the input and output pins (TxD and RxD) are disconnected. The TxD
output isleft in the mark condition so that remote equipment does not sense any line activity. Input
conditions on the RxD areignored. All channel parameters and service-request functionsarein
effect and operate normally. If enabled, specia characters in the loopback data are detected and
acted upon and UNIX tranglations occur.

Remote L oopback mode causes the CD1284 to echo any received data back immediately to the
transmit output. Thisis done on a character-by-character basis rather than on a bit-by-bit basis. In
other words, characters are echoed once they are completely received and assembled. Received
datais not placed in the FIFO, thus no datais sent to the CPU. The received character is
retransmitted with parity and stop bit options as defined by COR1. Note, if the transmit baud rateis
lower than the receive baud rate, overrun errors and loss of data are likely to occur.

Parallel Port FIFO and Data Pipeline Overview

The parallel port within the CD1284 implements all modes defined for the *slave’ (peripheral) side
inthe IEEE STD 1284 Sandard Sgnaling Method for a Bidirectional Parallel Peripheral Interface
for Personal Computers. This specification defines four methods of performing bidirectional data
transfers between a computer system and a peripheral device, in addition to the generally accepted
unidirectional Centronics--compatible mode. These modes include Compatibility mode, Reverse-
Nibble mode, Reverse-Byte mode, ECP (Extended Capabilities Port) with and without RLE (run
length encoding), and the EPP (enhanced parallel port).

The |EEE 1284-compliant parallel port consists of two major functional blocks:

¢ A data pipeline that moves data between the parallel port and the CPU and includes a FIFO,
holding registers, DMA control, interrupt control logic.

¢ A channel control state machine to perform all control and handshake generation on the
parallel port interface side of the device.

IEEE STD 1284 Protocols

The following sections discuss data movement within the pipeline for the various |IEEE STD 1284
operating modes. For a compl ete description of these modes, refer to the IEEE STD 1284
specification; it is beyond the scope of this data book to give complete information on the
specification. A copy of the IEEE STD 1284 standard can be obtained from:

| EEE Standards Department
445 Hoes Lane

73

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.11.2

5.11.3

74

Note:

P.O. Box 1331
Pascataway, NJ 08855-1331
USA

Bus Interface

DMA transfers are the preferred means of transferring data to/from the FIFO. However, it is also
possible to transfer data to/from the data pipeline by reading and writing the holding registers
directly through the PIO. DMA request and acknowledge handshake signals support transfers to/
from the 16-bit-wide DMABUF register. The direction of transfer is determined by the DMAdir bit
(PFCR[5]).

In the transmit direction, with DM AbufWe (PFCR[0]) set, the CPU can write 2 bytes at atime
directly to the DMABUF register. However, most applications are not concerned with speed on the
parallel port in the reverse direction and do not require 16-bit writes to the FIFO. The CPU must
avoid writing to these registers when they are already full or reading from them if they are empty.
The status bitsin the HRSR indicate if the holding registers and the DMA buffer are full or empty.
When writing a block of datato the CD1284 (DMAbufWeissetto ‘1), the CPU can determine
how much data the FIFO can accommaodate by reading the PFQR.

Should data become ‘trapped’ in the DMABUF register in the receive direction because of afailure
of the external DMA controller or because the external buffer areaisfull, it can either remain until
the DMA transfer can be resumed or the CPU can read the data directly from the DMA buffer.

The DMA buffer can only be read when DMAREQ* is active because data is not moved into the
DMABUF register until DMAREQ* is activated by the threshold logic or a timeout condition.

Once a DMA request is initiated by the CD1284, it is maintained until the last data transfer the
FIFO can accommodate occurs, or the CPU either clears DMAen or clears the FIFO and data
transfer logic by setting FIFOres. In the transmit direction, the DMA request is removed by the
CD1284 when it determines that the FIFO is nearly full. (If RLEen is set, the pipeline does not
fully drain into the FIFO, but the logic does not factor that into the decision to conclude the DMA
transfer.)

In the receive direction, the DMA request is removed when there are not at |east two more bytes
available to transfer or atagged byte has moved into the data pipeline. In the latter case, an
interrupt is generated to the CPU (IntEn must be true) to remove the tagged data from the pipeline.

The quantity of datatransferred within asingle DMA reguest can significantly exceed the capacity
of the FIFO if RLEen is set, the parallel port isin ECP mode, and compressed datais being
transferred. Thisis because the FIFO always stores the datain compressed form. Since other
modes do not support RLE compression, the CPU should only set RLEen when the parallel port
interface isin ECP mode.

Parallel Port FIFO

The CD1284 has a dedicated 64-byte FIFO with counters to maintain the fill/empty pointer
addresses, logic to manage data transfers, automatic DMA handshake, and status interrupts to the
CPU. A simpleregister interface provides control over setting the direction of the pipeline,
initializing/resetting the DMA pointers, setting the DMA threshold, and so on. The FIFO
management |ogic responds to data-transfer requests from the dedicated |EEE 1284 parallel port
state machine.

Datasheet

intel.

5.11.4

5.11.5

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Byte-alignment issues on transfers to/from the FIFO are avoided by having the FIFO byte-oriented
with 2-byte word packing/unpacking occurring between the DMABUF register and PFHR1 and
PFHR2. The order of byte transfers to/from the DMA buffer is controlled by the BY TESWAP
input. If BY TESWAP is high, the upper byte (bits 15:8) istransferred first. If BY TESWAP is low,
the lower byte (bits 7:0) istransferred first.

Data transfers to/from the CPU are initiated by a DMA request whenever the quantity of data or
space in the FIFO equals or exceeds the threshold value stored in the PFTR. The DMA request is
deasserted during the DMA cycle determined by thelogic to be the last because of filling/emptying
the FIFO or the presence of tagged data in the receive pipeline.

Receive Direction

In the receive direction (DMAdir = 0), the first two bytes of data placed into the FIFO by the
parallel port are immediately moved into the data pipeline, PFHR1 and PFHR2 (Figure 11 on
page 78). Thisis done in part to make the tagged status of the data visible to the pipeline control
logic. If RLEenis‘0’, any tagged data from the FIFO must move through the pipeline. However,
tagged data cannot be transferred to the CPU by a DMA transfer from the DMABUF register.
Therefore, the presence of tagged data in the pipeline causes an interrupt to the CPU. The CPU
must then examine the HRSR to determine the pipeline status.

If there istagged datain one of the holding registers, the CPU must read that register to empty it
and clear the tag. If more datais available in the FIFO, dataimmediately moves forward to fill the
pipeline. If the FIFO is empty, the pipeline does not move. If the CPU emptied PFHR2 and PFHR1
isfull, the datain PFHR1 moves forward to PFHR2 only if the FIFO is not empty.

The pipeline logic keeps the pipeline full in the receive direction. The value in the threshold
register is tested against the quantity of datain the FIFO. Therefore, anumber of characters equal
to the PFTR-threshold value plus two must arrive before a DMA request is made to the CPU to
remove the data.

Receiving Compressed Data

RL E compressed-data sequences that consist of atagged RLE count followed by the compressed
data character are stored in the FIFO in compressed form. As data moves from the FIFO into the
data pipeline, the tag bit is inspected. If the tagged datais an RLE count (HostAck signal is high)
and RLEen istrue, the RLE count is loaded into the RLCR instead of PFHR1; the next data
character isloaded into PFHR1. Decompression occurs by holding the compressed character in
PFHR1 as copies of the character are shifted forward into PFHR2. As each copy of the character is
shifted, the RLCR value decrements. When the RLCR reaches zero, the hold on PFHR1 is rel eased
and it can shift forward in the pipeline as ordinary data.

Tagged data from the FIFO is recognized as an ECP mode address and shiftsinto the pipeline
where it causes an interrupt to the CPU to remove the tagged data from the pipeline. If RLEen is
‘0", all tagged data from the FIFO is shifted into the pipeline and produces CPU interrupts.

If an immediate termination occurs between the reception of the RLE count and the corresponding
data, then the RLE count is stored in RLCR and the next data byte received in ECP modeis
uncompressed into the FIFO (based on the valuesin RLCR and if RLEen is still set). If the next
byte received in ECP mode is anew RLE count, then that value overwrites the old value in RLCR.

75

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.11.6

5.11.7

76

Note:

Stale Data (Stale, OneChar, and Timeout Status Bits)

Datatransfer to the CPU can also beinitiated by the ‘stale’ datatimer. Thistimer is reloaded with
the value in the SDTPR and restarts each time data is placed into the FIFO from the parallel port.
When the timer reaches zero, the status indication stale (visible in the PFSR) is set true unless
StaleOff (PACR[5]) is true.

StaleOff keepsthe stale statusfal se, even though the SDTCR counter valueis zero. Should the stale
status become true with at |east two characters of data available, aDMA request is made to transfer
the data. If the staleistrue and there is exactly one character available, the OneChar status hit is set
(PFSR[1]) and an interrupt is generated to the CPU to transfer the single residual character.

The Parallel FIFO Status register indicates the Stale and OneChar conditions, and FFmpty. The
HRSR (Holding Register Status register) shows that holding register PFHR2 contains the final
character. An odd number of bytes can not be transferred by DMA. If aDMA transfer completes
with 1 byte of dataleft, the datais held pending arrival of additional data or the expiration of the
stale data timer.

The OneChar statusis latched true when the FIFO and DMA buffer are empty and thereis one
character in the pipeline in PFHR2. While the OneChar statusis true, further pipeline operations
are inhibited. If additional data arrivesin the FIFO, it remains there until the CPU:

1. Servicesthe interrupt caused by the OneChar status, and
2. Readsthe data character from PFHR2.

When the CPU reads the single character from PFHR2, any newly arrived datain the FIFO
immediately moves forward into the pipeline and a DMA transfer can begin if conditions warrant.

Another latched status condition associated with the stale data timer is the Timeout status bit
(PFSR[5]). Timeout is reset by the FIFOres bit (PFCR[7]) and the CIrTO bit (PACR[3]). Timeout,
OneChar, and DataErr are pipeline interrupt conditions and, if enabled, generate an interrupt. In the
receive direction, the Timeout condition isarmed when Staleis'0’ and CIrTO and FIFOresare also
‘0’. When Stale becomes ‘1, the timeout istriggered, but is not set until aDMA transfer is
complete, the FIFO is empty, and there is no more than one character remaining in the pipeline. To
clear the timeout condition, set the CIrTO bit. To reenable the timeout function, clear the CIrTO hit.

The CPU can arm the timeout by awrite of ‘01h’ directly to the SDTCR. If thetimer expires before
any data arrives, an interrupt is generated for the timeout condition. If data arrives before the timer
expires, the interrupt delays until the data becomes stale.

Transmit Direction

In the transmit direction, the pipeline behaves in one of two ways depending on the RLEen control
bit. RLEen should only be set by the CPU after the parallel port isin ECP mode, otherwise
compression of data occurs, but cannot be supported in data transfers on the paralel port. If RLEen
is‘0’, datawritten to the DMABUF register by aDMA (DMAen true) or CPU write (DMAbuf\We
true) is moved through PFHR1 to PFHR2 and immediately transferred into the FIFO (if space is
available).

If RLEenis‘1’, run-length encoding is enabled and comparators among the pipeline stages
recognize repeated strings of characters and compress them (Figure 12 on page 80). To allow the
comparator-based logic to work, the pipeline registers, PFHR1 and PFHR2, must be kept full. One
comparator determines if the charactersin PFHR1 and PFHR2 areidentical.

Datasheet

5.12

5.12.1

5.12.2

Table 20.

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Another comparator determinesif the next character coming from the DMABUF register and the
character in PFHR1 are identical. Compression begins when the pipelineis full (immediately after
aDMA or CPU write to the DMA buffer) and both comparators show identical charactersin their
pipeline stages. This starts the compression process and the character in PFHR1 and the DMA
buffer shift forward. The (same) character in PFHR2 is not loaded into the FIFO, but rather the
RLCR incrementsto‘1’.

Aslong asidentical additional characters are loaded into the DMA buffer, the RLCR value
continues to increment and the datain PFHR2 does not move into the FIFO. When the repeated
sequence is finally broken, or the RLCR count reaches 127, the RLCR value transfers into the
FIFO, the RLCR zeros, and the character in PFHR2 transfersinto the FIFO. Compression resumes
when both comparators indicate the presence of a string of at least three identical characters.
During intervals between DMA transfers, the last two data characters are held in PFHR1 and
PFHR2.

After the entire block transfer is complete, the CPU must either zero RLEen or ensure that both
DMAen and DMAbufWe are zeros. When either of these conditionsistrue, the pipelineis released
and data held in PFHR1 and PFHR2 transfers into the FIFO.

Thetimeout interrupt can be a general timer interrupt in the transmit direction. Unlike the receive
case, when DMAdir istrue, the timeout statusisimmediately set when the timeout istriggered by a
‘0’-to-'1’ transition of Stale. To use the timeout interrupt, the CPU must load the desired time delay
directly into the SDTCR. When the timer expires, Stale becomes true and the timeout interrupt is
generated.

CD1284 Parallel Port Overview

Terminology

This document uses the terms ‘master’ and ‘slave’ for the IEEE STD 1284 specification terms
‘host’ and * peripheral’ that describe the two sides of a parallel-port interface.

Signal Names

The |IEEE STD 1284 specification uses different names for the nine control signals, depending on
the current mode of operation (Table 20). The CD1284 uses fixed names for each of its pins. The
names were selected to represent the most commonly used names of the various protocols. The
CD1284 device operates as a slave only. There are four input-control signals driven by the master-
side device, and five output-control signals driven by the dave-side device. The Parallel Data bus
(PD[7:Q]) isbidirectional.

Signal Names (Sheet 1 of 2)

Names Compatibility Rev. NB Rev. BT ECP EPP
Inputs
A 1284 SLCTIN* A 1284 A 1284 A 1284 nAStrb
HstBsy AUTOFD* HstBsy HstBsy HstAck nDStrb
HstClk STROBE* HstClk HstClk HstClk nWrite
ninit INIT* ninit ninit nRevReq ninit

77

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Table 20. Signal Names (Sheet 2 of 2)

5.12.3

5.12.4

Names Compatibility Rev. NB Rev. BT ECP EPP
Outputs
AkDaRq PError AkDaRq AkDaRq nAkRev USER1
PerBsy BUSY PerBsy PerBsy PerAck nWait
PerClk ACK* PerClk PerClk PerClk Intr
nDatAv FAULT* nDatAv nDatAv nPerReq USER2
XFlag SELECT XFlag XFlag XFlag USER3

State Machine

The parallel port is controlled by alarge synchronous state machine. The state machine is based on
the IEEE STD 1284 specification and conforms to all the functional modes (except extensibility
link options, none of which are currently — as of the print date of this document — defined).

Configuration

At power-up, the interface begins in Compatibility mode (Centronics mode) ready to accept data
from the master. Only the ETxfr bit (PCR[5]) is required to allow transfersin Compatibility mode
(parallel port only; datapath section is separate). PCR[7:5] enable transfers and Negotiation and

Manual modes.

Figure 11. FIFO Data Path Functional Diagram — Receive

(RECEIVE)
PFSR
TAGBIT [
TAG BIT
TAG |= TAG |- TAG (64 BITS) <
}—
©
T o)
< |= L STATUS STATUS o
DB[15:8] «— > n | w
= - < “ A)
o o
<
< o
N —
2 © |
" E ZI< FIFO (64 BYTES) l<—
€ o
2
DB[7:0] <«—| 3 2 |
= << <
- =
(a)
78 Datasheet

intel.

5.12.5

5.12.6

5.12.7

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Interrupts

Interrupts are enabled in the PCIER and interrupt status can be read in the PCISR. These two
registers have the same format.

Manual Mode

Manual mode allows direct control of the five output control signals and the PD bus. It is not
intended for data transfers, but rather for advanced diagnostics. Enter Manual mode by setting the
ManMd bit (PCR[7]) when the interface isin Compatibility mode.

The MMDir bit (PCR[1]) setsthe direction of the PD bus: 0 = input; 1 = output. When the MM Dir
bitissetto‘1’, datafor the PD bus comes from the MDR. The ManOE bit controls the tristate
buffer on the PD bus: 0 = floating; 1 = driving. When MMDir is‘0’, ManOE is ignored, PD[7:0]
are inputs, and the data can be read in the MDR.

Control Signals

Output signals are controlled by the OV R. The degree of control depends on the current mode. In
Manual mode, all five signals are under user control. In Compatible and EPP modes, only three
signals are available; the others are set by the state machine.

IVR, ZDR, ODR, and SSR monitor the four input signals. These four registers have acommon
format. The IVR aways shows the values of the four input pins. The ZDR and ODR allow the user
to force interrupts on specific signal transitions. Bits set in ZDR generate an interrupt if the
specified signal changes from ‘1’ to ‘0’. Similarly, bits set in ODR cause an interrupt if the
specified signal changes from ‘0’ to ‘1’. Setting both bits generates interrupts on either transition.
The SSR shows the status of signal changes according to ZDR and ODR. SSR indicates which
signal changed. (It is necessary for the user to read I VR to determine how the signal changed.) The
signal change interrupt is enabled with the SigCh bit (PCIER[4]).

79

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 12. FIFO Data Path Functional Diagram — Transmit

DB[7:0]

DB[15:8] —

(TRANSMIT)

PFCR

TAG BIT

TAG TAG TAG (64 BITS) >

STATUS STATUS
A A

DMABUFH

PARALLEL PORT

Y
\i

PFHR1
PFHR2
\i

FIFO (64 BYTES) >

Y

Y
DMABUFL

5.12.8

5.12.9

80

Parallel Port Interface to the FIFO

The DMAUdir bit indicates the current direction (0 = in; 1 = out) of transfers between the FIFO and
the DMA logic. Due to arecent negotiation, this can differ from the current parallel-port interface
direction. The CPU must change the direction after it receives an interrupt showing a direction
change. The FIFOlock bit (PACR[4]) stops the DMA pipeline, useful in diagnostics.

1284 Negotiations

All IEEE STD 1284 protocol negotiations are initiated by the master side. The role of the CD1284
isto accept or reject the attempted negotiation. The NER contains bitsto individually enable
specific |IEEE 1284 modes.

The various | EEE 1284 modes require negotiations on the parallel interface before they can be
entered. Until asuccessful negotiation sequenceis complete, the interface remainsin Compatibility
mode. These negotiations occur in two stages; both stages occur automatically after the device is
commanded to begin the negotiation procedure to a particular mode. The first stage determines if
the dlave is |EEE 1284-compatible. Once determined, the interface continues the process to
determineif the mode requested is supported. The result of the requested negotiation appearsin the
NSR.

For negotiations to occur, the slave must enable the E1284 bit (PCR[6]). Datatransfers require that
the ETxfr bit (PCR[5]) be set; negotiations can occur without data transfer enabled.

Datasheet

5.12.10

5.12.11

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Negotiation Status Register

After any |EEE-1284 negotiation or termination, the current protocol status can beread in the
NSR. NegOK and NegFl (bits 7:6) indicate successful and failed attempts. Invalid (bit 4) indicates
that the mode terminated from an invalid state. Termination from valid states are reported as
successful with NegOK.

A 4-bit code is displayed in the lower portion of the NSR to indicate the results of successful
negotiation. This 4-bit code also indicates the mode that the interface wasin when an invalid
termination was detected, aswell as afailed negotiation. Interrupts indicating a successful
negotiation into a reverse mode should prompt the CPU to load reverse data into the FIFO.

Special Command Register

The bitsin the SCR cause actions on the parallel port. SetPs and ClrPs (bits 3:2) control data
movement into the CD1284 from the remote master. In Compatibility mode this function posts
error status to the remote. Errors can only be presented to the master by the dave during the active
BUSY period. SetPs causes the CD1284 to stop transfers by asynchronously asserting the BUSY
signal. To protect against the possibility of dataloss, one more byte can be strobed into the CD1284
after BUSY goes active due to the setting of SetPs. When the error statusis delivered, ClrPs
restores the parallel interface to the normal running state.

EPIrq sends an interrupt pulse in EPP mode. Setting the RevRq bit indicates to the host parallel
port that datais avail able for reverse transfer in either Compatible or ECP mode. These operations
are further described in the relevant protocol sections.

Data Transfers

In Compatibility mode, incoming HstClk (STROBE*) pulses activate PerBsy (BUSY), and the
data on the PD linesis held in latches. PerBsy protects the data latches by signaling the master itis
not ready for more transfers. After the HstClk pulse ends, a pulseis sent on PerClk (ACK*) to
acknowledge the receipt of the data into the holding latches. After the data moves from the latches
to the FIFO, PerBsy goes low to signal readiness for the next character.

All other data transfer modes require | EEE-1284 negotiations.

Compatible Mode Status

The |EEE 1284 specification requires that the three Compatibility mode status lines (SELECT,
FAULT*, and PError) must not be asserted unless PerBsy (BUSY) is high. PerBsy can only be
activated in response to areceived character, and must remain high until the status condition (for
example, paper out) changes.

To send these status signal s to the master device, set the SetPs bit (SCR[2]) and the appropriate bit
in the OVR for each of the status signals. The SetPs bit activates PerBsy, which remains active
until ClrPs (SCR[3]) is set. No datais lost in this operation.

81

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.13

5.13.1

5.13.2

5.13.3

5.13.4

82

1284 Parallel Protocol Support

Compatibility Mode

Compatibility mode provides backward compatibility with Centronics and PC-compatible printer
interfaces. When the host parallel port isin Compatibility mode (with no data transfer in progress),
the host can initiate data transfers in Compatibility mode or initiate negotiations to a new operating
mode.

Only Busy-while-Strobe and Ack-in-Busy timing is supported in Compatibility mode. Busy-after-
Strobe, Ack-after-Busy, and Ack-while-Busy timings are not supported.

nStrobe | | '

nAck I_I
BUSY | L

Reverse-Nibble and Reverse-Byte Modes

These modes support reverse transfers only, from slave to master. Reverse-Nibble mode is enabled
with NER[0]; Reverse-Byte mode is enabled with NER[1]. Reverse-Nibble mode sends 4 bits at a
time over four of the periphera status lines. With software drivers the advantage of this schemeis
that any unidirectional PC parallel port can be used for bidirectional data transfers. Reverse-Byte
mode requires bidirectional buffers on the PC hardware, but allows substantially faster transfers
because it moves one byte at atime.

There is no mechanism in Compatibility mode for the slave to indicate that datais available for
reverse transfers. The master must poll the slave by negotiating into areverse mode and examining
the nDatAv signal. During negotiation, RevRq (SCR[0]) instructs the CD1284 to post the
availabhility of datato the master through the nDatAv signal.

ID Request

An ID request is enabled with a combination of NER[6] and one of four other transfer mode bits.
ID requests can be made in conjunction with ECP, ECP/RLE, Reverse-Byte, and Reverse-Nibble
modes; there is no ID request function defined for EPP mode. The CD1284 can accept an ID
request in any mode whereit is enabled to do transfers. IDReq is set when an ID request is received
in any enabled mode.

ECP Mode

ECP mode allows bidirectional transfers and supports the RL E-compression scheme. The ability to
expand RLE dataisrequired of al IEEE-1284, ECP-compliant devices, but the ability to compress
datais optional. The CD1284 handles both expansion and compression in the data path section.
The parallel port simply passes the inverse of the command signal to/from the FIFO on the ninth
tag bit in the FIFO. ECP mode is enabled by NER[2]. RLE mode enabling requires both NER bits
2and 3.

Datasheet

5.13.5

5.14

Table 21.

5.15

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

The handshake isidentical for both ECP and RLE modes. The control signals, HstBsy and PerBsy
(in the forward and reverse directions, respectively), indicate command and address options. If
HstBsy/PerBsy is low, the upper bit of the byteis examined: ‘0’ indicates to interpret the lower 7
bits as an address; ‘1’ indicates to use the lower 7 bits as an RLE repeat count. This count shows
the number of times to consecutively repeat that the next data character in the datastream.

The master device isresponsible for determining the direction of the transfer. The slave can request
adirection change, but the master actually changes the direction. ECP mode always begins in the
forward direction, from master to slave. The CPU sets the RevRq hit (SCR[0]) to request reverse
transfers. Once the master changes direction, RevRq is automatically cleared and the DirCh
interrupt status appears in PCISR (if enabled in the PCIER).

The master device switches the direction of the interface for forward transfers when the ave
indicates no more data is available.

EPP Mode

Data transfers use the DMA pipeline and the FIFO. Address transfers are handled out-of-band, not
in the FIFO stream. When the slave receives an address write command, it deposits the addressinto
the EAR and asserts an EPPAW interrupt request. When the slave receives aread address
command, the contents of the EAR are returned.

Protocol Timing

The |EEE-1284 specification timing parameter Tp specifies the minimum pulse width and the
minimum setup time as 500 ns. The SPR must be loaded with the number of system clock ticks
equivalent to 500 ns.

System Clock Settings

CL(:\(AE;;*q' Ti"zslsT)iCk SPR Value Tp Width
16 625 8 500
20 50 10 500
25 40 13 520

General-Purpose 1/0 Port

The CD1284 provides an 8-bit general-purpose port (GP[7:0]) to control or give status of external
functions. Each of the eight signalsisindividually programmable for direction, so the port can be
comprised of any number of inputs and outputs. Each port signal isimplemented with a standard,
bidirectional HCMOS pad and is fully TTL compatible. The port is controlled by two internal
registers— GPDIR and GPIO.

Each bit in the GPDIR sets the direction of the corresponding bitinthe GPIO; ‘1" setsthe signal as
output; ‘0" setsit asinput. When writing to the GPIO, only the bits programmed as outputs are
affected by the contents of the data bus. When reading the GPIO, bits programmed as inputs reflect
the true state of the condition of the external pin; bits programmed as outputs reflect the state of the
last value written to the register and the current state of the output pins.

83

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

5.16

84

Note:

At reset, al bitsin the GPIO are cleared and the signal s are programmed as inputs.

Interrupts are not generated on signal changes within the General-Purpose 1/0 port; the CPU must
periodically poll GPIO to detect changes in external conditions. Therefore, if it is necessary to
detect changes, use the port with signals that change with low-duty cycles.

Parallel Port Interface

The CD1284 parallel port signals are implemented with Level 2 characteristics— as defined in the
|EEE STD 1284 specification with the exception of transient protection. The port can be directly
connected to the interface cable with the addition of afew external components. The components
consist of passive pull-up resistors, series-impedance-matching resistors, and clipping diodes.
Additional noise-filtering may be required in an end system. Figure 13 on page 85 shows a typical
interface with the components listed above.

Some system designs may require buffers between the CD1284 and the cable. Systems that require
drive cables longer than the specified maximum of 10 m or those that need to protect the CD1284
require inexpensive buffers between it and the cable. The device provides two signal outputs,
PDBEN and EBDIR, that can to connect and control buffers (such as, 74AS245 or equivalent).
These signals do not allow direct control of the buffer. However, the addition of an XNOR gate
provides both an enable control signal and asignal to select the direction of the buffer. PDBEN and
EBDIR are outputs from the control state machine that indicate its current state (see Figure 14 on

page 86).

Datasheet

In IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 13. Cable Connection

+5V . o o]
1.2kQ 1.2 kQ #
BIDIRECTIONAL
SIGNAL LINE Wy ¢ ‘ ‘
20Q
p— —
‘ ‘ Iw
-l
OUTPUT f .
| i = -
SIGNAL LINE MW ‘ ‘ s
20Q 23
on
|]
INPUT , T ,
SIGNAL LINE ‘ ‘
‘ TRANSIENT ‘
PROTECTION
CD1284
L _ —_]

Caution: Transient protection is not implemented inside the CD1284 device, therefore transient voltages may cause
damage. Laboratory testing has shown that this type of protection is not necessary under normal conditions.
However, damage may occur under harsh conditions or when subjected to unusual abuse. Also note, the protection
circuit shown here may cause a powered-up host to supply power to the +5 V (V) of the peripheral if it is not
powered up. If this is a concern, then another protection circuit must be designed.

Datasheet

85

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 14, External Buffer Control

TO CD1284 =

roT
> B A 4—’—'—> TO CABLE
%o]
3
2]
D Lo
<
PDBEN - ™~
‘ G
EBDIR DIR

Impedance matching and protection circuitry
(see Figure 13) as required for the 74AS245.

5.17

5.17.1

5.17.2

5.17.3

86

Hardware Configurations

The simplicity of the CPU interface to the CD1284 allows the device to be designed into systems

that employ popular microprocessors such as the Intel 80x86 family (8086, 80286, 80386, and so

on), the Motorola” family (68000, 68010, 68020, and so on), the National Semiconductor” 32x32
family (32CG16, 32332, 32532, 32GX 32, and so on), and the AMD" 29000.

Interfacing to an Intel” Microprocessor-Based System

With very little extralogic, the CD1284 can interface to any system based on a processor in the
Intel 80x86 family. Figure 15 shows a generalized view of an I/O-mapped interface with an 80286-
based system. To provide the proper strobes and controls, the IOR* and IOW* control strobes
synthesize the DS* and R/W* signals. DTACK?* is used as an input to wait-state-generation logic
that holds the processor (if necessary) until the CD1284 has completed the 1/O request.

Interfacing to a Motorola™ Microprocessor-Based System

Interfacing to a 68000 family deviceis relatively simple. Bus timing and the interface signal
definitions closely match those of the 68000 microprocessor, which allows a direct connection in
most cases. With later versions (68020, 68030), some additional logic is required to generate the
DSACKO* and DSACK1* functions that replace the DTACK* on earlier devices. The examplein
Figure 16 on page 88 shows a generalized interface to a 68020 device.

Interfacing to a National Semiconductor®
Microprocessor-Based System

The connections between the CD1284 and an NS32000 (32GX 320, 32CG16, and so on) embedded
controller are also relatively simple. Aswith the Intel devices, cycles are controlled by the DS*,
CS*, and R/W* signals synthesized from the available I/O-control signals. 1/O-cycle extensions
(wait states) are generated by logic connected to the DTACK* signal. All necessary controls are
available to prevent multiple read/write cycles in the CD1284 FIFOs when using memory-mapped
I/0.

Datasheet

intel.

Figure 17 on page 89 depicts a simplified interface example.

Figure 15. Intel” 80x86 Family Interface

IEEE 1284-Compatible Parallel Interface Controller — CD1284

80x86
SYSTEM cD1284
»| cs*
ADDRESS A[23:7] ADDRESS »| SVCACKR*
DECODE »| SVCACKT*
LOGIC
»| SVCACKM*
»| SVCACKP*
A[6:0]
»1 A[6:0]
DATA T 1 DB[15:0]
IOR*
DS*
IOW*
»| R/W*
SVCREQR*
e [SVCREQT*
INPUTS
SVCREQM*
~ SVCREQP*
or DMAREQ*
CONTROL
»| DMAACK*
WAIT-STATE
READY GENERATION - STACK
LOGIC
Datasheet -

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Figure 16. Motorola™ 68020 Interface

68020
SYSTEM CD1284
AS* - cor
ADDRESS _ .
FC[2:0] > DECODE SVCACKR
Loeic »] SVCACKT*
A[31:9]
ADDRESS | svenckn
»] SVCACKP*
A[8:2]
| A[6:0]
DATA | »| DB[15:0]
DS* -
R/W* |= -
- SVCREQR*
- PRIORITY
- SVCREQT*
IPL[2:0] |-« ENCODING Q
SVCREQM*
SVCREQP*
DMA = DMAREQ*
CONTROL
»] DMAACK*
DSACKL = TRANSFER
CONTROL < DTACK*
DSACKO* |«

88

Datasheet

INlal.

Figure 17. National Semiconductor” 32000 Interface

IEEE 1284-Compatible Parallel Interface Controller — CD1284

32000
SYSTEM CD1284
DATA
D[15:0] |<——] TRANSCEIVER | gy .
LATCH DB[15:0]
< SVCREQR*
INTERRUPT
INPUTS SVCREQT*
SVCREQM*
- SVCREQP*
A[6:0]
A[31:0] -
IOINH* >
cs*
IODEC* |-=
SVCACKR*
BWO l= ADDRESS
< DECODE AND SVCACKT*
BUS CYCLE
BW1 = CONTROL SVCACKM*
CONF* > SVCACKP*
BMT* > DS*
RDY* | DTACK*
A
BCLK
DDIN* RIW*
DMA < DMAREQ*
CONTROL
DMAACK*
Datasheet 89

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

6.0

Programming

6.1

6.2

6.2.1

90

Overview

As shown in theregister summary tables in Chapter 4.0, the CD1284 local CPU interface is made
up of alarge array of registers. These registers control all aspects of device behavior; some affect
overall chip operations, and others affect only one channel. Fortunately, most of the registers are
only modified once, during initiaization, and rarely modified during normal operation. The
purpose of this chapter is to discuss these aspects, as well as the methods of interacting with the
CD1284 for channel-service needs.

Initialization

To properly power-up a CD1284, several procedures must be completed. These include device
initialization, programming global functions, and setting channel-specific parameters. In most
cases, initialization routines are executed once; during the overall system boot-up. The following
sections discuss these steps in detail (see Figure 18 on page 92 for aflow-chart step outline).

Device Reset

The procedures that perform chip reset are normally executed after a power-up, system-wide reset.
The hardware reset control signal, RESET* causes the CD1284 to perform its own internal
initialization. If desired, the driver software can issue afull chip reset before chip initialization
begins. To accomplish this, use the following steps (see Figure 18 for aflow-chart step outline):

1. Wait for CCR (Channel Command register) to contain 0x00.

The contents of the CCR must be ‘0’ before acommand isissued. Thisisrequired to ensure
that any currently executing command has completed before the new one is started. Since this
is probably the first command being written to the CD1284 after power-on initialization, the
CCRislikely tobe ‘0, but it is recommended to always check the CCR before writing in a
new command.

2. Set the CAR (Channel Access register) to one of the two seria channels (2 or 3).

This step is required when the parallel channel does not respond to any value written to the
CCR address (this register does not exist in the parallel channel).

3. Write hexadecimal 81 (x’ 81) to the Channel Command Register (CCR).

This command causes the CD1284 to perform an all-channel and global reset. It causes the
internal RISC processor to begin execution from its power-up reset location. The results are
the same asif the RESET* input is activated. All internal interface registers are cleared, the
FIFOs are flushed, and all channels are disabled.

Thefull-chip reset command is a special-case CCR operation. Normally, the commandsissued
to the CCR affect only the channel selected by the CAR. In this case, the setting of the CAR is
insignificant, but must be set to channel 2 or 3. Unlike other commands issued to the CCR, the
global reset command does not use the clearing of the CCR. Instead, the GFRCR indicates that
the command is complete (see below).

4. Wait for the firmware revision code to be written into the GFRCR.

Datasheet

intel.

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Internal firmware uses this operation to flag completion of the reset procedure. After the reset
isissued, the GFRCR is one of the first registers cleared and it is the last one set before normal
runtime code execution begins. The initialization routine must wait for this register to become
non-zero before it begins any other programming of CD1284 registers. If the CPU is
sufficiently fast, it could begin testing the GFRCR before the MPU clears it. The assumption
could be made that the CD1284 has completed internal initialization when, in fact, it has not
even started. To avoid this error, the CPU should look for the GFRCR to changeto ‘0. It
should then look to the current revision code. Alternatively, the CPU can clear the GFRCR just
prior to issuing the global reset command and then poll for the correct revision code. Thisis
useful in slow systems that cannot guarantee that the CPU can check the register after it is
cleared or before it is loaded with the revision code.

This procedure is also used as part of a diagnostic test suite. The device completes internal

initialization within 500 pisec. A timer (software or hardware) detects when the operation is not
completed within that time and cues if the deviceis functional.

91

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

Figure 18. Flow Diagram of CD1284 Master Initialization Sequence

CLEAR
GFRCR

A

ISSUE RESET
COMMAND

A

* REVISION CODE FOR
REVISION E DEVICE = 25

FUTURE REVISIONS, IF

NECESSARY, INCREMENT
CONTINUE THIS BY ONE; FOR EXAMPLE,

INIT PROCESS REVISION F WOULD BE 26.

92 Datasheet

intel.

6.2.2

6.2.3

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Global Function Initialization

Once chip reset has been completed, the next step is to set the Global Operating mode and timer
prescale. All other initialization occurs at the channel level.

Set the Prescaler Period Register (PPR)

The PPR sets the master time ‘tick’ for the CD1284. It is a binary value that sets a constant by
which the system clock is divided (after afixed prescale of 512) to produce the internal clock for
the on-chip timers (This does not include baud rate generators). This clock is used for receiver
FIFO time-out generation and delay timing for the insert delay command in the embedded transmit
command set. For example, to generate atimer clock of 1 ms, the value is computed as:

[25MHZ] _
0512 D><1ms = 48.828

The value 49 isloaded into the PPR. This value, selects an approximate 1-kHz clock as the source
for the RTPR (Receiver Time-out Period registers) of each channel. Those registers are loaded with
an appropriate value divisor that generate the desired character time-out periods. Thisvalue, 49, is
the recommended minimum value that is placed in the PPR for a clock frequency of 25 MHz.
Values that generate atime period of less than 1 ms adversely affect the performance of the MPU,
and thus, overall seria data performance.

Serial Channel Initialization

At this point, the basic operation of the CD1284 serial channels are set up. The internal register
states are cleared and basic timer operations are initialized. The next step is programming the
operating modes of each channel. This includes setting the values for the interrupt vectors, the
receive and transmit baud rates, number of bits per character, number of stop bits, parity, special
characters, if any, and so on. Each channel can have a completely unique set of operating
characteristics or they can all be the same.

Serial channel initialization is application-dependent. The operating modes of one channel have no
effect on the operation of others.

Thefollowing code, isatypical initialization sequence for setting up a single serial channel:

9600 baud, send and receive

8 bits per character, 1 stop bit,No parity

Aut omatic | n-Band (Xon/ Xoff) flow contro

Transparent flow contro

Speci al character detect enabled

Ei ght character receive FIFO threshold

Recei ver and transmitter enabled for interrupt operation
Enabl e | STRIP on incom ng characters

A clear way of showing thisinitialization sequenceisby a‘C’ program fragment; the code shown
below, is compatible with Borland™ Turbo CO:

/* Init channel. Channel nunber is included in call. Register names and addresses
are defined in the header file (not shown). This routine does not include paralle
channel initialization. */

i nit_channel (chan)

char chan

{

93

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

6.3

6.3.1

6.3.1.1

94

out port b(CAR, chan); /* set channel nunber in CAR */
out port b(RTPR, 0x14); /* set channel tinme-out value (20ns) */
out portb(TCOR, 0x01); /* constants for 25 MHz clock — clock option*/

out portb(TBPR, 0x51); /* — baud rate period */
out port b(RCOR, 0x01); /* constants for 25 MHz clock — clock option*/
out port b(RBPR, 0x51); /* — baud rate period */

out portb(COR1, 0x03); /* no parity, 1 stop bit, 8 bit chars */
out portb(COR2, 0x40); /* auto. in-band flow control */

out portb(COR3, 0x38); /* transp. flowcontrol, special char 1 & 2 detect,
fifo thresh = 8 */

while (inportb(CCR) !'= 0)/* make sure that CCR is zero before issuing
conmands */

out port b(CCR, O0x4E); /* issue COR changed command for COR1, 2, 3 */

out portb(COR5, 0x80); /* enable ISTRIP */

out port b(SRER, 0x14); /* enable receive and transmt interrupts */

while (inportb(CCR) != 0)/* make sure that CCR is zero before issuing
conmands */

out port b(CCR, 0x1A); /* issue receiver and transmitter enable command to
CCR */
}

Serial Poll Mode Examples

The CD1284 provides a set of seven registers dedicated to Poll-mode operation, described in
Chapter 5.0. This section shows one of many ways that these registers are used to detect and
service requests from any of the channels receiver, transmitter, or modem signal change functions.

The primary registersinvolved in polling are: SVRR, RIR, TIR, MIR, and CAR. The
supplementary registers are: RIVR, TIVR, and MIVR. Of the latter three registers, only RIVR is
actually used. RIVR provides the service request status for ‘good’ data or exception data. The
TIVR and MIVR provide redundant information and are rarely used. Other registersrelated to
service requests (TDR, RDSR, MISR, and so on) perform the same functions as in hardware-
acknowledged service requests. The parallel channel uses aslightly different register manipulation
procedure and is shown separately. The top-level polling routine is the same regardless of the type
of request serviced.

Once again, C code fragments describe the functions. Aswith other coding examples, it is assumed
that register addresses are defined elsewhere, such asin a header file. The routines cannot be
considered complete. The routines cannot be considered compl ete; some pieces are dependent on
the system software design and the code presented is only an example. The pieces do, however,
show methods used to implement the poll mode service request/service acknowledge sequence.

Polling Routine Examples

Scanning Loop

/* Pol | -node code fragnments routinely check for any servicing requests and branches
to the appropriate service routine. The code prioritizes service requests as receive,
transmt, nodem and parallel, in that order. System design dictates the actual
priorities required. Note that the routine ignores the state of the DVA active bit.
*/
pol I ()
{

char stat us;

char rx_stat = tx_stat = md_stat = 0, par_stat = O;

if (status = inportb(SVRR) & OxOF) {/* Mask off DMA status */

Datasheet

6.3.1.2

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

switch (status) {
case 1: /* all values that include a receive
request */
case 3:
case 5:
case 7:
case OxF:
rx_stat = service_rec();
return(rx_stat);
br eak;

case 2: /* all values that include transmt but
not receive */

case 6:
case OxA:
case OxE:
tx_stat = service_txm();
return(tx_stat);
br eak;
case 4: /* nmodem service request */
case O0xC
md_stat = service_ndn();
return(nd_stat);
br eak;
case: 8: /* parallel port service request */
par_stat = service_par();
return(par_stat);
br eak;
defaul t: /* can’t happen */
br eak;

}

Once the code above locates an active request posted in the SVRR, it calls the appropriate
subroutine to service the request. The service routines follow.

Serial Receive Service

/* The receive service acknow edge cycle begins by reading the RIR. This register
contains the necessary information to switch the CD1284 into the correct service
acknow edge context. The RIR is saved for use at the end of the routine and then
copied into the CAR. The act of copying the RIRinto the CAR forces the context
switch. The channel nunber requesting service is extracted fromthe RIR The RI VR
regi ster indicates whether the request is for good data or exception data and is
used to correctly handl e the request. At the end of the service, the upper two bits
inthe RIR are cleared causing the switch out of the service acknow edge context. */

service_rec()

{

char serv_type, save_rir, save_car, channel, status, char;

int char_count, i;

save_rir = inportb(RR); /* retrieve and save receive interrupt
val ue */

channel = save_rir & 0x03; /* extract channel nunber fromthe R R/

save_car = inportb(CAR); /* save CAR for restore */

out port b(CAR, save_rir); /* switch CD1284 to service ack. context
*/

serv_type = inportb(RI VR) & 0x07; /* read vector register; get type (good/
exception)*/
switch (serv_type) {

case 3: /* good data service */
char _count = inportb(RDCR); /* get nunber of
characters in FIFO */
for (i =1; i <= char_count; i++) {/* - read that number of

chars */
char = inportb(RDSR); /* read char from FI FO */

95

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

6.3.1.3

6.3.1.4

96

/* Code here would put the character in a buffer of some sort for
each

* channel. That code woul d be dependent on systemsoftware design
* so it won't be shown here. */

outportb(RIR save_rir & Ox3f);/* term nate service ack.
sequence */

out port b(CAR, save_car); /* restore original CAR* /
return(0);
br eak;

case 7: /* exception data service request */

status = inportb(RDSR);/* by definition, only one char; get
status */

outportb(RIR save_rir & Ox3f);/* term nate service ack.
sequence */

out port b(CAR, save_car); /* restore original CAR */
return(status); /* just return the error type */
br eak;

Serial Transmit Service

/* The transmt service acknow edge routine follows very nearly the sanme steps that
the receive service routine follows. This time, the TIRis used to force the switch
to a transnmt service for the requesting channel. */

service_txm)

{
char save_tir, save_car, channel;
int char_count, i;
save_tir = inportb(TIR); /* retrieve and save transmt interrupt
val ue */
channel = save_tir & 0x03; /* extract channel nunber fromthe TIR*/
save_car = inportb(CAR); /* save CAR for restore */
out port b(CAR, save_tir); /* switch CD1284 to service ack. context
*/
/* Buffer managenment code would set-up pointers to the next 12
* characters (maximum) to be sent on this channel. Again, buffer
* layout is system design dependent and won't be shown here.
*/
for (i =0; i <char_count; i++) {/* transmt FIFO can take 12 characters
*/
out portb(TDR, *next_char++);
/* it is assunmed that char_count and next_char is set up by buffer code
*/
}
outportb(TIR save_tir & Ox3f);/* term nate service ack. sequence */
out port b(CAR, save_car); /* restore original CAR */
return(0);
}

Modem Service

/* Code to handl e nodem si gnal change service request can be sinple or conplex
dependi ng on whether port control is handled directly in the service routine or
sinmply noted with status returned. The follow ng routine services the request and
returns the status of which signals changed with the channel nunber OR ed into the

Datasheet

6.4

6.4.1

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

|l east-significant two bits; the main driver software nust performthe necessary
functions. As with the receive and transmt routines, the Interrupt register, this
tine the MR, is used to force the CD1284 into the service context. */

servi ce_nmdn()

{

char save_mr, channel, save_car, ndm status;

save_mr = inportb(MR); /* retrieve and save nodemi nterrupt val ue
*/

channel = save_mr & 0x03; /* extract channel nunber fromthe MR*/

save_car = inportb(CAR); /* save CAR for restore */

out port b(CAR, save_mr); /* switch CD1284 to service ack. context
*/

mdm status = i nportb(M SR); /* get status of which nodem signals
changed */

outportb(MR, save_mr & 0x3f) /* terminate the service ack. sequence */

out port b(CAR, save_car); /* restore CAR */

return(mdm.status | channel);
}

Hardware-Activated Service Examples

In nearly all respects, the way that the CPU interacts with the CD1284 during hardware-activated
service acknowledge is the same as software-activated methods. The main differenceis that the
SVCACK?* input signals perform the context switch automatically, relieving that duty from the
CPU. Theresult isthe same: the CAR is set to point to the correct channel and the deviceis placed
in the proper internal mode to service the request.

When the SVCACK?* input isactivated, aread cycleis performed. The CD1284 places the contents
of the appropriate Interrupt Vector register (RIVR, TIVR, MIVR) of the channel requesting service
on the data bus. The CPU uses the information provided to determine the type of serviceand the ID
number of the device being accessed in the case of daisy-chained multiple CD1284s.

At the end of the service routine, the CPU writes a dummy value to the EOSRR. This causes the
switch out of the service acknowledge context and restores the environment to what it was before
the service began. Again, the parallel port serviceis slightly different and it is shown separately.

The following code fragments show the differences between this type of service acknowledge and
the types shown above for the software-activated context switch. Only the beginning and ending
steps are shown; the code between is very similar to the previous examples. These routines can be
executed as the result of a hardware interrupt or by software polling as in the previous examples.
For the purpose of this discussion, the method of arriving at the proper service routine is not
important.

Serial Receive Service

/* The recei ve service acknow edge cycl e begi ns by executing a service acknow edge
cycle, which activates the SVCACKR* input. The data obtained as a result of this
‘read’ cycle is the contents of the RIVR register of the channel nmking the service
request. The service routine decodes the vector in the |least significant three bits
to determine if the data is ‘good’ or ‘bad (exception). The context switch is done
automatical |y when the SVCACKR* signal is activated and the CAR does not need to be
| oaded. The routine reads the RICR to determi ne the requesting channel nunber. |f
this is a nultiple-CD1284 systemusi ng dai sy-chai ning, the routine extracts the chip
ID fromthe upper five bits of the RIVR */

service_rec()

{

97

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In o
char serv_type, vector, channel, status, char;
int char_count, i;
vector = inportb(SVCACKR); /* gen. ack and get vector (read LIVR) */
channel = inportb(RICR) >> 2; /* extract channel nunber fromthe RICR*/
serv_type = vector & 0x07; /* mask RIVR to get type (good/
exception)*/
switch (serv_type) {
case 3: /* good data service */
char_count = inportb(RDCR); /* get number of characters in FIFO
*/
for (i =1; i <= char_count; i++) {/* - read that nunber of
chars */
char = inportb(RDSR); /* read char from FI FO */
/* Code here woul d put the character in a buffer of sone sort for
each

6.4.2

98

* channel . That code woul d be dependent on systemsoftware design
* so it won't be shown here; this code just shows how to

mani pul ate the
* CD1284 registers to inplenent the poll node service

acknow edge. */

}
br eak;
case 7: /* exception data service request */
status = inportb(RDSR);/* by definition, only one char; get
status */
br eak;
}
out port b(EOSRR, 0x00); /* wite dunmmy value to EOSRRto term nate
*/
}

Serial Transmit Service

/* The transmt service acknow edge routine follows very nearly the sane steps that
the receive service routine follows. The SVCACKT* input is activated to start the
service cycle, reading the contents of the TIVR and the TICRis read to get the
channel nunber. */

service_txm)

{
char vector, channel;
int char_count, i;
vector = inportb(SVCACKT); /* retrieve and save transmt interrupt
val ue */
channel = inportb(TICR >> 2; /* extract channel nunber fromthe RI CR*/
/* Buffer management code would set-up pointers to the next 12
* characters (maximum) to be sent on this channel. Again, buffer
* layout is system design dependent and won't be shown here.
*
/
for (i =0; i <char_count; i++) {/* transmt FIFO can take 12 characters
*
/
out port b(TDR, *next_char++);
/* it is assunmed that char_count and next_char is set up by buffer code
*
/
}
out port b(EGSRR, 0x00); /* write dumy value to ECSRRto terminate
*
/
}
Datasheet

intel.

6.4.3

6.5

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Modem Service

/* The follow ng routine services the nodem change service request. Context swtch
is set up by activating the SVCACKM input, reading the MVR The routine reads the
M SR regi ster to determ ne which nodem signal (s) changed. Channel status is an
externally defined variable that this routine updates. */

service_mdnm()

{

char vector, channel;

vector = inportb(SVCACKM ; /* retrieve and save transmt interrupt
val ue */

channel = inportb(MCR) >> 2; /* extract channel nunmber fromthe RI CR*/

mdm st at us[channel] = inportb(MSR);/* get status of which nodem signals
changed */

out port b(EOSRR, 0x00); /* wite dummy value to EOSRRto term nate
*/
}

Parallel Channel Service Routines

In most respects, the parallel channel functions in the same way as the two serial channels, but the
Poll mode operation is different. Its functions can be performed in a couple of ways. The MPU is
only involved with the parallel channel in performing interrupt generation services. All other
channel operations are completely separate. Since the MPU isinvolved in the interrupt structure,
aspects of its behavior must be taken into account.

99

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 19. Polling Flow Chart

NOTE: It may not be necessary to poll the PFSR if
DMA requests are enabled. With DMA
requests enabled, the DMAREQ bit
(SVRR[7]) can be polled to determine

| HARDWARE RESET | when a FIFO threshold is exceeded. If
DMA requests are disabled, the PFSR

Y must be polled to determine when to move

| SOFTWARE RESET | data to and from the FIFO. If DMA requests

are enabled, data must be read through the
DMABUF register; this requires a 16-bit
data bus.

Y
| INITIALIZE DEVICE |
POLL DEVICE AGAIN POLL DEVICE AGAIN

» | -t
- | -

DMAREQ
(_
SERVICE DMA REQUESTl - ooh
SRP SET FF FULL (receiving)
OR
Pipeline SET TEST EMPTY (transmiting)
PFSR
HR DATA
PPort SET OR
_ HR TAG
DirCh igCh DataE
<—| CHANGE DIRECTION | ataErr
\e)
<—{ RETURNIDTO HOST | ‘y NegCh SET @
e > <ES
v v

SERVICE NEGOTIATION SERVICE SERVICE SERVICE SERVICI
CHANGE SIGNAL ERROR APPROPRIATE FIFO
CHANGE | |INTERRUPT| | HOLDING
INTERRUPT REGISTER
Y Y Y Y
6.5.1 Software-Activated Service Examples (Poll)

The scanning loop for Poll-mode operation is shown in Section 6.3. Software activation of the
context switch is performed in the same manner, but termination of the serviceisdonein two ways.
The first method is similar to the serial channel method and the second method can work well in
certain systems, but requires extra steps.

The first method follows the same basic procedure as the serial channels, but the termination
sequence requires only that the upper bit (PPIreq) of the PIR is cleared by the CPU. Since Fair
Share is not implemented on the parallel channel, thereisno ‘unfair’ bit in the PIR; the ‘busy’
status is maintained by the MPU differently and is not maintained in the PIR.

100 Datasheet

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

The routine below shows one way of implementing the poll-mode service activation using the first
method.
service_par()

char save_pir, save_car, livr_val;

save_pir = inportb(PIR); /* retrieve and save parallel interrupt
val ue */

save_car = inportb(CAR); /* save CAR for restore */

out port b(CAR, save_pir); /* switch CD1284 to service ack. context
*/

livr_val = inportb(LIVR) & 0x07;

switch (livr_val) {

case 4: /* just the parallel channel state-nachine

request is active */
servi ce_par_chan();

br eak;
case 5: /* just the data path pipeline request is
active */
servi ce_pipeline();
br eak;
case 6: /* both requests are active */
servi ce_par_chan();
servi ce_pipeline();
br eak;
defaul t:
br eak;
outportb(PIR save_pir & 0x00); /* term nate service ack. sequence by
clearing bit 7 */
out port b(CAR, save_car); /* restore original CAR*/
return(0);
}

It is not necessary for the CPU on the parallel channel to actually copy the contents of the PIR into
the CAR. Sinceit is known that the parallel channel is aways channel 0, the CPU may switch the
context by simply writing ax’ 00 into the CAR after first saving the previous state of the CAR, if
desired. At the end of the service, the interrupt context can be returned by toggling the IntEn bit in
the PFCR within the data pipeline. Hardware in that block of logic detects the toggle operation and
clearsthe PPireq hit itself. The CPU can restore the CAR, if desired, and exit the routine. Just as it
would in the other poll-mode case, once the MPU has detected the clearing of the parallel interrupt
source bits (PPort and Pipeline) and the PPIreq bit. It cleans up the PIR and LIVR.

service_par()

{
char save_car, livr_val;
save_car = inportb(CAR); /* save CAR for restore (if desired) */
out port b(CAR, 0x00); /* switch CD1284 to service ack. context
*
/
livr_val = inportb(LIVR) & 0x07; /* get the vector (Not fromthe PIVR) */
switch (livr_val) {
case 4: /* just the parallel channel state-nmachine

request is active */
servi ce_par _chan();

br eak;
G iy case 5: /* just the data path pipeline request is
active
servi ce_pipeline();
br eak;
case 6: /* both requests are active */

servi ce_par_chan();
servi ce_pipeline();
br eak;

defaul t:

101

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

6.5.2

6.6

102

br eak;

}

out port b(PFCR, inportb(PFCR & OXEF);/* clear IntEn (first step of ‘toggle’
operation */

out port b(PFCR, inportb(PFCR | 0x10);/* set IntEn (second step of ‘toggle’
operation */

out port b(CAR, save_car); /* restore original CAR (if desired) */

return(0);

Hardware-Activated Service Examples

Hardware-activated context switching is nearly identical to the serial case; during the service
acknowledge cycle, the SVCACKP* input is active and the CD1284 drives the parallel channel
vector on the data bus. At the same time, the MPU pushes the current state of the device on the
context stack and sets the context for channel 0. The vector comes from the PIVR, whichisa
reflection of the LIVR. The vector supplied indicates the source of the request in the IT2-1TO bits.
Thereis no equivalent to the Interrupting Channel register (TICR, RICR, MICR) since, by
definition, the interrupt is from channel 0. Once the context switch occurs, the CPU can proceed to
service the source of the request.

The CPU must decode the I Tx bits to determine the blocks that require service. Each section of the
parallel channel has an Interrupt Status register to indicate what conditions, if any, in that block
require service. These are the PFSR in the data path and the PCISR in the channel control state
machine.

At the end of the service routine, the CPU must perform the same dummy write operation to the
EOSRR asfor the serial channels. Thisinforms the device that the parallel service is complete.
The write operation to the EOSRR generates a high-priority interrupt to the MPU to causeit to pop
the context stack and restores the device environment to what it was at the start of the interrupt
service.

Baud Rate Derivation

/* This is a sinple code exanpl e which shows a way to derive the proper val ues for
t he RCOR/ TCOR and RBPR/ TBPR regi ster pairs for any baud rate. Routine is called with
the desired baud rate and master clock; global variables cor and bpr are set by the
routine. */

int brp, cor;

conput e_baud(cl ock, baud_rate)

doubl e cl ock;
doubl e baud_rat e;
{
doubl e cor_values[] = {8.0, 32.0, 128.0, 512.0, 2048.0, -1.0};
int i
for (i =0; cor_values[i] !=-1; i++)
{

brp = (int) (((clock / baud_rate) / cor_values[i]) + 0.5);
if (brp < OxFF)

cor i
brp;

Datasheet

6.7

Note:

Table 22.

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

return(0);

Baud Rate Tables

Table 22 through Table 26 indicate the values to be loaded into the RCOR/RBPR and TCOR/TBPR
to set the designated baud rate when using five standard frequency crystals. Table 22 uses a 25-
MHz frequency; Table 23 uses a 20.2752-MHz frequency, which yields near-perfect bit rates. Table
24 uses a 20-MHz frequency and shows error rates that are larger athough still well within the
limits set by the various standards covering asynchronous communications. Table 25 also uses
another standard communications base frequency (18.432 MHz) that yields divisors with nearly
zero errors overall. However, since this frequency is below 20 MHz, performance at the higher
baud rates (76.8K and above) may be dightly lower and rates above 76.8K are not recommended.
Table 26 shows divisors for the lowest recommended operating frequency, 16 MHz.

It is not necessary that both the receiver and transmitter of a channel be programmed to the same
baud rate; the CD1284 can send and receive at different rates on the same channel.

Baud Rate Constants — CLK =25 MHz

Baud Rate R/TCOR?! R/TBPR (Hex) Error
110 4 6F 0.02%
150 4 51 0.47%
300 3 A3 0.15%
600 3 51 0.47%
1200 2 A3 0.15%
2400 2 51 0.47%

4800 1 A3 0.15%
9600 1 51 0.47%
19200 0 A3 0.15%
38400 0 51 0.47%
56000 0 38 0.35%
57600 0 36 0.47%
64000 0 31 0.35%
76800 0 29 0.76%
115200 0 1B 0.47%
128000 0 18 1.70%
150000 0 15 0.80%

NOTE:

1. In this and the following tables, R/T is used as a register abbreviation indicating Receive/
Transmit, followed by the register acronym.

103

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

104

Table 23. Baud Rate Constants — CLK =20.2752 MHz

Table 24.

INlal.

Baud Rate RCOR/TCOR RBPR/TBPR (Hex) Error
110 4 5A 0.00%
150 4 42 0.00%
300 3 84 0.00%
600 3 42 0.00%
1200 2 84 0.00%
2400 2 42 0.00%
4800 1 84 0.00%
9600 1 42 0.00%
19200 0 84 0.00%
38400 0 42 0.00%
56000 0 2D 0.57%
57600 0 2C 0.00%
64000 0 28 1.00%
76800 0 21 0.00%

115200 0 16 0.00% _

(Not recommended at this CLK)
128000 0 14 1.01% _
(Not recommended at this CLK)

150000 0 1 0-62%

(Not recommended at this CLK)

Baud Rate Constants — CLK =20.00 MHz (Sheet 1 of 2)

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error
110 4 59 0.25%
150 4 41 0.16%
300 3 82 0.16%
600 3 41 0.16%
1200 2 82 0.16%
2400 2 41 0.16%
4800 1 82 0.16%
9600 1 41 0.16%

19200 0 82 0.16%
38400 0 41 0.16%
56000 0 2D 0.79%
57600 0 2B 0.94%
64000 0 27 0.16%

Datasheet

Table 24. Baud Rate Constants — CLK =20.00 MHz (Sheet 2 of 2)

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error
76800 0 21 1.36%
1.36%
115200 0 16)
(Not recommended at this CLK)
2.40%
128000 0 14

(Not recommended at this CLK)

Table 25. Baud Rate Constants — CLK = 18.432 MHz

Table 26.

Datasheet

Baud Rate RCOR/TCOR RBPR/TBPR (Hex) Error

110 4 52 0.22%

150 3 FO 0.00%

300 3 78 0.00%

600 2 FO 0.00%

1200 2 78 0.00%

1800 2 50 0.00%

2400 1 FO 0.00%

4800 1 78 0.00%

9600 0 FO 0.00%
19200 0 78 0.00%
38400 0 3C 0.00%
56000 0 29 0.35%
57600 0 28 0.00%
64000 0 24 0.00%
76800 0 1E 0.00%
115200 0 14 0.00% _

(Not recommended at this CLK)
128000 0 12 0.00%

(Not recommended at this CLK)

Baud Rate Constants — CLK =16 MHz (Sheet 1 of 2)

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error
110 4 47 0.03%
150 3 DO 0.16%
300 3 68 0.16%
600 2 DO 0.16%
1200 2 68 0.16%
1800 2 45 0.16%
2400 1 DO 0.16%

105

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Table 26. Baud Rate Constants — CLK =16 MHz (Sheet 2 of 2)

INlal.

Baud Rate RCOR/TCOR (Hex) RBPR/TBPR Error
4800 1 68 0.16%
9600 0 DO 0.16%
19200 0 68 0.16%
38400 0 34 0.16%
56000 0 24 0.80%
57600 0 23 0.80%
64000 0 1F 0.80%
0.16%
76800 0 1A (Not recommended at this CLK)
115200 0 11 2.080% _
(Not recommended at this CLK)
6.8 ASCII Code Tables
6.8.1 Hexadecimal — Character
00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL
08 BS 09 HT 0A NL 0B VT oc NP ob CR OE SO OF Sl
10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SuUB 1B ESC 1C FS 1D GS 1E RS 1F us
20 SP 21 ! 22 23 # 24 $ 25 % 26 & 27
28 (29) 2A * 2B + 2C , 2D - 2E 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A 3B 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 | 4A J 4B K 4C L 4D M 4E N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 \Y 57 W
58 X 59 Y 5A z 5B [5C \ 5D] 5E n 5F _
60 ~ 61 a 62 b 63 [+ 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C | 6D m 6E n 6F o]
70 p 71 q 72 r 73 S 74 t 75 u 76 \% 77 w
78 X 79 y 7A z 7B { 7C | 7D } 7E _ 7F | DEL
106 Datasheet

intel.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

6.8.2 Decimal — Character

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL

8 BS 9 HT 10 NL 11 VT 12 13 13 CR 14 SO 15 Sl
16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 us
32 SP 33 ! 34 “ 35 # 36 $ 37 % 38 & 39 ‘
40 (41) 42 * 43 + 44) 45 - 46 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 | 74 J 75 K 76 L 77 M 78 N 79 (e}
80 P 81 Q 82 R 83 S 84 T 85 U 86 \ 87 W
88 X 89 Y 90 z 91 [92 \ 93] 94 A 95 B
96 ~ 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 | 109 m 110 n 111 0
112 p 113 q 114 r 115 S 116 t 117 u 118 \% 119 w
120 X 121 y 122 z 123 { 124 [125 } 126 B 127 | DEL

Datasheet 107

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

intel.

7.0 Detailed Register Descriptions
This section presents a complete and detailed description of each register. Registers have two
formats: 1) full eight bits, where the entire content defines a single function; 2) the register isa
collection of bits, grouped singly or in multiples, defining a function. In the second format, the
descriptions divide the register into its component parts and describe the bitsindividually. The
order of register presentation corresponds to the register summary tables in Chapter 4.0.

7.1 Global Registers

7.1.1 Channel Access Register

Register Name: CAR
Register Description: Channel Access
Access: Read/Write

8-Bit Hex Address: 68
Default Value: XX

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
Poll Poll Poll Poll Poll 0 C1 co
The CAR provides access to individual channels within the CD1284. The least-significant two bits
of the register select one of the four channels. Before any operation that affects a channel, this
register must be loaded so that channel registers are available to the host. Bit 2 must dwaysbe‘0’.
Bits 7:3 are not used except during Poll-mode operation (see Section 6.3 for details).
C1 Cco Channel Selected
0 0 Channel 0
0 1 Not used
1 0 Channel 2
1 1 Channel 3
7.1.2 Global Firmware Revision Code Register

Register Name: GFRCR
Register Description: Global Firmware Revision Code
Access: Read/Write

8-Bit Hex Address: 4F
Default Value: 25

Bit 7

Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit0

Firmware Revision Code

108

The GFRCR serves two purposes in the CD1284. First, it displays the revision number of the
firmware in the chip. When arevision to the CD1284 is required, the revision number of the
firmware isincremented by one. The revision code is 24 (hex) for the Revision D device, and 25
(hex) for the Revision E device.

Datasheet

intel.

7.1.3

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Secondly, a system programmer can use this register to indicate when the internal processor
completes reset procedures. This is done by a power-on reset (by the RESET* input) or a software
global reset (by the reset command in the CCR). Immediately after the reset operation begins, the
internal CPU clears the register. When complete, and the CD1284 is ready to accept host accesses,
the register isloaded with the revision code.

General-Purpose I/O Direction Register

Register Name: GPDIR
Register Description: General-Purpose I/O Direction
Access: Read/Write

8-Bit Hex Address: 71
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Dir 7 Dir 6 Dir 5 Dir 4 Dir 3 Dir 2 Dir 1 Dir 0
7.1.4 General-Purpose I/0O Register
Register Name: GPIO 8-Bit Hex Address: 70
Register Description: General-Purpose 1/0 Default Value: 00
Access: Read/Write
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0
This pair of registers enables access and control of the general-purpose 1/O port. The general-
purpose |/O port provides a byte-wide general purpose set of signalsthat are individually direction
programmable.
The GPIO register accesses the data port on pins 53-60 (G[7:0]) with Data 0 accessing GP[0], etc.
The corresponding bit in the GPDIR register controls the direction of the associated signal; ‘1’
programs the signal as output and ‘0’ programs it as input. When writing to the GPIO register, ‘1's
and ‘O’'s are reflected in their true states on the pins that are programmed as outputs. When reading
from the GPIO register, bits programmed as inputs reflect the true state of the signal condition on
those hits; bits programmed as output reflect the previously set state.
7.1.5 Modem Interrupting Channel Register

Register Name:
Register Description: Modem Interrupting Channel
Access: Read/Write

MICR 8-Bit Hex Address: 46
Default Value: 00

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X

X X X C1 Cco X X

Datasheet

The MICR, RISR, and TICR indicate the serial channel number that is currently being serviced by
an active acknowledge cycle (whether polled or interrupt). Bits 3:2 (C1 and CO) are only vaid
during the context of a channel service routine; at any other time, their state is undefined. Host
system software uses these registers to determine the number of the channel that originated the
particular service request (receive, transmit, or modem). The format of these registers is the same
and the description isvalid for each. The upper four bits and lower two bits are user-defined and
can be set to any value desired. When the register isread, these bits are presented as defined by the
user; C1 and CO are set by the CD1284 to reflect the proper channel number.

109

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In
Bit Description
74 User defined.

Channel X: When these bits are set to the values shown below, the channel number is defined.

C1l Cco Channel Number
0 0 Channel 0

3:2
0 1 Undefined
1 0 Channel 2
1 1 Channel 3

1:0 User defined.

7.1.6 Modem Interrupt Register

Register Name: MIR
Register Description: Modem Interrupt
Access: Read/Write

8-Bit Hex Address: 69
Default Value: 08

Bit 7

Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Mdlreq

Mdbusy Mdunfair 0 1 0 ch[1] ch[0]

The MIR, PIR, and TIR are used during Poll-mode operation of the CD1284. All three registers
provide the same type of information for each of the three service requests. The functions of
Rxlreq, TxIreq, and Mdlireq have identical meanings, as do the group Rxbusy, Txbusy, and
Mdbusy and the group Rxunfair, Txunfair, and Mdunfair. The least-significant two bitsindicate the
number of the channel requesting service. Bits 4:2 are used internally by the CD1284 to set the
context of the service-acknowledge cycle. See the description of Poll-mode operationsin Chapter
5.0 for complete details.

Bit

Description

RxlIreq, TxlIreq, and Mdlreq: These bits are set by the internal processor when service is required by a
channel. The bits are a direct reflection of the inverse state of the SVCREQ* pins and they are the active-high
output of the latch that drives the SVCREQ* pins. The bits can be scanned by the host to detect an active
service request. These bits are cleared by the internal processor at the beginning of the service-acknowledge
cycle (hardware-service acknowledge) or by the host software when the Poll-mode cycle is terminated.

Rxbusy, Txbusy, and Mdbusy: These bits are set by the internal processor and they remain set until the end of
the service-acknowledge cycle is indicated by either a write to the EOSRR (hardware-service acknowledge),
or cleared by the host software when the Poll-mode cycle is terminated. These bits signal the current state of
the service-acknowledge cycle. When cleared, the internal processor knows that it can assert another service
request of this type.

110

Datasheet

In IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit Description

Rxunfair, Txunfair, and Mdunfair: These bits are used by the internal processor to implement the Fair Share
service request function. If this bit is set, the CD1284 does not assert another service request of this type until

5 the bit is cleared by a pulse on the external SVCACK* pin. The unfair bits are forced to ‘0’, disabling the Fair
Share mechanism, by setting the Unfair bit in the PACR. These bits are not used in Poll mode.
These bits define the context of the current service-acknowledge cycle during Poll mode and are fixed by
42 hardware within the CD1284. These bits must be replicated exactly when the register is copied to the CAR

and is activating a service-acknowledge cycle. See the discussion of Poll-mode operation in Section 5.3 for a
more detailed description.

ch[1:0]: These two bits encode the channel number of the requesting channel. During Poll-mode operation
1:0 when the RIR, TIR, and MIR are copied into the CAR to start the service routine, ch[1:0] set the channel
number that is serviced.

7.1.7 Parallel Interrupt Register
Register Name: PIR 8-Bit Hex Address: 61
Register Description: Parallel Interrupt Default Value: 00

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PPIreq PPort Pipeline 0 0 0 0 0

The PIR isamaodified version of the other interrupt registers (RIR, TIR, and MIR) that
incorporates the unique differences between interrupt structures of the two major blocks of the
CD1284. TheIreq bit (bit 7) has theidentical function as the Ireq bitsin the TIR, RIR, and MIR.

Bit Description

PPIreq: The internal processor sets this bit to generate the external service request output. It is a direct
reflection of the inverse state of the SVCREQP* pin; it is the active-high output of the latch that drives

7 SVCREQP*. This bit can be scanned by the host to detect an active service request. The bit is cleared by the
internal logic at the beginning of the hardware service-acknowledge cycle or by toggling the IntEn bit
(PFCR[4)).

PPort and Pipeline: These two bits indicate which of the two functional blocks of the parallel port are
requesting service. PPort set indicates that the parallel channel control state machine is the cause of the

6:5 request; Pipeline set indicates that the data pipeline is requesting service. Both bits set indicates that both
blocks are requesting service simultaneously.
4:0 Reserved: These bits always return ‘0’ when read by the host. Do not modify.
7.1.8 Prescaler Period Register
Register Name: PPR 8-Bit Hex Address: 7E
Register Description: Prescaler Period Default Value: FF

Access: Read/Write

Bit 7 Bit 6 Bit 5 ‘ Bit 4 ‘ Bit 3 Bit 2 Bit 1 Bit 0

8-bit Binary Value

The PPR sets the divisor that generates the time period for CD1284 timer operations. It can be set
to any value between 0 and 255 (x’ FF). The PPR is clocked by the system clock prescaled
(divided) by 512.

Datasheet 111

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Note:

7.1.9

intel.

The time period generated by this register drives the receive timer and activates the ‘ no new datal
and ‘receive datatimeout’ interrupts. See the receiver operation discussion in Chapter 5.0 for a
description of receiver timer functions.

This value does not have any effect on baud rate generation.

Receive Interrupting Channel Register

Register Name: RICR
Register Description: Receive Interrupting Channel
Access: Read/Write

8-Bit Hex Address: 44
Default Value: 00

7 3 2
X X X X c1 Co X X
See Section 7.1.5 on page 109, the description of the MICR, for details on the RICR.
7.1.10 Receive Interrupt Register

Register Name: RIR
Register Description: Receive Interrupt
Access: Read/Write

8-Bit Hex Address: 6B
Default Value: 18

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RxIreq Rxbusy Rxunfair 1 1 0 ch[1] ch[0]
See Section 7.1.6 on page 110, the description of the MIR, for details on the RIR.
7.1.11 Service Request Register

Register Name: SVRR
Register Description: Service Request

8-Bit Hex Address: 67
Default Value: 00

Access: Read only

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DMAREQ

ExtM ExtT ExtR SRP SRM SRT SRR

The SVRR reflects the inverse of the state of the service reguest pins (SVCREQR*, SVCREQT*,
and SVCREQM?*). Its primary useisin polled systems, and it allows system software to determine
what, if any, service requests are pending.

Bit

Description

DMA Request Status: ‘1’ indicates request pending.

ExtM: Reflects the current state of the external SVCREQM* signal.

ExtT: Reflects the current state of the external SVCREQT* signal.

ExtR: Reflects the current state of the external SVCREQR* signal.

w| || O N

Service Request Parallel: ‘1" indicates request pending.

112

Datasheet

intel.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit Description

2 Service Request Modem: ‘1’ indicates request pending.

1 Service Request Transmit: ‘1’ indicates request pending.

0 Service Request Receive: ‘1’ indicates request pending.
7.1.12 Transmit Interrupting Channel Register

Register Name: TICR
Register Description: Transmit Interrupting Channel

8-Bit Hex Address: 45
Default Value: 00

Access: Read/Write

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X X X X C1 Co X X
See Section 7.1.5 on page 109, the description of the MICR, for details on the TICR.
7.1.13 Transmit Interrupt Register

Register Name: TIR
Register Description: Transmit Interrupt

8-Bit Hex Address: 6A
Default Value: 10

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Txlreq Txbusy Txunfair 1 0 0 ch[1] ch[0]
See Section 7.1.6 on page 110, the description of the MIR, for details on the TIR.
7.2 Virtual Registers
The CD1284 has two operational contexts:
Normal: Allows host access to most registers and any channel
Service-acknowledge: Allows host accessto some registers specific to the channel requesting
service.
Thisspecial set of registersis called Virtual because they are only available to host access and valid
during this service-acknowledge context. At all other times, their contents are undefined and must
not be written to by host software.
The use of Virtual registers and context switching allows the CD1284 to maintain all channel-
specific information. To access the registers pertinent to the channel being serviced, it is not
necessary for the host to make any changes to the device registers.
The service-acknowledge context can be entered in two ways: 1) by activating one of the
SVCACK?* input pins (hardware-activated); 2) by the host software when the contents of any one
of TIR, RIR, MIR, or PIR are copied into the CAR during a Poll-mode acknowledge cycle. Chapter
5.0 discusses the differences between these two modes.
Datasheet 113

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

7.2.1

Virtual Registers — Serial

Modem Interrupt Status Register

Register Name: MISR
Register Description: Modem Interrupt Status
Access: Read only

8-Bit Hex Address: 4C
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DSRch CTSch Rich CDch 0 0 0 0
The MISR provides the status regarding a modem service request. If the modem-signal change
detections (zero-to-one or one-to-zero transition) are enabled in MCOR1 or MCOR?2, the change
causes a service request and the changed signal is flagged in this register.
Bit Description
7 Data Set Ready Change: An enabled transition on the Data Set Ready signal causes this bit to be set and a
modem service request posted.
6 Clear To Send Change: An enabled transition on the Clear To Send signal causes this bit to be set and a
modem service request posted.
5 Ring Indicator Change: An enabled transition on the Ring Indicator signal causes this bit to be set and a
modem service request posted.
4 Carrier Detect Change: An enabled transition on the Carrier Detect signal causes this bit to be set and a
modem service request posted.
3:0 These read-only bits always return ‘0".
7.2.2 Modem Interrupt Vector Register

Register Name: MIVR
Register Description: Modem Interrupt Vector
Access: Read only

8-Bit Hex Address: 41
Default Value: 00

Bit 7

Bit 6

Bit5

Bit 4

Bit 3 Bit 2 Bit 1

Bit 0

X

X

X

X

X IT2 IT1

ITO

114

The value in thisregister is placed on the data bus, DB[7:0], when SYCACKM?* isactivated in
response to an active SVCREQM*. See Section 7.4.6 on page 128 for more details on the LIVR.

IT2 IT1 ITO Description

0 0 0 No modem interrupts.

0 0 1 Group 1: Modem signal change service request.
0 1 0

| | | Invalid.

1 1 1

Datasheet

intel.

7.2.3

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Parallel Interrupt Vector Register

Register Name: PIVR
Register Description: Parallel Interrupt Vector
Access: Read only

8-Bit Hex Address: 40
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
X X X X X IT2 IT1 ITO
The value in this register is placed on the data bus, DB[7:0], when SV CACKP* is activated in
response to an active SVCREQP*. See Section 7.4.6 on page 128 for more detailson the LIVR.
IT2 IT1 ITO Description
0 0 0 No parallel interrupt source is active.
0 0 1 Group 1: Modem signal change service request.
0 1 0
| | | Invalid.
0 1 1
1 0 0 The parallel port state machine requests service.
1 0 1 The parallel port data pipeline requests service.
1 1 0 B_oth_the parallel port_state machine and the parallel port data
pipeline request service.
1 1 1 Invalid.
7.2.4 Receive Data/Status Registers

Register Name: RDSR
Register Description: Receive Data
Access: Read only

8-Bit Hex Address: 62
Default Value: 00

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3 Bit 2 Bit 1 Bit 0

Received Character

Register Name: RDSR
Register Description: Receive Status
Access: Read only

8-Bit Hex Address: 62
Default Value: 00

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3 Bit 2 Bit 1 Bit 0

Timeout

SC Det2

SC Detl

SC Det0

Break PE FE OE

Datasheet

The Receive Data/Status register serves two purposes. During aserial receive-service acknowledge
for good data, the RDSR provides access to the receive FIFO. The number of characters available
in the FIFO isindicated by the RDCR, and is described in Section 7.5. Any number of characters,

up to the value in the RDCR, can be read from the FIFO. All internal FIFO pointers are updated by
the on-chip processor.

During a serial receive exception service acknowledge, the RDSR provides both the received
character and the status that caused the exception condition. By definition, a receive exception
service request has only one character available (multiple receive exceptions produce multiple
service requests). The first read from the RDSR provides the exception status, and the second read

115

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

provides the character. It is not necessary to read either of these values. If the service acknowledge
is terminated without reading the exception status and data from the RDSR, the internal processor
updates the FIFO pointers asiif the status/data were read. The same is true when only the statusis

read. Overrun errors are an exception to this (see table below).

Bit Description
7 Timeout: If the service request enable for timeout is set, this bit indicates that no data has been received
within the receive timeout period set by the RTPR after the last character was removed.
Special Character Detect: These three bits are encoded as follows:
SCDet2 SCDet1 SCDet0 Status
0 0 0 None detected.
0 0 1 Special character 1 matched.
0 1 0 Special character 2 matched.
6:4 0 1 1 Special character 3 matched.
1 0 0 Special character 4 matched.
1 0 1 Not used.
1 1 0 End-of-break detected.
1 1 1 Range detect.
NOTE: No special character matching is performed if either a parity (PE) or framing (FE) error occur unless
CMOE is enabled by COR5I[5].
3 Break: Indicates that a break was detected.
2 Parity Error: Indicates that a character was received with parity other than that programmed in CORL1.
1 Framing Error: Indicates that the character was received with a bad stop bit.
Overrun Error: This bit is set if new data is received, but there is no space available in the FIFO and Holding
0 register. In this case, the character data is lost, and the overrun flag is applied to the last good data received
before the overrun occurred. Thus, the character read on the subsequent read from the RDSR is good data
and should not be discarded.
7.2.5 Receive Interrupt Vector Register
Register Name: RIVR 8-Bit Hex Address: 43
Register Description: Receive Interrupt Vector Default Value: 00
Access: Read only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X X X X X IT2 IT1 ITO

Thevalue in thisregister is placed on the data bus, DB[7:0], when SV CACKR* isactivated in
response to an active SVCREQR*. See Section 7.4.6 on page 128 for more detailson the LIVR.

IT2 IT1 ITO Description
0 0 0 No receive interrupt active.
0 0 1
Invalid.
0 1 0

116 Datasheet

n
IntGI o IEEE 1284-Compatible Parallel Interface Controller — CD1284

IT2 ITL ITO Description
0 1 1 Group 3: Received good data service request.
1 0 0
| | | Invalid.
1 1 0
1 1 1 Group 3: Received exception data service request.
7.2.6 Transmit Data Register
Register Name: TDR 8-Bit Hex Address: 63
Register Description: Transmit Data Default Value: 00
Access: Write only
Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0

Transmit Character

The transmit data register is the port for the host to write to the transmit FIFO. When a channel is
being serviced for atransmit service request, the host can write up to 12 characters to this register.
The transmit data register should only be written during the context of atransmit-service
acknowledge. A write of data to thislocation at any other time yields unpredictable results.

7.2.7 Transmit Interrupt Vector Register
Register Name: TIVR 8-Bit Hex Address: 42
Register Description: Transmit Interrupt Vector Default Value: 00
Access: Read only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X X X X X IT2 IT1 ITO

The value in this register is placed on the data bus, DB[7:0], when SVCACKT* isactivated in
response to an active SVCREQT*. See Section 7.4.6 on page 128 for more details on the LIVR.

IT2 IT1 ITO Description
0 0 0 No transmit interrupt active.

0 0 1 Invalid.

0 1 0 Group 2: Transmit data service request.
1 1 1

I I I Invalid.

1 1 1

Datasheet 117

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

7.2.8

intel.

Virtual Registers — All

End of Service Request Register

Register Name: EOSRR
Register Description: End of Service Request
Access: Write only

8-Bit Hex Address: 60
Default Value: XX

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X

X X X X X X X

7.3

7.3.1

The EOSRR is adummy location used to signal the end of a hardware service-acknowledge
procedure invoked by the activation of SVCACK*. The data pattern writtenisa‘don’t care’ value.
A writeto thislocation causes the CD1284 to perform its internal switch out of the service-
acknowledge context. This register is only used during a hardware-activated service acknowledge
and must not be written during Poll-mode operation.

Channel Registers

Each of the four channels has a set of registersthat control aspects of its operation. In the following
register descriptions the register contents and offsets apply to any of the channels; the channel
being accessed at any given time is controlled by the CAR. Thisistrue even during a service-
acknowledge context; the CAR points to the channel to be serviced, whether it was loaded by the
host (during Poll-mode operation) or by the CD1284 itself (during a hardware-activated service
acknowledge).

Channel Command Register

Register Name: CCR
Register Description: Channel Command
Access: Read/Write

8-Bit Hex Address: 05
Default Value: 00

Bit 7

Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res Chan

COR Chg Send SC Chan Ctl D3 D2 D1 DO

Note:

118

The CCR issues commands directly to the on-chip processor to control or change some channel
and, in one case, global functions of the channel selected by the CAR. The upper four bitsindicate
which of four command typesis being issued and the lower four bits are parameters to those
commands. No more than one bit is ever set in the command type field. When the command is
executed by the CD1284, it zeros out the CCR. Therefore, two consecutive commands must wait
for the CCR to clear after the first isissued, before the second command isissued.

The CCRisvalid only for serial channels 2 and 3. Commands issued to the CCR location of the
parallel channel (channel 0) or channel 1 are ignored by the MPU and have no effect on device
operation. If the host needs to issue a full device reset, it must select either channel 2 or channel 3
before issuing the command.

Datasheet

intel.

7.3.1.1

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Format 1 — Reset Channel Command

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Res Chan

0 0 0 0 0 FTF

Type

When bit 7 is set, one of three types of reset operations are initiated, based on the value of the least-
significant two bits. Bit 0 setsthe type of reset, either channel-only or full-chip, and bit 1 causesthe
FIFO of the selected channel to be flushed.

The two types of reset selected by bit O cause very different results. When bit 0is‘0’, the reset
command effects only the selected channel. Resetting a channel disables both the receiver and
transmitter, and all FIFOs are flushed (cleared). If bit 0is*1’, afull-chip reset isinitiated. Thisreset
has the same results as ahardware reset caused by activation of RESET*: all channels are disabled,
all FIFOs are flushed, and all control registers set to their power-on reset state.

The completion of the reset operation can be detected the same way as though a power-on or
hardware reset had occurred: the GFRCR changes from zero to the value of the firmware revision.
Note that at the start of the reset operation, the GFRCR is cleared, but it can take sometime for this
to occur. Host software should wait for the GFRCR to go to zero, and then wait for it to go non-
zero to indicate that the reset operation is complete. The host can clear the GFRCR before issuing
the reset command and then wait for it to become non-zero.

The FTF (flush serial transmit FIFO) command, bit 1, causes the serial transmit FIFO of the
selected channel to be cleared and pointers reset to the empty state. Any datain the FIFO islost.

Bit

Description

This bit must always be ‘1".

6:2

These bits must always be ‘0.

1.0

These bits are encoded as:

FTF Function

Type

0 Reset current channel.

Full CD1284 reset.

Flush serial transmit FIFO of current channel

k|| O| O
Rl ol|r

Not used.

7.3.1.2

Format 2 — Channel Option Register Change Command

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

COR Chg 0 0 COR3 COR2 COR1 0

Datasheet

Bit 6 — combined with any bits 3:1 —informsthe MPU that a change occurred in one of the Channel
Option registers, COR1, COR2, and/or COR3, respectively. It is permissible to indicate that more
than one COR has changed.

This command exists so that changes in the CORs are noted by the MPU, alowing it to update its
internal working register, since it keeps copies of the CORsin its own shadow registers.

119

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Bit Description
7 This bit must always be ‘0.
6 This bit must always be ‘1.
5:4 These bits must always be ‘0’.
These three bits are encoded as:
COR3 COR2 COR1 Encoding
0 0 0 Not used.
0 0 1 CORL1 changed.
31 0 1 0 COR?2 changed.
0 1 1 COR1 and COR2 changed.
1 0 0 COR3 changed.
1 0 1 CORS3 and COR1 changed.
1 1 0 COR3 and COR2 changed.
1 1 1 COR1, COR2, and COR3 changed.
0 This bit must always be ‘0.
7.3.1.3 Format 3 — Send Special Character Command
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 Send SC 0 0 SSPC2 SSPC1 SSPCO
This command causes one of the pre-programmed characters in the special character registers
(SCHR1, SCHR2, SCHRS3, and SCHRA4) to be sent preemptively (applies to the serial channels
only). The character sent is selected by the settings of bits 2 through 0. ‘ Preemptively’ means that
the special character is sent immediately following the character in the Transmitter Holding
register; it does not wait until the FIFO empties. Once the specia character is sent, transmission of
any characters remaining in the FIFO proceeds normally.
Bit Description
7:6 Must be ‘0’

120

Datasheet

intel.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit Description
5 Must be ‘1".
4:3 Must be ‘0",
These bits are encoded as:
SSPC2 SSPC1 SSPCO Encoding
0 0 0 Not used.
0 0 1 Send special character 1.
0 1 0 Send special character 2.
20 0 1 1 Send special character 3.
1 0 0 Send special character 4.
1 0 1
1 1 0 Not used.
1 1 1
7.3.1.4 Format 4 — Channel Control Command
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 Chan Ctl XMT EN XMT DIS RCV EN RCV DIS
This command activates or deactivates the serial transmitter and/or receiver of the selected
channel, based on the values in bits 3 through 0. This command is issued when a channel is being
started for the first time. Once a channel isin use, it can be started and stopped using this
command. It is more efficient however, to use the appropriate SRER bit inthe IER. Multiple
control commands can be issued at the same time; for example, both the transmitter and receiver
can be enabled by simultaneously setting both the XMT EN and RCV EN bits.
Issuing an enable/disable command does not affect any register programming of the selected
channel. It does however, affect the state of transmit flow-control. Issuing adisable or enable
command to a channel whose transmitter has been flow-controlled by a remote (see the TxIBE bit
in COR2), restarts transmission and clears the TxFloff bit (CCSR[2]). This ahility is provided so
that the host can override remote-generated flow control.
Datasheet 121

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In o
Bit Description
75 Must be ‘0.
4 Must be ‘1".
Select channel enable/disable activity:
XMT EN XMT DIS RCV EN RCV DIS Encoding
0 0 0 1 Disable receiver.
0 0 1 0 Enable receiver.
0 1 0 0 Disable transmitter.
3:.0
1 0 0 0 Enable transmitter.
0 1 0 0 Disable transmitter and receiver.
0 1 1 0 Disable transmitter; enable receiver.
1 0 0 1 Enable transmitter; disable receiver.
1 0 1 0 Enable transmitter and receiver.
7.3.2 Channel Control Status Register
Register Name: CCSR 8-Bit Hex Address: OB
Register Description: Channel Control Status Default Value: 00
Access: Read only
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RXEN RxFloff RxFlon 0 TXEN TxFloff TxFlon 0
The CCSR provides current receiver/transmitter status of the selected channel.
Bit Description
7 Receiver Enabled: This bit is set when the receiver is enabled and cleared when it is disabled.
Receiver Flow Off: This bit indicates that the receiver has requested the remote to stop transmitting through
6 the use of a send XOFF character by a send special character 2 command in the CCR. The bit is cleared
when a send special character 1 (XON) command is issued; the channel is either enabled or disabled, or the
channel is reset.
Receiver Flow On: When a send special character 1 (XON) command is issued by the CCR, this bit is set.
5 This bit is cleared when one of three events has occurred, 1) the first non-flow control character is received,
2) the receiver is either enabled or disabled, 3) or the channel is reset.
4 Reserved: This bit returns ‘0’ when read.
3 Transmitter Enabled: This bit is set when the transmitter is enabled and cleared when it is disabled.

122 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit Description
Transmitter Flow Off: This bit indicates that the CD1284 has been requested to stop transmission by the

2 remote (received in-band flow control character XOFF). The bit is cleared when the CD1284 requests to
restart transmission (receives an XON character); the channel is either enabled or disabled, or the channel is
reset.
Transmitter Flow On: This bit is set when the CD1284 requests to restart transmission (received an XON

1 character). It is reset when transmission begins, when the channel is either enabled or disabled, or when the
channel is reset.

0 Reserved: This bit returns ‘0’ when read.

7.4

7.4.1

Channel Registers — Parallel Pipeline

The following five Channel Option registers control many aspects of CD1284 serial channel
operation and enable special character processing features. COR4 and CORS5 specifically enable
the UNIX line discipline character handling functions.

Channel Option Register 1

Register Name: COR1
Register Description: Channel Option Register 1
Access: Read/Write

8-Bit Hex Address: 08
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Parity ParM1 ParM0O Ignore Stopl Stop0 ChL1 ChLO
Bit Description
7 Parity Type: This bit selects the type of parity that is generated and checked if parity is enabled. ‘1’ selects
odd parity and ‘0’ selects even parity.
Parity Mode 1 and Parity Mode 0: These bits define the parity operation for both the transmitter and
receiver. The encoding is:
ParM1 ParMO Function
6:5 0 0 No parity.
0 1 Force parity (odd parity = force 1, even parity = force 0).
1 0 Normal parity.
1 1 Not used.

Datasheet

123

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

INlal.

Bit Description
4 Ignore Parity: If this bit is set, the CD1284 ignores the parity on all incoming characters, thus no receive
exception service requests are generated if the parity is in error. If the bit is cleared, parity is evaluated.
Stop Bit Length: These two bits set the length, in bit times, of the Stop bit for each character.
Stopl Stop0 Number of Stop Bits
0 0 1
3:2
0 1 15
1 0 2
1 1 Not used.
Character Length: ChL1 and ChLO select the length of each character, in number of bits. The CD1284
receives and transmits the same length character, on a given channel, in the range of five to eight bits.
ChL1 ChLO Character Length
1:0 0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits
7.4.2 Channel Option Register 2
Register Description: COR2 8-Bit Hex Address: 09
Register Description: Channel Option Register 2 Default Value: 00
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
IXM TxIBE ETC LLM RLM RtsAO CtsAE DsrAE
Bit Description
Implied XON mode: This bit enables the automatic resumption of character transmission upon the reception
7 of any character. This bit only has meaning if the transmitter is in Automatic In-band Flow-control mode as
programmed by the TxIBE control bit. When this bit is reset and TxIBE is enabled, the reception of any
character restarts character transmission.
Enable Automatic In-band Transmit Flow Control: This bit allows the CD1284 to examine error-free
incoming characters looking for an XOFF character (as programmed by SCHRZ2), if the special character
6 match function is enabled (COR3[4]). If a match occurs, transmission ceases after the current characters in
the Transmitter Shift register and Transmitter Holding register are sent. Transmission resumes when an XON
character (or any character, depending on the value of the IXM bit) is received or if a channel enable
command is issued by the CCR.
Embedded Transmit Command Enable: If the ETC bit is set, the CD1284 examines characters in the
5 transmit FIFO. If an embedded command is detected, it is processed. See the embedded transmit command

description in Chapter 5.0 for details of valid commands.

124

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit

Description

Local Loopback Mode: This bit enables local loopback of the channel. This mode is generally used during
system diagnostics. If this bit is set, the transmitter is internally ‘looped’ back to the receiver. The TxD pin is
set to the marking state. Data sent is immediately received by the receiver. No data appears on the TxD pin;
data on the RxD pin is ignored.

Remote Loopback Mode: Remote loopback allows a remote system to test its serial data stream. If this
function is enabled, the CD1284 internally connects its receiver to the transmitter. Any data received is
immediately echoed back. This mode is enabled by setting RLM, and disabled by clearing RLM.

Request To Send Automatic Output: The CD1284 can automatically assert RTS when a channel is
enabled (by transmit/receive enable command in the CCR) and there is data in the FIFO. When the channel
is disabled or there is no more data to send (that is, in the FIFO or Holding and Shift registers), RTS* is
negated. Setting RtsAO enables the function.

Clear To Send Automatic Enable: This bit enables the CTS* input to control transmitter operation. If CtsAE
is set and CTS* is not asserted, character transmission does not proceed.

Data Set Ready Automatic Enable: This bit allows the DSR* input to control receiver operation. Setting
DsrAE enables the function. When enabled and DSR* is deasserted, the CD1284 discards all received
characters.

7.4.3

Channel Option Register 3

Register Name: COR3
Register Description: Channel Option Register 3

8-Bit Hex Address: 0A
Default Value: 00

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SCDRNG SCD34 FCT SCD12 RxTh3 RxTh2 RxThl RxThO
Note: Thethreshold for the parallel channel (channel 0) are set by the PFTR.

Bit Description
Special Character Detect Range: This bit enables range checking on received characters. If the character

7 falls between a lower range, set by the value stored in the SCRL register, and an upper range, set by the
value stored in the SCRH register — inclusive, a receive exception service request is posted with the status
indicating a range detect (RDSR bits SCDet2-SCDet0 = 111).
Enable Special Character Detect on SCHR4 and SCHR3: This bit controls whether or not the CD1284

6 performs a comparison on received characters against the values stored in SCHR4 and SCHR3. The
comparison is enabled by this bit being ‘1".

Datasheet 125

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

INlal.

Bit

Description

Flow Control Transparency: This bit enables/disables the transparent response to flow control characters
received by the CD1284. If set, received XON and XOFF characters are not placed in the FIFO for the host. If
in-band flow control is enabled, the characters are acted upon. If this bit is not set, flow control characters are
acted upon, placed in the receive FIFO, and the host is notified by a receive exception service request.

Enable Special Character Detect on SCHR2 and SCHR1: This bit controls whether or not the CD1284
compares received characters with the values stored in SCHR2 and SCHR1. ‘1’ enables compare. This bit
must be set to enable automatic in-band flow control.

3.0

Serial Receive FIFO Threshold

RxTh3

RxTh2

RxTh1l

RxThO

Receiver FIFO Threshold

Not used.

1 character

ol o| o

o|o| o

o| | O

2 characters

‘ 11 characters

7.4.4

Channel Option Register 4

Register Name: COR4
Register Description: Channel Option Register 4
Access: Read/Write

8-Bit Hex Address: 1E
Default Value: 00

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

IGNCR

ICRNL

INLCR

IGNBRK

-BRKINT

PEH[2]

PEH[L]

PEHIO]

126

Datasheet

In o IEEE 1284-Compatible Parallel Interface Controller — CD1284
Bit Description
Carriage Return (CR) and New Line (NL) Processing: These three bits define the way that the CD1284
processes received CR and NL characters (x'0D and x’0A). The following table shows the actions performed:
IGNCR ICRNL INLCR Action
0 0 0 No action.
0 0 1 Received NL changed to CR.
75 0 1 0 Received CR changed to NL.
0 1 1 Received CR changed to NL; NL changed to CR.
1 0 0 Received CR discarded.
1 0 1 Received CR discarded; NL changed to CR.
1 1 0 Received CR discarded.
1 1 1 Received CR discarded; NL changed to CR.
Break Processing: The CD1284 can handle received break characters in three ways:
IGNBRK -BRKINT Break Action
Received break generates an exception service request. End-
0 0 of-Break also generates an exception service request if EBD is
4:3 enabled in CORS5.
0 1 Received break treated as a good NULL character.
1 0 Not used.
1 1 Received break discarded.
Parity (P), Framing (F), and Overrun (O) Error Special Processing: As with break characters, the CD1284
can treat error characters in several different ways, if enabled:
PEH[2] PEH[1] PEH[0] Action
0 0 0 Received P/F/O error characters treated as exception data.
0 0 1 Received P/F/O error characters treated as good data.
0 1 0 Received P/F/O error characters discarded.
. Received P/F/O error characters replaced with good NULL
2:0 0 1 1
characters.
Received P/F/O error characters are replaced with the two
character sequence x’FF-NULL-character. Good xX'FF
1 0 0 A
characters are replaced with the two character sequence
X'FF-x'FF.
1 0 1
1 1 0 Not used.
1 1 1

Datasheet 127

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

7.4.5 Channel Option Register 5

8-Bit Hex Address: 1F
Default Value: 00

Register Name: COR5
Register Description: Channel Option Register 5
Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ISTRIP LNE CMOE 0 0 EBD ONLCR OCRNL
Bit Description
7 ISTRIP: This bit enables stripping of the most-significant bit (bit 7) on all received characters. ‘1’ enables the
function.
6 LNext Enable: When this bit is set, characters following an LNext character (as programmed by the LNC
register) are not processed as a special character.
5 Character Matching on Error: If this bit is set, character matching occurs on both good and error characters.
If the bit is cleared, matching occurs on good characters only.
4:3 These bits must always be ‘0".

End of Break Detect: If this bit is set, the CD1284 after detecting and reporting a line-break condition,
2 searches for the end of a break and reports it by an exception service request with the End of Break status in
the RDSR (see RDSR description Section 7.2.4 on page 115).

Carriage Return (CR) and New Line (NL) Processing — Transmit: These two bits define any actions taken on
characters in the transmit data stream.

ONLCR OCRNL Action
10 0 0 No action.
0 1 Transmit CR changed to NL.
1 0 Transmit NL changed to CRNL.
1 1 Transmit CR changed to NL; NL changed to CRNL.

7.4.6 Local Interrupt Vector Register

8-Bit Hex Address: 18
Default Value: 00

Register Name: LIVR
Register Description: Local Interrupt Vector
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X X X X X IT2 IT1 ITO

The LIVR isused only during hardware-activated service-acknowledge cycles. Host software
loads desired information into the most-significant five bits; the least-significant three bits are not
used. When the CD1284 is setting up a service request, it overlays the five most-significant bits of
the LIVR into appropriate interrupt vector register (RIVR, TIVR, PIVR, and MIVR) and sets the
least-significant three bits as required for the service request vector type. (See RIVR, TIVR, PIVR,
and MIVR descriptions). Refer to Section 7.7.5 on page 138 for a more detailed description of this
register.

128 Datasheet

intel.

1.4.7

IEEE 1284-Compatible Parallel Interface Controller — CD1284

LNext Character Register

Register Name: LNC
Register Description: LNext Character
Access: Read/Write

8-Bit Hex Address: 24
Default Value: 00

Bit 7

Bit 6 | Bit 5 | Bit 4 Bit 3 | Bit 2 | Bit 1 | Bit 0

LNext Character

7.5

7.5.1

Thisregister defines the LNext character. If the LNext function is enabled (COR5[6]), the CD1284
examines received characters and compare them against this value. If amatch occurs, this character
and the following are placed in the FIFO without any special processing. In effect, the LNext
function causes the CD1284 to ignore characters with special meaning, such as flow-control
characters. There are two exceptions. If the character following the LNext character is either a
break or an error character, LNext is placed in the FIFO, and the following character are treated as
it normally would be for these error conditions.

Modem Change Option Registers

The CD1284 has two registers that control its response to changes on the modem input pins. It can
be programmed to respond to the low-to-high transition, the high-to-low transition or both. In
addition, the threshold at which the DTR signal is negated can be set by the DTRth3-DTRthO bits
in MCORL1.

Modem Change Option Register 1

Register Name: MCOR1
Register Description: Modem Change Option Register 1
Access: Read/Write

8-Bit Hex Address: 15
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DSRzd CTSzd Rizd CDzd DTRth3 DTRth2 DTRth1 DTRthO
Datasheet 129

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

INlal.

Bit Description
7:4 DSRzd, CTSzd, Rlzd and CDzd: Each of these bits controls its corresponding input pin. If the bit is set, the
' function is enabled and transitions from one-to-zero (zeros detect) generate an SVCREQM* service request.
DTRth3 through DTRthO: These bits form a binary value to determine when the DTR output is negated
(based on the number of characters in the receive FIFO). When the FIFO holds more characters than this
value, DTR is negated, informing the remote to stop transmission. This value must be set to a value
numerically larger than the value set for the receive FIFO threshold in COR3.
DTRth3 DTRth2 DTRth1 DTRthO Number of Characters in FIFO
0 0 0 0 Automatic DTR mode disabled.
0 0 0 1 1 character
0 0 1 0 2 characters
3:0
1 0 1 1 11 characters
1 1 0 0 12 characters
1 1 0 1
1 1 1 0 Not used.
1 1 1 1
7.5.2 Modem Change Option Register 2

Register Name: MCOR2
Register Description: Modem Change Option Register 2
Access: Read/Write

8-Bit Hex Address: 16
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DSRod CTSod Rlod CDod 0 0 0 0
Bit Description
7:4 DSRod, CTSod, Rlod, CDod: Each of these bits controls its corresponding input pin. If the bit is set, the
' function is enabled and transitions from ‘0’-to-‘1’ (ones detect) generate an SVCREQM* service request.
3:0 These bits are not used and must be ‘0.
7.5.3 Modem Signal Value Register 1

Register Name: MSVR1
Register Description: Modem Signal Value Register 1
Access: Read/Write

8-Bit Hex Address: 6C
Default Value: XX

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1 Bit 0

DSR

CTS

RI

CD

0 RTS

130

Datasheet

intel.

7.5.4

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Modem Signal Value Register 2

Register Name: MSVR2
Register Description: Modem Signal Value Register 2
Access: Read/Write

8-Bit Hex Address: 6D
Default Value: XX

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DSR

CTS RI CD 0 0 DTR 0

7.5.5

MSVR1 and MSVR2 provide information regarding the state of the modem input pins (DSR*,
CTS*, RI*, and CD*) and allows control of the modem output pins (DTR* and RTS*). A writeto
any of the input bits has no effect. With the exception of the least-significant two bits, the registers
reflect identical data. The two are provided as a convenience for control of the modem output pins.
It is not necessary for host software to keep a copy of the current state of either when controlling
the other. The actual signal level on the output is the inverse of the value placed in thisregister. For
example, setting the DTR bit causes the DTR output to become active-low. The state of the modem
input pinsis also the inverse of the value in the corresponding bit in the registers.

Receive Baud Rate Period Register

Register Name: RBPR
Register Description: Receive Baud Rate Period
Access: Read/Write

8-Bit Hex Address: 78
Default Value: 41

Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0
Binary Divisor Value
Thisregister holds the baud rate divisor for the receiver. It is used in conjunction with the RCOR.
This provides the clock, which is divided by this value. The time period produced must equal the
value for one bit time of the receive data.
7.5.6 Receive Clock Option Register

Register Name: RCOR
Register Description: Receive Clock Option

8-Bit Hex Address: 7C
Default Value: 01

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
X X X X X ClkSel2 ClkSell ClkSel0
The RCOR sdlects the clock source, which drives the RBPR. The value in ClkSel2—ClkSel O selects
one of five possible clocks generated from the master clock (CLK).
ClkSel2 ClkSell ClkSel0 Clock Selected
0 0 0 CIkO (CLK = 8)
0 0 1 Clk1 (CLK +32)
0 1 0 Clk2 (CLK +128)
0 1 1 Clk3 (CLK +512)
1 0 0 Clk4 (CLK + 2048)
Datasheet 131

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

7.5.7

ClkSel2 ClkSell ClkSel0 Clock Selected
1 0 1
1 1 0 Not used.
1 1 1

Received Data Count Register

Register Name: RDCR
Register Description: Received Data Count
Access: Read only

8-Bit Hex Address: OE
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 CT3 CT2 CT1 CTO
The RDCR indicates the number of good characters currently in the serial received data FIFO. Host
software can use this value as aloop counter when taking characters out of the FIFO. The valuein
thisregister is only valid during the context of a service request acknowledge. At other times, it
may or may not give atrue indication of the number of characters in the FIFO.
Bit Description
74 These bits must always be ‘0'.
Character Count 3:0: The encoding for these bits is:
CT3 CT2 CT1l CTO Number of characters in FIFO
0 0 0 0 Not used.
0 0 0 1 1 character
0 0 1 0 2 characters
20
1 0 1 1 11 characters
1 1 0 0 12 characters
1 1 0 1
1 1 1 0 Not used.
1 1 1 1

132

Datasheet

intel.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

7.5.8 Receive Timeout Period Register
Register Name: RTPR 8-Bit Hex Address: 21
Register Description: Receive Timeout Period Default Value: 00
Access: Read/Write
Bit 7 | Bit 6 | Bit5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit O
Binary Count Value
The RTPR determines the time period used for the NNDT (no new data timeout) and the ‘ no new
data’ timeout. The timeout counter isloaded from this register whenever a new character is placed
in—or thelast character isremoved from — the receive FIFO. The counter decrements on each tick
of the prescaler counter (PPR). A service request is generated if the count reaches zero and:
¢ Either an NNDT if the FIFO is empty and the NNDT is enabled, or
¢ A Good Data service request is generated if there is datain the FIFO
In either case the timeout period has expired before the FIFO reaches the programmed threshold.
7.6 Special Character Registers
The four specia character registers, SCHR1-SCHR4, contain the character patterns used for
various character matching and flow-control functions. Each 8-bit character isright justified, that
is, comparison occurs from right to left, and all bits are compared. Any unused bits must be ‘0’.
SCHR1 and SCHR2 serve the additional function of defining the XON and X OFF characters,
respectively, used for in-band flow control.
7.6.1 Special Character Register 1
Register Name: SCHR1 8-Bit Hex Address: 1A
Register Description: Special Character Register 1 Default Value: 00
Access: Read/Write
Bit 7 Bit 6 | Bit 5 | Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Special Character 1
SCHR1 defines the XON character.
7.6.2 Special Character Register 2
Register Name: SCHR2 8-Bit Hex Address: 1B
Register Description: Special Character Register 2 Default Value: 00
Access: Read/Write
Bit 7 Bit 6 | Bit 5 | Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Special Character 2
SCHR2 defines the XOFF character.
Datasheet 133

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

7.6.3 Special Character Register 3

intel.

Register Name: SCHR3
Register Description: Special Character Register 3
Access: Read/Write

8-Bit Hex Address: 1C
Default Value: 00

Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3

Bit 2 Bit 1 Bit 0

Special Character 3

7.6.4 Special Character Register 4

Register Name: SCHR4
Register Description: Special Character Register 4
Access: Read/Write

8-Bit Hex Address: 1D
Default Value: 00

Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3

Bit 2 Bit 1 Bit 0

Special Character 4

7.6.5 Received Character Range Detection

If enabled (by bit 7 of COR3), the CD1284 checks received characters to seeif they fall withina
range of values. SCRL and SCRH set the range and the checking occurs inclusive of the values
programmed into these registers. If areceived character is determined to be within the range, a
specia character detect exception service request is posted. When set to * 111', RDSR[6:4] indicate
arange detect. Note that this range checking is performed in addition to the normal special

character detection on SCHR4-SCHR1.

7.6.6 Special Character Range — High

Register Name: SCRH
Register Description: Special Character Range, high
Access: Read/Write

8-Bit Hex Address: 23
Default Value: 00

Bit 7 Bit 6 | Bit 5 | Bit 4 | Bit 3

Bit 2 Bit 1 Bit 0

Character Range — high

SCRH sets the upper inclusive value for range detection.

7.6.7 Special Character Range — Low

Register Name: SCRL
Register Description: Special Character Range, low
Access: Read/Write

8-Bit Hex Address: 22
Default Value: 00

Bit 7 Bit 6 | Bit5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit O
Character Range — low
SCRL setsthe lower inclusive value for range detection.
134 Datasheet

intel.

7.6.8

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Serial Service Request Enable Register

Register Name: SRER
Register Description: Serial Service Request Enable
Access: Read/Write

8-Bit Hex Address: 06
Default Value: 00

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MdmChg

0 0 RxData 0 TxRdy TXEmpty NNDT

Thisregister enables the conditions that cause the CD1284, to post a service regquest by the SVYRR
and the SV CREQ* output pins, and applies to the serial channels only. Each of the individual
enable bits control one type of service request.

Bit

Description

Modem Change: This bit enables the Modem Change service request. When this bit is ‘1’, any selected
modem signal change conditions (as programmed by MCOR1 and MCOR2) cause a modem service request
to be posted.

6:5

These bits must always be ‘0’.

Receive Data Enable: This bit enables the posting of receive service requests when characters have been
received and either the FIFO reaches the programmed threshold (set by COR3) or the receive timeout period
has expired.

This bit must always be ‘0’.

2:1

Transmitter Ready and Transmitter Empty: The transmitter can be enabled to post service requests on one
of two conditions: either the FIFO is empty or the Transmitter Shift register is empty.

TxRdy enables the service request on the condition that the FIFO is empty. In this case, there are still two
characters available for transmission before the transmitter underruns (one in the Shift register and one in the
Holding register).

TXEmpty enables the service request on the condition that the Shift register is empty. The transmitter
underruns due to the latency experienced between the time the service request is posted and the time the
host can load the FIFO. Under normal operating conditions, TXEmpty is set and TxRdy reset when there is no
more data to transmit and the host requires notification that the last character was sent before it can disable
the transmitter.

No New Data Timeout Enable: This bit activates the optional exception service request when all data is
removed from the FIFO and no new data has arrived after a preprogrammed delay period set by the value in
the RTPR. The LIVR (or RIVR) indicates a receive exception in the IT2-ITO vector bits. There is no data
associated with this exception service request. RDSR[7] indicates that the service request is for an NNDT
condition.

7.6.9

Transmit Baud Rate Period Register

Register Name: TBPR
Register Description: Transmit Baud Rate Period
Access: Read/Write

8-Bit Hex Address: 72
Default Value: 41

Bit 7

Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit0

Binary Divisor Value

Datasheet

Thisregister holds the baud rate divisor for the transmitter and is used in conjunction with the
TCOR. This provides the clock, which is divided by this value. The time period produced must
equal the value for one hit time of the transmit data.

135

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

7.6.10 Transmit Clock Option Register

Register Name: TCOR 8-Bit Hex Address: 76
Register Description: Transmit Clock Option Default Value: 01
Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

X X X X X ClkSel2 ClkSell ClkSel0

The TCOR selectsthe clock source which drivesthe TBPR. Thevauein ClkSel[2:0] selects one of
five possible clocks generated from the master clock (CLK).

ClkSel2 ClkSell ClkSel0 Clock Selected
0 0 0 CIkO (CLK =+ 8)
0 0 1 Clk1 (CLK =+ 32)
0 1 0 Clk2 (CLK +128)
0 1 1 Clk3 (CLK + 512)
1 0 0 Clk4 (CLK + 2048)
1 0 1
1 1 0 Not used.
1 1 1
7.7 Channel Registers — Parallel Pipeline
7.7.1 Data Error Register
Register Name: DER 8-Bit Hex Address: 33
Register Description: Data Error Default Value: 00
Access: Read only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DMAwrerr DMArderr Bufwrerr Bufrderr HR1wrerr HRZ1rderr HR2wrerr HR2rderr

The bitsin this read-only register indicate read/write errorsinvolving the DMABUF register and
the Data Pipeline registers. The DataErr bit (PFSR[0]) isthe logical OR of these eight Error Status
bits.

Reading this register has no effect on the error status. A write to thisregister clears all the bits,
which cannot be written by the user. Host software should clear this register (write x’ 00) after
completing an error service-acknowledge procedure. This bit is provided primarily as an aid to
driver software development. Data errors should never occur under normal circumstances.

Thisregister is cleared during device reset.

136 Datasheet

intel.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit Description

DMA Write Error: This bit is set if the DMA control logic has written to the DMA buffer when it already

7 contains data. It indicates that an invalid DMA transfer cycle occurred (a DMAACK* without a corresponding
DMAREQ¥).

6 DMA Read Error: As with bit 7, this bit indicates that DMA logic has performed a read from the DMA buffer
when there was no data in it. It indicates that an invalid DMA transfer cycle occurred.

5 Buffer Write Error: This bit indicates that a system write to the DMA buffer occurred while it still contained
data.

4 Buffer Read Error: This bit indicates that a system read from the DMA buffer occurred while it was empty.

3 Holding Register 1 Write Error: This bit indicates that a system write to PFHR1 occurred while it still
contained data.

5 Holding Register 1 Read Error: This bit indicates that a system read from PFHR1 occurred while it was
empty.

1 Holding Register 2 Write Error: This bit indicates that a system write to PFHR2 occurred while it still
contained data.

0 Holding Register 2 Read Error: This bit indicates that a system read from PFHR2 occurred while it was
empty.

7.7.2 DMA Buffer Data Register — High

Register Name: DMABUFH
Register Description: DMA Buffer Data Register, high
Access: Read/Write

8-Bit Hex Address: 30
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
15 14 13 12 11 10 9 8
7.7.3 DMA Buffer Data Register — Low

Register Name: DMABUFL 8-Bit Hex Address: 30
Register Description: DMA Buffer Data Register, low Default Value: 00
Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

7 6 5 4 3 2 1 0

Datasheet

This 16-bit dataregister is used to buffer DMA data transfers to and from the CD1284. Under
normal operating conditions, thisregister isonly accessed during aDMA datatransfer cycle. If the
DMAbufWe (PFCRJ[Q]) issetto ‘1’ and DMAdir (PFCR[5]) issetto ‘1, data may be transferred
from the host to the FIFO by directly writing to the DMABUF. The data automatically moves
forward into the FIFO through the Data Pipeline Holding registers. The user must ensure that the
FIFO has sufficient free space to accept the data before writing into the DMABUF.

The BY TESWAP pin determines the order of byte transfer from this register into the data pipeline.
If BYTESWAP issetto ‘1, datatransferred on DB[15:8] isthe first byte transferred into the data
pipeline and DB[7:0] istransferred second. If BY TESWAP isset to ‘0’ this sequenceis reversed.
The same applies during data read during DMA transfers. if BY TESWAPissetto ‘1’, datafrom
the data pipeline moves to the upper byte of DMABUF, the next byte moves into the lower byte.
Again, if BYTESWAPissetto ‘0", this sequence is reversed.

137

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

7.7.4

intel.

These resisters can be read through DMA acknowledge or PIO cycles, however, the DMABUF
registers can only be read when the DMAREQ* signal is active. If DMAREQ* isinactive, the
DMABUF registers will be empty. DMAfull (HRSR[3]) indicates if the DMABUF register is
empty when DMAREQ* is active.

Firmware Revision Code Holding Register Status Register

Register Name: HRSR
Register Description: Holding Register Status
Access: Read only

8-Bit Hex Address: 34
Default Value: 04

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HR1full HR1tag HR2full HR2tag DMAfull DMAmpty DMAact Ctnot0
The HRSR is aread-only register that indicates current data pipeline status. This register is not
directly set to any particular value by a device reset, but reflects the current state of bitsin other
registers.
Bit Description
Holding Register 1 Full and Holding Register 1 Tagged: These two bits indicate status of PFHR1. Bit 7
7:6 indicates that the register contains data; bit 6 indicates that the data is tagged. Bits 7 and 6 can be set
simultaneously.
Holding Register 2 Full and Holding Register 2 Tagged: These two bits indicate status of PFHR2. Bit 5
5:4 indicates that the register contains data; bit 4 indicates that the data is tagged. Bits 5 and 4 can be set
simultaneously.
39 DMA Buffer Full and DMA Buffer Empty: These two bits indicate status of the DMA transfer buffer (DMA
’ buffer). Bit 3 indicates that the register contains data; bit 2 indicates that it is empty.
1 DMA Active: When this bit is set, it indicates that the DMA handshake is active and a DMA service has been
requested but is not yet complete (DMAREQ* active — waiting for DMAACK®*).
0 Count Not Zero: This bit indicates that the RLE counter is not zero, thus run-length encoding/decoding is in
progress.
7.7.5 Local Interrupt Vector Register

Register Name: LIVR
Register Description: Local Interrupt Vector

8-Bit Hex Address: 18
Default Value: 00

Access: Read/Write

Bi

t7

Bit 6 | Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0

User-Defined Bits IT2 IT1 ITO

138

This read/write register can beinitialized to any desired value and, when read in the normal context
(that is, not a service acknowledge context), the same value will be returned. The upper 5 bits are

copied into the appropriate vector register (MIVR, PIVR, TIVR, or RIVR) when the corresponding
SVCACK?* signal is activated and an SVCREQ* of the same typeis active. During this hardware-
activated service acknowledge read cycle, the appropriate vector register (MIVR, PIVR, TIVR, or
RIVR) isdriven onto the data bus, DB[7:0].

Datasheet

In IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bits Description

User-defined Interrupt Vector: Host software can use these five bits for any purpose appropriate to the
application. In some cases, these bits might define the rest of a complete interrupt response vector (Motorola-
type systems). In the case of daisy-chain systems made up of multiple CD1284s, these bits define the device
number in the chain.

7:3

2:0 Interrupt Vector Type Code: These bits are read/writable in the normal context. These bits are ‘don’t cares’.

7.7.6 Parallel Auxiliary Control Register

Register Name: PACR 8-Bit Hex Address: 3F
Register Description: Parallel Auxiliary Control Default Value: 00
Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ShrtTen ShrtStal StaleOff FIFOlock ClearTO 0 AsyncDMA Unfair

Thisregister provides some special functions for the parallel data path and interrupt generation
circuitry. The upper two bits change the basic timing of the timers associated with the data pipeline.
Bit 5 can disable the stale data timer. Bit O overrides the Fair Share functions of the device (serial
and parallel channels).

Bit Description

ShrtTen: This function shortens the Prescaler count cycle that generates the internal 10-ps (based on a 25-
7 MHz system clock) clock for the stale data counter. This bit is cleared by RESET*. If set, the 10-ps ‘ticks’ of
the counter are generated every two CLKSs; the normal period is one ‘tick’ every 250 CLKs.

ShrtStal: This function shortens the period of the stale data timer. The stale data timer includes a divide-by-
10 prescaler; setting this bit bypasses the prescaler function thus causing the stale data timer to count on
each 10-us clock ‘tick’.

If both ShrtTen and ShrtStal are set, the stale data timer counts on every other CLK.

StaleOff: If set, this bit masks off the Stale Status bit. The inverse of this bit is AND’ed with the stale state
condition of the parallel channel to produce the stale status and disables OneChar and Stale as interrupt
sources. StaleOff is provided primarily for test and development purposes if slow movement of data into the
parallel port causes Stale and OneChar to always appear true.

FIFOlock: The FIFOlock bit causes the FIFO to stop accepting data from the parallel channel state machine.
This action makes the FIFO appear full to the parallel port, thus causing it to enter the ‘busy’ state. This
function is primarily intended for use in system testing to cause a timeout on the 1284 bus.

4 Setting this bit in ECP Forward mode may cause a stall condition event 35 because event 36 does not occur
until FIFOlock is cleared. The ECP mode host transfer recovery handshake sequence (from event 35 stall) is
supported and the byte transit discarded as required by the specification. This bit does not provide an
effective means to flow control the host.

Clear Timeout: This bit is a reset bit for the timeout status latch logic. When toggled by software, the timeout
status in the PFSR is cleared; it may be left set to disable the Timeout status function. Note that if this bit is
left set, the OneChar interrupt condition will never become true because the OneChar interrupt logic uses the
timeout status to determine when the FIFO has become stale.

Datasheet 139

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In o
Bit Description
2 Reserved: Must be ‘0.

AsyncDMA: AsyncDMA causes the device to synchronize the DMAACK?* signal to the internal clock (rising
clock edge). This capability provides an asynchronous DMA interface for systems that cannot meet the set-up
times required by the synchronous DMA logic.

Refer to Chapter 8.0 for specific timing relationships between CLK and DMAACK* when AsyncDMA is
enabled.

Unfair: This bit overrides the Fair Share function of the device. If this bit is set, the device posts service
requests even if the service request is already asserted by an external device. The override is in effect for
channels 2 and 3; Fair Share is not functional on the parallel service request.

For applications where the three serial channel service request outputs are wire-OR’ed together, set Unfair so
that an interrupt of one type does not prevent posting one of the other types (receive, transmit, and modem).

1.7.7

Parallel Channel Reset Register

Register Name: PCRR
Register Description: Parallel Channel Reset
Access: Read/Write

8-Bit Hex Address: 6C
Default Value: 00

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 0 PChReset
Thisregister exists only in the Channel O register set and isin the equivalent address location asthe
MSVR register of the seria channels.
Bit Description
71 Reserved: Must be ‘0’
PChReset: Setting this bit asserts the equivalent of a hardware power-on reset to the parallel channel,
0 channel 0. If set by the host, it must be cleared to resume normal parallel channel operation. This hardware
reset affects only the parallel channel and has no affect on other functions of the device.
7.7.8 Parallel FIFO Control Register

Register Name: PFCR
Register Description: Parallel FIFO Control
Access: Read/Write

8-Bit Hex Address: 31
Default Value: 00

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FIFOres

DMAen DMAdir IntEn RLEen setTAG ErrEn DMAbufWe

140

Thisregister controls overall function of the parallel FIFO. These functions include resetting
(flushing) the FIFO, enabling DMA transfers, enabling host interrupts, run-length encoding, and so
on. The host sets these bits according to the mode of operation required.

After hard reset (RESET* or a CCR command of X’ 81 in one of the two serial channels), this
register is cleared to all zeros.

Datasheet

In IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit Description

FIFO Reset: This bit must be set together with the correct value of DMAdir to properly initialize the data
pipeline and FIFO registers for data transfer or when a new data transfer direction is desired. Any data

! remaining in the FIFO is discarded. The FIFO remains in reset mode until this bit is cleared with a second
register write operation.
DMA Enable: This bit must be set for DMA requests to move data to or from the FIFO to be made. When
DMAen =1, The PFQR quantity value is compared with the PFTR user-programmed threshold value. In
6 Receive mode, if the threshold is equalled or exceeded, DMAREQ* is asserted and causes DMA data

transfers of whole (2-byte) words from the FIFO by the data pipeline. In Transmit mode, if the amount of data
in the FIFO is equal to or less than the threshold, DMAREQ* is asserted causing DMA data transfers of whole
(2-byte) words to the FIFO by the data pipeline.

DMA Direction: This bit sets the direction of transfer between the parallel FIFO and system memory. If
DMAdir = 1, the direction is transmit (system memory to the parallel FIFO); if it is ‘0, the direction is receive.
The desired DMAdir value must be set together with FIFOres when initializing the FIFO logic for data transfer.
5 Once a DMAdir value is set and the FIFOres is complete, that DMAdir selection must be maintained during
any other changes to the control bits of the PFCR.

Note: This bit sets the direction of the channel, even when DMA is not enabled. The proper direction must be
set regardless of the DMAen bit.

Interrupt Enable: This is the master interrupt enable for the parallel channel. This bit must be set for any
interrupts generated by the data pipeline, parallel port, or error status. In Poll-mode operation, host software
toggles this bit to signal the completion of the service-acknowledge cycle. Toggling this bit updates the state
4 of SVCREQP* and the PIR according to the current state of PCISR, DERR, and PFSR. For this reason,
PCISR, DERR, and PFSR should be read and cleared at the end of the service routine to ensure that no
requests were skipped. This is because an edge-sensitive interrupt controller may not detect a request active
when the program returns from the service routine.

RLE Enable: The state of this bit enables RLE encoding/decoding for the direction defined by DMAdir. The
RLEen bit effects the flow of data through the data pipeline in the transmit direction. Data flow into the FIFO is
managed in such a way that PFHR1 and PFHR2 are kept full to permit evaluation of data sequences for

3 possible compression. The effect is that following any data transfer while RLEen is set, the final 2 bytes
written to the DMABUF register are kept in PFHR1 and PFHR2. To allow these bytes to be moved into the
FIFO or to make room in PFHR1 for a tagged data transfer, RLEen must be ‘0’ and both DMAen and
DMAbufWe must be ‘0’.

Set TAG: This bit specifies that the next character written to the parallel channel by the PFHR1 register is to
be tagged as an ECP or EPP special character (for a detailed explanation of the special handling of these

2 characters, see Section 5.13). The setTAG bit is cleared by a write to PFHR1 thus, this bit must be set each
time a tagged character is to be written.
1 Error Interrupt Enable: This bit enables a non-zero DataErr status to cause an interrupt if IntEn is also set.
DMA Buffer Write Enable: This bit must be set to enable host writes to the DMABUF register. It also enables
0 the FIFO data pipeline to empty the DMABUF register when written to by the host system. In this case, the
system writes to the DMA buffer (without DMA transfers) providing a low-performance alternative to DMA
transfers.
7.7.9 Parallel FIFO Empty Pointer Register
Register Name: PFEP 8-Bit Hex Address: 39
Register Description: Parallel FIFO Empty Pointer Default Value: 00
Access: Read/Write
Bit 7 Bit6 Bit 5 | Bit4 | Bit 3 | Bit 2 | Bit1 | Bit 0
0 0 6-bit binary FIFO Pointer Value

Thisregister holds the internal empty location pointer of the FIFO. It identifies the location in the
FIFO from which the next byte of datatransfers from the FIFO.

Datasheet 141

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

The PFEP is cleared by adevice or FIFO reset.

7.7.10 Parallel FIFO Fill Pointer Register

Register Name: PFFP 8-Bit Hex Address: 38
Register Description: Parallel FIFO Fill Pointer Default Value: 00
Access: Read/Write
Bit 7 Bit 6 Bit5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | BitO
0 0 6-bit binary FIFO Pointer Value

Thisregister holds the interna fill location pointer of the FIFO. It identifies the location in the
FIFO to receive the next data byte from the pipeline.

The PFFPiscleared by adevice or FIFO reset.

7.7.11 Parallel FIFO Holding Register 1
Register Name: PFHR1 8-Bit Hex Address: 35
Register Description: Parallel FIFO Holding Register 1 Default Value: 00
Access: Read/Write
Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit O
8-bit Character Data

7.7.12 Parallel FIFO Holding Register 2

Register Name: PFHR2 8-Bit Hex Address: 36
Register Description: Parallel FIFO Holding Register 2 Default Value: 00
Access: Read/Write
Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bt O
8-bit Character Data

These two 1-byte registers provide a data pi peline between the FIFO and DMA buffer. Data aways
flowsinto PFHR1 first, then to PFHR2, and finally, either to the FIFO or the DMABUF register.
Theflow istothe FIFO if DMAdiris‘1 and, from the FIFO if DMAdiris‘0'. The pipeline and the
holding registers support ‘tagged’ datafor complete support of ECP Parallel Port mode. Tagged
datais either an address or a run-length code.

If RLEen (PFCR[3]) is set, in the receive direction, run-length codes are captured in the RLCR for
decompression of received data. ECP address codes are recognized and pass into the PFHR1-
PFHR2 pipeline. The presence of an ECP address interrupts DMA flow and causes an interrupt to
the host so it can remove the tagged data from the pipeline by reading either PFHR2 or PFHR1.

In the transmit direction, the host can introduce ECP address (tagged) data or run-length codes for
precompressed data by setting the SetTAG bhit (PFCR[2]) and writing the byte to be tagged to
PFHRL1. For each tagged data transfer, the SetTAG bit must be set prior to writing to PFHR1. To
perform atagged data transfer, the automatic DMA function must be disabled prior to the transfer
(set DMAen = 0). This can be done at the same time that SetTAG issetto‘1'.

142 Datasheet

In IEEE 1284-Compatible Parallel Interface Controller — CD1284

These registers are cleared by adevice or FIFO reset and marked as empty in HRSR. Any tagged
statusis also cleared.

7.7.13 Parallel FIFO Quantity Register

Register Name: PFQR 8-Bit Hex Address: 3A
Register Description: Parallel FIFO Quantity Default Value: 00
Access: Read/Write
Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0
Data or Space Available in FIFO — Max 0x40

This register maintains the quantity (or count) of either data bytes or space available in the parallel
FIFO. In the receive direction (DMAdir = 0), PFQR counts data charactersin the FIFO. In the
transmit direction (DMAdir = 1), PFQR counts space available in the FIFO for additional
characters to transmit. FIFOres, together with the value of DMAIr, initialize PFQR to either x’ 00
(receive) or x’40 (transmit).

In either case, the PFQR indicates only the quantity of data or space availablein the FIFO, and
does not include the data pipeline registers.

7.7.14 Parallel FIFO Status Register
Register Name: PFSR 8-Bit Hex Address: 32
Register Description: Parallel FIFO Status Default Value: 40
Access: Read only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FFfull FFempty Timeout HRtag HRdata Stale OneChar DataErr

This read-only register provides the current FIFO and data pipeline status. Host software should
examine these bits in response to pipeline interrupts or polling operations.

Thisregister is not directly cleared by reset, but the individual bits reflect the status of other

registers.
Bit Description
7 Parallel FIFO is Full: If this bit is set, it indicates that the parallel FIFO is full.
6 Parallel FIFO is Empty: If this bit is set, the parallel FIFO is empty.

Timeout: This bit is set when Stale goes from false to true. In the receive direction, Timeout is delayed until
the FIFO is empty and all DMA cycles are complete (PFHR2 may or may not be full). Timeout is a pipeline
interrupt condition and must be cleared manually by the CPU. This is done by toggling CIrTO (PACR[3]) or by
a FIFO reset in PFCR.

Holding Register Tag: This bit indicates that a tagged character is in either PFHR1, PFHR2, or both. If
4 enabled, this bit being set causes a host interrupt to be generated. The host should examine the HRSR to
determine the exact cause(s) of this bit being set.

3 Holding Register Data: If this bit is set, it indicates that either PFHR1, PFHR2, or both contain data.

Datasheet 143

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Bit Description (Continued)

Stale: This bit is set when the stale data timer expires (see the description of SDTPR). If a single byte
remains in the data pipeline when this bit is set, a host interrupt is generated, the OneChar bit is set, and new
2 data entering the FIFO does not move into PFHR1 until PFHR2 empties. If two or more bytes remain in the
pipeline when this bit is set, a host interrupt is not generated, however, a DMA request is generated if
enabled.

One Character: In the receive direction, this bit set indicates that the FIFO is empty and stale, and one

1 character remains in PFHR2. This condition occurs if an odd number of bytes is transferred by the parallel
interface. Since DMA cycles only move even numbers of bytes (words) and odd transfers leave one byte
remaining, host software must remove this character outside of DMA transfer cycles.

0 Data Error: If this bit is set, it indicates that one or more of the bits in the DER are set.
7.7.15 Parallel FIFO Threshold Register
Register Name: PFTR 8-Bit Hex Address: 3B
Register Description: Parallel FIFO Threshold Default Value: 00
Access: Read/Write
Bit 7 Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0
0 DMA Transfer Threshold

Thisregister sets the FIFO threshold for initiating DMA requests for data transfer. Thevalueis
expressed in bytes. Whenever DMAen istrue, regular comparisons are made between the PFQR
and the PFTR. If the valuein the PFQR is greater than or equal to the threshold, the DMA request
logic becomes active and remains active until the FIFO is essentially filled or emptied. An odd
character or spacein the FIFO can remain.

In the receive direction, the Holding register pipeline (PFHR1 and PFHR?2) are kept filled, so that
tagged data (for example, ECP mode addresses) can be detected and passed to the host by an
interrupt. For example, if the FIFO and data pipeline are initialized for receive, and 40 hex bytes
are placed into the FIFO from the parallel port, the first two of those bytes automatically are placed
in the Pipeline registers. If the PFTR were programmed to x’ 40 bytes, X’ 42 bytes must arrive to
trigger aDMA transfer.

PFTR is cleared by device reset; it is not cleared by FIFOres.

7.7.16 Run Length Count Register
Register Name: RLCR 8-Bit Hex Address: 37
Register Description: Run Length Count Default Value: 00
Access: Read/Write
Bit 7 Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bt 0
0 7-bit Unsigned Binary Count

Thisregister works with the Holding registers (PFHR1 and PFHR2) to perform run-length
encoding and decoding when RLEen is set (PFCR[3]). The parallel port must be in ECP mode; in
other modes, run-length encoding does not occur.

144 Datasheet

n
IntGI o IEEE 1284-Compatible Parallel Interface Controller — CD1284

In the transmit direction, strings of three or more identical characters are recognized and
compressed. The running count of identical charactersiskept in the RLCR. Once the sequenceis
broken by adifferent character or the end of the transmit burst transfer, the count and a single copy
of the duplicated character are put in the FIFO.

In the receive direction, run-length codes can be received from the remote device. These codes are
recognized ‘on the fly’ as data flows from the FIFO through the holding register pipeline. A run-
length code is diverted to the RLCR. The subsequent character from the FIFO isduplicated (held in
PFHR1) while the RLCR decrements. Once the RLCR reaches‘0’, normal pipeline data movement
resumes. If run-length codes are being received by the parallel port but RLEen is not set, the codes
enter PFHR1 and PFHR?2 as tagged data and cause interrupts to the host. The host must read the
tagged Holding register directly to remove the character from the pipeline and clear the tag.

Thisregister is cleared by adevice or FIFO reset.

7.7.17 Stale Data Timer Count Register
Register Name: SDTCR 8-Bit Hex Address: 3D
Register Description: Stale Data Timer Count Default Value: 00
Access: Read/Write
Bit 7 | Bit6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0
8-bit Stale Data Timer Count
This register determines the period that signals stale datain the FIFO. Thetimer isused only in the
receive direction. Each time a new character is placed in the FIFO from the parallel port, the
SDTCR isreloaded from the SDTPR, and down-counting begins at the ‘tick’ rate. If the counter
reaches'0’, the Stale bit (PFSR[2]) is set. If the amount of data available is greater than or equal to
one word, a DMA request is made to move all remaining whole words to the host with aDMA
transfer. Once the DMA transfer is complete, a single remaining character causes an interrupt to the
host to remove the character by reading PFHR2.
Thisregister is cleared by adevice or FIFO reset. Clearing it causes the Stale bit (PFSR[2]) to
become true.
7.7.18 Stale Data Timer Period Register
Register Name: SDTPR 8-Bit Hex Address: 3C
Register Description: Stale Data Timer Period Default Value: 00

Access: Read/Write

Bit 7

| Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit0

8-bit Stale Data Timeout Value

Datasheet

Thisregister provides a user-defined period value for use as the timeout value of the stale data
timer (see SDTCR).

With a 25-MHz CLK input to the device, the resolution of thistimer is 0.1 ms (with a maximum
value of 25.5 ms). The 25-MHz clock is divided by 250 to produce a 10-ps intermediate clock for
thistimer. A fixed, divide-by-ten prescaler produces 0.1-ms ‘ticks' to the stale datatimer. To ensure
accuracy for small timeout values, the prescaler is reset each time the stale datatimer is rel oaded.
(A user selection of 0.1-ms timeout results in atime delay between 0.09 and 0.1 ms.)

145

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

The SDTPR is cleared by adevice reset.

7.8 Channel Registers — Parallel Port

7.8.1 EPP Address Register

Register Name: EAR
Register Description: EPP Address
Access: Read/Write

8-Bit Hex Address: 25
Default Value: 00

Bit 7 | Bit 6 | Bit5 | Bit 4 | Bit 3

Bit 2

Bit 1

Bit 0

8-bit Binary Value

Thisregister is only used during EPP mode.

The CD1284 deposits the value obtained during an EPP address write command in this register.
The CD1284 provides this value in response to an EPP address read command.

7.8.2 Host Timeout Value Register

Register Name: HTVR
Register Description: Host Timeout Value
Access: Read/Write

8-Bit Hex Address: 24
Default Value: FF

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

HTVR[7]

HTVR[6]

HTVR[5]

HTVR[4]

HTVR[3]

HTVR[Z]

HTVRII]

HTVRIO]

Note:

146

Thisregister holds the 8-bit value used to set the Host timeout period. The HTVR is an unsigned,
binary value. The reset state of thisregister is‘OxFF .

A function missing in Revision C and earlier devicesis an on-chip timer to indicate that the remote
host has not responded in a specified time period. The Host timeout is defined in the IEEE STD
1284 specification as a period of one second.

Revision D and newer devices add a user-programmable timer to provide atimeout if the remote
host does not respond to specific parallel port transactions. The timer is started by the parallel port
state machine each time it starts a sequence requiring a host response. Activation of the timer is
automatic and an interrupt is generated to the local host CPU if the timer expires before the remote
host responds.

Users familiar with the | EEE specification note that the events that start the timer cause the
peripheral device to wait for aremote host-generated event. For example, during the negotiation
seguence after event 2, the peripheral waits for event 3 — a host-generated event. If the host does
not respond and moves the negotiation sequence to event 4 within one second, the peripheral enters
the ‘host timeout’ condition.

Thetimer isa14-bit counter clocked by the system clock (CLK) prescaled (divided) by 2048. Then
the 8-bit HTVR (address offset 0x24) is programmed and compared with the most-significant 8 bits
of the 14-bit counter. Each time the parallel port executes an event requiring a host response, the

Datasheet

7.8.3

IEEE 1284-Compatible Parallel Interface Controller — CD1284

14-bit counter is started (from 0x00). It counts up until either the expected event occurs or the
count matches the value in HTVR. If amatch occurs, atimeout condition exists. The HTVR need
only be loaded once, typically during device initialization.

Thevalue placed in HTVR yields an approximate one second count time, based on the value of the
input CLK. For example, if the system clock driving the device is 25 MHz, the HTVR should be
loaded with OxCO. The following equation provides an example.

25MHz _

The computed valueis rounded up to the next largest whole hex value, in this case * 0x3000'. Load
the HTV R with the most-significant 8 bits of this value, | eft-shifted two placessinceHTVR isa 14-
bit counter. Thisresultsin avalue of ‘OxCQ’. For 20 MHz, the value is computed to be ‘0x9C’; for
16 MHz, the valueis ‘0x7C’; values for other clocks can be easily computed in the same manner.
At reset, the HTVR defaults to avalue of ‘OxFF'; this prevents the extremely short timeouts that
occur if the register is cleared at device reset and is not initialized.

A timeout causes a negotiation status change interrupt. This status is displayed as ‘0x22' in the
NSR (NSR[5] and the code for return to Compatibility mode — ‘0010 —in the result code field).
When Compatibility modeis reentered, the port control state machine waits in alocked state until
signals on the parallel port return to normal Compatibility mode conditions.

For debug purposes, disable the host timeout timer by setting PCR[3:2] (HTmrTst[1:0]). In this
case, no timeouts occur and the link can hang indefinitely while waiting for a host-generated event.

Input Value Register

Register Name: IVR
Register Description: Input Value
Access: Read only

8-Bit Hex Address: 2E
Default Value: XX

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 Al1284 ninit HstBsy HstClk
Thisregister always shows the current state of the external handshake pins.

Bit Description

7:4 These bits are not used and return ‘0’ when read.
3 Al1284
2 ninit (low active Init input)
1 HstBsy (host busy)
0 HstClIk (host clock)

Datasheet 147

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

7.8.4

intel.

Manual Data Register

Register Name: MDR
Register Description: Manual Data
Access: Read/Write

8-Bit Hex Address: 21
Default Value: 00

Bit 7 Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bt 0
8-bit Binary Data
This read/write register can read the state of the PD[7:0] signalsin any mode. If the ManMd bit
(PCR[7]) and the MMDir and ManOE bits (PCR[1:0]) are set, then the value written into this
register isdriven onto the PD[7:0] signals.
7.8.5 Negotiation Enable Register

Register Name: NER
Register Description: Negotiation Enable
Access: Read/Write

8-Bit Hex Address: 28
Default Value: 00

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
0 RID 0 EPP RLE ECP RVB RVN
Each bit set along with EICR (PCR[6]) alows the CD1284 to engagein IEEE STD 1284
negotiations and move into the corresponding protocal. It is assumed that the peripheral host
software responds to arequest for slave ID and is able to send an ID string in any supported
protocol. In response to an ID request, the CD1284 does not provide a method of storing and
automatically sending an ID string. Note that the EPP protocol does not have provision for slave ID
reguests.
Bit Description
7 Reserved: This read-only bit is always ‘0".
6 Request Slave ID
5 Reserved: This bit must always be ‘0’.
4 EPP Mode Enable
3 Run Length Encoding in ECP Mode Enable
2 ECP Mode Enable
1 Reverse Byte Mode Enable
0 Reverse Nibble Mode Enable
7.8.6 Negotiation Status Register
Register Name: NSR 8-Bit Hex Address: 29
Register Description: Negotiation Status Default Value: 00
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 | Bit 2 | Bit 1 Bit 0
NegOK NegFl HostTO ImedTerm 4-bit Negotiation Result Code

148

The results of negotiation attempts are stored in this register.

Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit

Description

Negotiation OK: The state of this bit indicates that the negotiation was successful.

Negotiation Failed: The state of this bit indicates that the negotiation failed. The result code indicates which
mode was attempted

Host Timeout: This bit indicates that a host timeout occurred on the parallel channel. The accompanying 4-
bit result code indicates that the link has returned to Compatibility mode (x02). See the description of HTVR in
Section 7.8.2 on page 146.

Immediate Termination: This bit indicates that the A1284 signal has unexpectedly gone inactive as a result
of an immediate termination from the host and the interface and has reentered Compatibility mode. The 4-bit
negotiation result code should indicate which mode was terminated.

3.0

The lower 4 bits of this register contain a result code that shows the current mode. The following table shows
the encoding of the result code.

Compatible mode — no negotiation.

Failed negotiation.

Compatible mode — termination of a 1284 mode.

Reserved.

EPP mode.

Reserved.

Reverse Nibble mode.

Reverse Nibble mode — ID request.

Reverse Byte mode.

Reverse Byte mode — ID request.

ECP mode without RLE.

ECP mode without RLE — ID request.
ECP mode with RLE.

Rrlrlr|lr|r|r|r|r|o|lo|lo|lo|o|o|o| o
Rr|lRr|Rr|lr|o|lo|lo|lo|r|Rr|r|r|o|o|lo| o
r|lr|lo|lo|r|r|lo|lo|r|r|lo|lo|r|r|lo|o
r|lo|lr|lo|lr|o|lr|lo|r|o|lr|lo|r|o|lr]|o

ECP mode with RLE — ID request.

7.8.7

Any change in the mode of the parallel port is reported to the peripheral host by interrupt if the
NegCh bit (PCIER[5]) is set; host software then reads the NSR to determine the current status and
condition. Once the host has read the NSR status resulting from the current negotiation, it should
clear the register in preparation for additional negotiation cycles. The NSR can be cleared by
writing any value.

Ones Detect Register

Register Name: ODR
Register Description: Ones Detect

8-Bit Hex Address: 2D
Default Value: 00

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 Al1284 ninit HstBsy HstCIk
Datasheet 149

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Setting the bits in this register enables the CD1284 to generate an interrupt —if SigCh (PCIER[4])
is set —when the selected signal changes from low-to-high (rising edge). Bits 7:4 are reserved and
must be written as zeros; they return zero when read. The settings in this register have no effect
(that is, a SigCh interrupt is not generated) unless the device isin Manua mode.

7.8.8 Output Value Register
Register Name: OVR 8-Bit Hex Address: 2B
Register Description: Output Value Default Value: 48
Access: Write only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PerBsy PerCIlk AkDaRq xFlag nDatAv 0 0 0

Thisregister controls output signals. In Manual mode, all signals are controlled by these register
settings. In Compatibility and EPP modes, PerBsy and PerClk are controlled by the internal
parallel port state machine, while AkDaRq, xFlag, and nDatAv are controlled by thisregister. In
ECP mode, the settingsin this register have no effect.

Bit Description
7:6 Peripheral Busy and Peripheral Clock: User-controlled in Manual mode only.
5 Acknowledge Data Request: In Compatible mode, this signal is the PError (Peripheral Error) signal.

In EPP mode, this signal is auxiliary and is a user-defined signal (USER 1).

XFlag: In Compatible mode, this signal is the SELCT (Select) signal.

4
In EPP mode, this signal is auxiliary and is a user-defined signal (USER 2).
3 Negative-true Data Available: In Compatible mode, this signal is the nFault (negative-true fault) signal.
In EPP mode, this signal is auxiliary and is a user-defined signal (USER 3).
2:0 Reserved: These bits must be written as ‘0.
7.8.9 Parallel Channel Interrupt Enable Register
Register Name: PCIER 8-Bit Hex Address: 22
Register Description: Parallel Channel Interrupt Enable Default Value: 00
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 21 Bit Bit
0 TimEn NegCh SigCh EPPAW DirCh IDReq nINIT
7.8.10 Parallel Channel Interrupt Status Register
Register Name: PCISR 8-Bit Hex Address: 23
Register Description: Parallel Channel Interrupt Status Default Value: 00
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TimOvr NegCh SigCh EPPAW DirCh IDReq nINIT

150 Datasheet

IEEE 1284-Compatible Parallel Interface Controller — CD1284

PCIER and PCISR provide control and status of interrupts generated by the parallel channel
control state machine. They have the same bit definitions. Each bit in the PCIER enables the
interrupt of the same type in the PCISR. A write of any value to the PCISR in response to an
interrupt request causesit to clear and the interrupt request is removed.

Bit Description

7 This bit must always be ‘0’

6 Timer Enable and Timer Over: These two bits are for factory test purposes only and should never be
written.

5 Negotiation Change: The state of this bit indicates that a change occurred in the negotiation status of the
port. The NSR indicates the new status of the parallel port.

Signal Change Enable: This enable instructs the parallel port to generate an interrupt when any of the

4 signals specified by the ZDR or ODR change state as programmed. This interrupt is only generated during
Manual mode, however, it cannot be cleared by terminating Manual mode.

3 EPPAW: The state of this bit indicates that the remote master has written an EPP address to the CD1284.
The new EPP address value is placed in the EAR.

Direction Change: This bit indicates that the host-side parallel port changed the direction of the interface.

2 Generally, this is in response to a request made by the CD1284 through the RevRq bit (SCR[0]). DirCh
indicates that the direction was reversed through the defined protocol and the CD1284 can now send data to
the master.

1 ID Request: The state of this bit indicates that the host has requested that the CD1284 send its ID data
string. The peripheral host sends the appropriate ID string (this is application dependent).

0 nINIT: This interrupt is generated when an nINIT pulse is received while in Compatibility mode. The interrupt
occurs on the leading edge of the nINIT pulse.

7.8.11 Parallel Configuration Register

Register Name: PCR
Register Description: Parallel Configuration

8-Bit Hex Address: 20
Default Value: 00

Access: R/W
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
ManMd E1284 ETxfr lg_SEL HTmrTst[1] HTmrTst[0] MMDir ManOE
Thisregister controls the overall configuration of the parallel port, each of which is described in
|EEE 1284 format below.
Datasheet 151

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

INlal.

Bit Description
Mode Control: These three bits control the type of transfer desired and whether or not it is enabled to do so.
The ManMd bit selects Manual mode, which allows the user direct control over all parallel data and parallel
port control signals. MMDir controls the direction of the MDR (Manual Data register), and ManOE is the output
enable when MMDir = 1 (output mode).
E1284 allows the parallel port to engage in IEEE 1284 negotiations; ETxfr enables data transfers. The ETxfr
enable is only used for data transfers. EPP address read and write functions do not require that the ETxfr bit
be set.
75 ManMd E1284 Etxfr Mode
0 0 0 Compatibility mode; transfers disabled.
0 0 1 Compatibility mode; transfers enabled.
0 1 0 IEEE 1284 negotiation; transfers disabled.
0 1 1 IEEE 1284 negotiation; transfers enabled.
1 X X Manual mode.
Ig_SEL: This bit prevents the CD1284 from considering the state of the SLCTIN* input when deciding
whether or not to accept Compatibility mode forward data transfers.
4 When Ig_SEL is reset, SLCTIN* must be active (low) to receive data on the parallel port in response to a
STROBE* input. If Ig_SEL is set, SLCTIN* is not considered and data is accepted regardless of its state. The
Ig_SEL bit should be set/reset together with the E1284 bit.
Host Timer Test Control [1:0]: These two bits control the clock rate of the host timeout timer and are
32 intended primarily for manufacturing test purposes. As such, normal user-level programming should leave
' these bits cleared (‘0’). When these bits are set to ‘1, the timer is completely disabled — useful for factory
debug purposes.
Manual Mode Control: These two bits provide direction and output enable manual control over the parallel
port.
MMDir ManOE Mode
1:0 0 0 Reverse direction.
0 1 Reverse direction.
1 0 Forward direction disabled.
1 1 Forward direction enabled.
7.8.12 Special Command Register

Register Name: SCR
Register Description: Special Command

8-Bit Hex Address: 2A
Default Value: 00

Access: R/W
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 TestMux ClrPs SetPs EPIrg RevRq

152

Thisregister provides the peripheral host processor to issue special commands to the channel
control state-machine. In response, the state-machine will perform the indicated |IEEE STD 1284-
defined handshake on the parallel interface.

Datasheet

In o IEEE 1284-Compatible Parallel Interface Controller — CD1284

Bit Description

75 These read-only bits are always ‘0.

TestMux: When this bit is set, the state of the state machine is multiplexed onto the GPIO pins for debugging
4 purposes.

GPIO is not possible when this bit is set.

Clear Pause and Set Pause: These commands implement an error pause in Compatibility mode. Usually,
errors are presented to the host parallel port by the peripheral during the active BUSY period of a data
transfer. SetPs remains set until CIrPs is set, at which time both clear.

In most cases, the slave host also sets RevRq at the same time when SetPs is set to:
1) Lockup Compatibility mode with BUSY high, and
2) Request a reverse transfer if the master requests that an additional status be sent in the reverse direction

3:2

1 EPP Interrupt Request: This command causes the state machine to generate the EPP interrupt sequence.
This bit clears on the initiation of the Intr (PerCIk) pulse on the parallel port interface.

Reverse Request: This command requests that the host parallel port initiate the defined interface reversal
handshake as defined by the IEEE STD 1284 specification. The command bit clears to indicate completion
after the command executes on the interface. For Reverse Nibble and Reverse Byte modes, this occurs after
negotiation is complete; in ECP mode, it occurs after the Reverse Request signal on the parallel port interface
goes low.

0 In ECP mode, nPeriphRequest (nFault) is driven low to request that the host-side parallel port reverse the
direction of the interface.

When this bit is set upon termination of Compatibility mode, the CD1284 can indicate that reverse data is
available (through the nDataAv signal) immediately upon recognition of a Reverse Nibble or Reverse Byte
negotiation. To obtain this behavior, this bit should be initialized to ‘1’ and set to ‘1’ upon termination of
Compatibility mode.

7.8.13 Short Pulse Register

Register Name: SPR 8-Bit Hex Address: 26
Register Description: Short Pulse Default Value: 00
Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Binary Value

Thisregister performs two functions,

¢ |t setsthe duration of the short pulse used by the |IEEE 1284 protocols for all modes other than
Compatibility;

¢ In Compatibility mode, it sets the duration of the ACK* pulse.
For non-compatible modes, SPR must be set to n — 2, where nis the number of CLKsin a500-ns
pulse. The peripheral host initializes this register with the appropriate value to generate a 500-ns

pulse width based on the operating frequency of the device. In Compatibility mode, SPR should be
set to the needed length of the ACK* pulse. Thisis provided to enable the device to interface to

Datasheet 153

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

intel.

slow masters that require an ACK* pulse longer than the maximum specified in the IEEE STD
1284 specification. The table below shows some examples of the necessary binary value for
various system clock frequencies to set the 500-ns pulse width.

Clock Resultant Pulse Width
(MH2) SPR Value (ns)

16 8 500

20 10 500

25 13 520

7.9 Pin Control Registers
The parallel port has five outputs and four inputs. The pin assignments are the same as those
defined in the IEEE STD 1284 specification. The definition of the pins depends on the current
negotiated mode; these are detailed in the following descriptions.

7.9.1 Signal Status Register

8-Bit Hex Address: 2F
Default Value: 00

Register Name: SSR
Register Description: Signal Status
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 A1284 ninit HstBsy HstClk

The bitsin this register show the results of changes specified in the ODR and ZDR. Normally, the
host reads this register in response to asignal change interrupt generated by the CD1284. This
register is active and valid only in Manua mode. Bits 7:4 return zeros when read. A write of any
value to theregister clearsit.

7.9.2 Zeros Detect Register

8-Bit Hex Address: 2C
Default Value: 00

Register Name: ZDR
Register Description: Zeros Detect
Access: Read/Write

o | o [o | o |

HstClk

A1284 | ninit | HstBsy |

Setting the bitsin this register enables the CD1284 to generate an interrupt — if the SigCh bit
(PCIER[4]) is set —when the selected signal changes from high-to-low (falling edge). Bits 7:4 are
reserved and must be written as ‘0’ ; they return ‘O’ when read. The settings in this register have no
effect (that is, the SigCh interrupt is not generated) unless the deviceisin Manual mode.

154 Datasheet

intel.

8.0

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Electrical Specifications

Note:

8.1

Note:

8.2

Verify with your local sales office that you have the latest datasheet before finalizing a design.

Absolute Maximum Ratings

* Supply voltage (Vc)+7.0V (volts)

* Input voltages, with respect to ground-0.5V to V¢ +0.5V

* Operating temperature (Tp)0°C to 70°C
¢ Storage temperature-65°C to 150°C
¢ Power dissipation0.25 W (watt)

Stresses above those listed under Absolute Maximum Ratings can cause permanent damage to the
device. Thisisastress rating only, and functional operation of the device at these or any conditions
above those indicated in the recommended operating conditions is not implied. Exposure to
absolute maximum rating conditions for extended periods can affect device reliability.

Recommended Operating Conditions

Supply voltage (V)5 V + 5%

Operating free air ambient temperature0°C < Ty < 70°C

System clock25 MHz
ESD Mil-Std-883D
100 pF. 1.5 kQ, + 2 kV
(Human body model) Method 3015.7
ESD

. 200 pF, 0 Q, £ 200 V
(Machine model)

EIAJ IC-121

/0 £100 MA, Ve =5V
Temperature = 25°C and 70°C

JEDEC number 17

Latch-up
Vecramp5Vio 9V
JEDEC number 17
Temperature = 25°C and 70°C
Hysteresis 200 mV

(@ Ve = 5V £ 5%, T = 0°C to 70°C)

Symbol Parameter MIN MAX Units Test Conditions
ViL Input low voltage -0.5 0.8 \
Vig Input high voltage 2.0 Vee v 1
VoL Output low voltage 0.4 v loL = 2.4 mA?2
VoH Output high voltage 2.4 \% lon = -400 pA

Datasheet

155

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

(@ Ve = 5V + 5%, T = 0°C to 70°C)

M Input leakage current -10 10 MA 0<V|N<Vce
Data bus tristate leakage

I P g -10 10 LA 0 < Vour < Vee
Open-drain output leakage

loc i P g -10 10 LA 0 < Vour < Vee

lcc Power supply current 60 mA CLK = 25 MHz

Cin Input capacitance 10 pF

Cout Output capacitance 10 pF
NOTES:

1. Viyis 2.7 V minimum on RESET*, CLK, and DMAACK*.
2. Vg for open-drain signals is 0.5 V @ 8 mA sinking because these signals can be wire-OR’ed in some systems and can have
multiple pull-up resistors that increase the load on the output.

Note:

156

The signals specific to the parallel port meet all requirements of the IEEE STD 1284 specification,
except for input signal protection (-2.0to + 7.0 V); external circuitry isrequired to meet this
specification.

Symmetrical input/output drive: £14 mA

Controlled voltage slew rate: 0.4 V/us

Input hysteresis: 0.8 V

While the CD1284 is a highly dependable device, there are a few guidelines to ensure that the
maximum possible level of overall system reliability isachieved. First, design the PC board to
provide maximum isolation of noise. A four-layer board is preferable, but atwo-layer board will
work if proper power and ground distribution isimplemented. In either case, decoupling capacitors
mounted close to the CD1284 are strongly recommended. Noise typically occurs when either the
CD1284 databus drivers come out of tristate to drive the bus during aread, or when an external bus
buffer turns on during awrite cycle. This noise, arapid rate-of-change of supply current, causes
‘ground bounce' in the power-distribution traces. This ground bounce, arise in the voltage of the
ground pins, effectively raises the input logic thresholds of al devicesin the vicinity, resulting in
the possibility of a‘1’ being interpreted asa‘0'.

To reduce the possibility of ground-bounce affecting the operation of the CD1284, Intel has
specified the input-high voltage (V) of the CLK and RESET* pinsat 2.7 V, instead of the TTL-
standard 2.0 V. This eliminates any sensitivity to ground bounce, even in extremely noisy systems.
Although 2.7 V is higher than the industry-standard 2.4-V output (Vo) Specified for TTL, there
are several simple ways to meet this specification:

1. Useany of the available advanced-CMOS logic families (FACT, ACL, etc.). These CMOS
output bufferswill pull-up close to V¢ when not heavily loaded. In addition, ASand ALS
TTL can be used if the output of the TTL device isonly driving one or two CMOS loads.

2. Asnoted in the Texas Instruments ALSAS Logic Data Book (1986 — pages 4-18 and 4-19),
the V oy output of these families exceeds 3.0 V at low-current loading. Other manufacturers
publish similar data. Intel recommends the use of one of these two options for the CLK input
to ensure fast, clean edges.

Note that RESET* can, if desired, be pulled up passively with < 1-kQ resistor.

Datasheet

8.3

8.3.1

IEEE 1284-Compatible Parallel Interface Controller — CD1284

AC Characteristics

Asynchronous Timing

Refer to the Figures 6-1 through 6-7 for the reference numbers in the following table.

Table 27. Asynchronous Timing Reference Parameters (Sheet 1 of 2)

J:Jnr:]iggr Figure Parameter MIN MAX Unit
ty Figgre RESET* low pulse width 10 Tek
ty 22 Address setup time to CS* or DS* 10 ns
ts 22 R/W* setup time to CS* or DS* 10 ns
ty 22 Address hold time after CS* 0 ns
ts 22 R/W* hold time after CS* 0 ns
tg 22 DTACK* low to read data valid 10 ns
t; 22 DTACK* low from CS* or DS? 2Tok 4 Tok+30 ns
tg 22 Data Bus tristate after CS* or DS* high 0 30 ns
tg 22 CS* or DGRANT* high from DTACK* low 0 ns
t10 22 DTACK* inactive from CS* or DGRANT* and DS* high 40 ns
t1y 22 DS* high pulse width 10 ns
t1o 23 Write data valid from CS* and DS* low 1Tk ns
t13 23 Write data hold time after DS* high 0 ns
ti4 21 Clock period (TCLK)Y 3 40.0 1000 ns
t15 21 Clock low time? 0.3 Tek 0.7 Tewk ns
tis 21 Clock high time! 0.3 Tk 0.7 Telk ns
ti17 24 Propagation delay, DGRANT* and DS* to DPASS* 35 ns
t1g 24 Setup time, SVCACK* to DS* and DGRANT* 10 ns
tig 25 Setup time, DMAACK?* to rising edge of CLK 10 ns
too 25 Hold time, read data after rising edge of CLK 10 30 ns
try 27 Setup time, write data to rising edge of CLK 0 ns
too 22 DTACK* active pull-up time* see note 4 ns
tr3 25 Data valid after falling edge of CLK (DMA read) 25 ns
tos ;i II:l(;)lthtli\;ln:,C)l?(l:\llleAREQ* after DMAACK?* falling edge, 10 1CLK + 15 ns

Datasheet 157

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In o
Table 27. Asynchronous Timing Reference Parameters (Sheet 2 of 2)
Timing Figure Parameter MIN MAX Unit
Number
The following timing numbers are for the back-to-back asynchronous DMA timing diagrams.
trs 26 Hold time, DMAACK?* active (DMA read/write) 3 CLK
- - "
te 26 ll?ei‘lg)y, data valid after falling edge DMAACK* (DMA 0.5 CLK + 20 1.5 CLK + 25 ns
- - — "
tyy 26 Hold time, data valid after rising edge DMAACK* (DMA 10 30 ns
read)
26 L)
trg 8 Inactive time, DMAACK* (DMA read/write) 10 ns
26 Hold time, DMAREQ?* rising edge after
t29 28 DMAACK?* falling edge (DMA read/write) 10 1CLK+15 ns
t3g 28 Hold time, DMAACK* active (DMA write) 2.5 CLK
toy 28 De_lay, data valid after falling edge DMAACK* (DMA 1.5 CLK
write)
t3o 28 Hold time, data valid (DMA write) 3CLK +10 ns
NOTES:

1. Timing numbers for RESET* and CLK in the table above are valid for both asynchronous and synchronous specifications.
The device operates on any clock with a 40—60 duty cycle or better.

2. On host-1/0O cycles immediately following SVCACK* cycles and writes to EOSRR, DTACK?* is delayed by 20 CLKs (1 us @ 20
MHz, 800 ns @ 25 MHz). On systems that do not use DTACK* to signal the end of the 1/O cycle, wait states or some other
form of delay generation must be used to assure that the CD1284 is not accessed until after this time period.

3. As TCLK increases, device performance decreases. A minimum clock frequency of 25 MHz is required to ensure
performance as specified. The recommended maximum TCLK is 1000 ns.

4. DTACK* sources current (drives ‘high’) until the voltage on the DTACK* line is approximately 1.5 V; then DTACK* goes to the
‘open-drain’ (high-impedance) state.

Figure 20. Reset Timing

Vee
RV alaWal
< ty >
RESET*

Note: For synchronous systems, it is necessary to determine the clock cycle number so that interface
circuitry can stay in lock-step with the device. CLK numbers can be determined if RESET* is
released within the range t—;,; t, is defined as 10-ns minimum after the rising edge of the clock; t,
is defined as 5-ns minimum before the next rising edge of the clock. If these conditions are met, the
cycle starting after the second rising edge is C1. See the synchronous timing diagrams for
additional information. Clock numbers are not important in asynchronous systems.

158 Datasheet

n
IntGI o IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 21. Clock Timing

1
3
Y

< 15 t1g — >

CLK \ / |

Figure 22. Asynchronous Read Cycle Timing

tp - —

A[6:0] X

R/W* / \\ X

cs* \ /
~ tyy
DS* \ /
— tg [€— — g -
DB[15:0] / N
N /
-~ tg ————>
DTACK*
\
-~ t; —> < tip Tl [

Datasheet 159

n
CD1284 — IEEE 1284-Compatible Parallel Interface Controller IntGI o

Figure 23. Asynchronous Write Cycle Timing

to - —> tg
A[6:0] X
—> ty [— [
R/W* / X
cs*
\ /
\ / __
- t11
DS* \ /
-t —> — t13
DB[15:0] <’
tg [
DTACK*
< t7 > <— 10 tr [

160 Datasheet

intel.

Figure 24. Asynchronous Service Acknowledge Cycle Timing

IEEE 1284-Compatible Parallel Interface Controller — CD1284

ty o — ty
A[6:0]
— tg [e— — iy [e—
R/W* / \
- 133
SVCACK* — ’
\ /
SVCREQ*
—>| tig [
DS*
DGRANT* \ / \
—> 15 tg <
DB[15:0] / N
N /
< 19
DTACK* \
\
< 7 —> < tigp /> I
DPASS* /
— > 17
Datasheet 161

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

Figure 25. Asynchronous DMA Read Cycle Timing

o _ /[_J/ “/ S S
—>tyg [g’ ‘b’ o
DMAACK* \ \ / MAY CHANGE / {
> s
DMAREQ*
— > 3 € > 1 <
DB[15:0] VALID D D
: yd 4
NOTES:

1. The DMA handshake operates in asynchronous mode only if the AsyncDMA bit is set in PACR.

2. If DMAACK?* is released after point ‘a,’ but before point ‘b’ (two rising CLK edges after the falling edge of DMAACK?Y),
DB[15:0] is released at tyq following the rising edge of CLK. If DMAACK?* is held past this edge, it controls the release of
DB[15:0]; the data bus remains active until DMAACK* becomes inactive (point ‘c’).

3. Figure 25 is still valid, however, Figure 26 illustrates more robust timing.

Figure 26. Asynchronous DMA Read Cycle Timing (Two Back-to-Back DMA Reads)

C“‘\V\V\?\V\V\ U

DMAACK* SYNCHRONIZED —
HERE

DMAREQ* —\ < s

DMAACK*]
\\ SEE NOTE / \ SEE NOTE /
to7
T} 47
DB[15:0] 4 VALID

NOTE: The falling edge of DMAACK?* is synchronized internally with the rising edge of the clock when asynchronous
timing is selected by PACR[1]. The data valid time can vary by as much as one full CLK cycle depending on when
DMAACK?* falling edge occurs in relation to the CLK rising edge. The minimum DMAACK* active time must be met
to ensure that the data has become valid before the rising edge of DMAACK*. The DMAACK?* can be extended to
any length, which extends the data valid hold time accordingly. If t,5 is not met and DMAACK?* is deasserted in less
than ty5 (MIN), then the data bus tristates t,; after the third rising clock edge following the assertion of DMAACK*.

tog

-«
- Y

Y

162 Datasheet

In

IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 27. Asynchronous DMA Write Cycle Timing

— > Lo [
DMAACK*
\ \ / MAY CHANGE /
— | ta
DMAREQ*
—> la [
DB[15:0] VALID
NOTE: Figure 27 is still valid, however, Figure 28 illustrates more robust timing.

Figure 28. Asynchronous DMA Write Cycle Timing (Two Back-to-Back DMA Writes)

CLK

DMAREQ*

DMAACK*

DB[15:0]

NOTE:

DMAACK* SYNCHRONIZED DATA SAMPLED
HERE HERE

_\/\/\/¢\¢/\/\¢/\/\i/\/

DMAACK* LATCHED
HERE

DMAACK* SYNCHRONIZED —>{ tyg
HERE
DATA SAMPLED
j HERE
t3o
e
tao — g
\< ~
N [seenoTE / \\ / /
t t
-« 2 > 2 t32

-
- »>
e o E——

VALID VALID

The data is sampled on the third rising edge of CLK following the assertion of DMAACK?*. If DMAACK?* is held
active for more than three CLK cycles then the next DMA write cycle will simply be delayed, but the data will still be
sampled on the third rising CLK edge following the assertion of DMAACK*. If DMAACK* is active for < 3 CLKs, the
n the data is still sampled on the third rising CLK edge following the assertion of DMAACK?* (provided that
DMAACK?* is active long enough for the device to lastch it. Due to this somewhat synchronous behavior, care must
be taken to guarantee that the data is valid at this CLK edge. Do not assume that the data will be sampled on the
deassertion of DMAACK?*.

8.3.2

Synchronous Timing

Use the following table as a reference to timing parameters of figuresin this section.

Datasheet 163

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In o
Table 28. Synchronous Timing Reference Parameters
nggr Figure Parameter MIN MAX Unit
ty 29 Setup time, CS* and DS* to C1 rising edge 15 ns
ty 29 Setup time, R/W* to C1 rising edge 15 ns
t3 29 Setup time, address valid to C1 rising edge 20 ns
ty 29 C2 rising edge to data valid 60 ns
ts 29 DTACK* low from C3 rising edge’ 30 ns
tg 29 CS* and DS* trailing edge to data bus high-impedance 30 ns
t7 29 CS* and DS* inactive between host accesses 10 ns
tg 29 Hold time, R/W* after C3 rising edge 20 ns
tg 29 Hold time, address valid after C3 rising edge 0 ns
t10 30 Setup time, write data valid to C2 rising edge 0 ns
t1y 31 Setup time, DS* and DGRANT* to C1 rising edge 30 ns
t1o 31 Setup time, SVCACK* to DS* and DGRANT* 10 ns
t13 30 Hold time, write data valid after C3 rising edge 0 ns
t14 31 Propagation delay, DS* and DGRANT* to DPASS* 35 ns
t15 22 Falling edge DMAREQ* after rising edge CLK (DMA write/read) 25 ns
e 32 Hold time, rising edge DMAREQ* after falling edge DMAACK* 20 ns
33 (DMA write/read)
ty7 32 Setup time, data valid before rising edge C3 (DMA write) 5 ns
t1g 22 Setup time, falling edge DMAACK?* to falling edge C1 (DMA write/read) 10 ns
tyy 29 DTACK* active pull-up time?
tro 32 Hold time, data valid after rising edge C3 (DMA write) 5
tr3 33 Hold time, data valid after rising edge C1 (DMA read) 10 30
toy 33 Data valid after falling edge C1 (DMA read) 25
trg 33 Inactive time, DMAACK* (DMA read) 10
NOTES:

1. On host I/O cycles immediately following SVCACK?* cycles and writes to EOSRR, DTACK* are delayed by 20 CLKs (1 ms @
20 MHz, 800 ns @ 25 MHz). On systems that do not use DTACK* to signal the end of the 1/O cycle, wait states or some other
form of delay generation must be used to assure that the CD1284 is not accessed until after this time period.

2. DTACK* sources current (drives ‘high’) until the voltage on the DTACK* line is approximately 1.5 V; then DTACK* enters the
‘open-drain’ (high-impedance) state.

164 Datasheet

n
IntGI o IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 29. Synchronous Read Cycle Timing

C1 C2 C3
t, [<—
— ty l«—
DS*, CS*
/ \
/ \
t2 > tg -
R/W* \
j \
3 I > 1 e
A[6:0]
-~ t, — -~ tg
DB[15:0]
— ts -~ _ tyy le—
DTACK*

Datasheet 165

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Figure 30. Synchronous Write Cycle Timing

CLK

DS*, CS*

R/W*

A[6:0]

DB[15:0]

DTACK*

C, C, Cs
[N R VY (R
4‘1 - :
— t, |[e— 5 tg -
*1 tg [E— —» tg —
> to [> bz [
—

166

Datasheet

n
IntGI o IEEE 1284-Compatible Parallel Interface Controller — CD1284

Figure 31. Synchronous Service Acknowledge Cycle Timing

C1 C2 C3

__/__/__/

tp (<
SVCACK* /

CLK

SVCREQ*

DPASS*

—> g [— — ty l——
DS* \ / \
DGRANT* \ / \
— [2 —— B t8 l———
RIW* / \
-~ t, — - tg —>
DB[15:0]
's ty [
DTACK*

Datasheet 167

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

Figure 32. Synchronous DMA Write Cycle Timing
(Two Back-to-Back 3-Cycle DMA Writes)

DATA SAMPLED
HERE

CLK

At

/M

C3

C

a

DMAREQ*

\

15

N

DATA SAMPLED
HERE

DMAACK*

DB[15:0]

NOTE:

e T
tos
tig [- >
/ SEE NOTE / \ / SEE NOTE /
/ N N
<\ VALID /)—* VALID />—

The data is sampled on the second rising edge of CLK following the assertion of DMAACK?*, as long as
setup time (t,g) is met. If DMAACK?™ is held active for more than 2.5 CLK cycles, then the next DMA

cycle is simply delayed; the data is still sampled on the second rising CLK edge following the assertion
of DMAACK*.

Figure 33. Synchronous DMA Read Cycle Timing
(Two Back-to-Back 3-Cycle DMA Reads)

c c1 c2 | c3 | c1 | c2 c3 c
CLK \ \ J’ \ J’ (YA Y AN S W A J’
> ¢ 5 / '
> g [‘
DMAREQ* , !
S > < g
| lig o] tes .
DMAACK* SEE NOTE / | f \ SEE NOTE / /
_ tg <2,

DB[15:0] < VALID T >>—< VALID - *)—

NOTE: The data is driven (tp4) after the first falling edge of CLK following the assertion of DMAACK?*, as long as setup
time (t,g) is met. If DMAACK?* is held active for more than 2.5 CLK cycles after C1 falling edge, then the next DMA
cycle is simply delayed, but the data is still driven (t,4) after the first falling CLK edge following the next assertion

of DMAACK?*.

168 Datasheet

n
IntGI o IEEE 1284-Compatible Parallel Interface Controller — CD1284

9.0 Package Dimensions

22.95 (0.904)
23.45 (0.923)

Y

A

A E,ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂoﬁsﬂaoﬂﬂﬂﬂﬂﬂﬂﬂE :
% O % (o.%gga)
- CD1284 =
10 % 100-Pin MQFP (JEDEC) Ej
. % 0 i icuo = szep
B R

2.57
0.65 (0.026)
0.95 (0.037) 2.87(0.113)
£ —> 1.60 (0.063) REF

NOTES:
1. Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2. Before beginning any new design with this device, please contact Intel for the latest package information.

Datasheet 169

CD1284 — IEEE 1284-Compatible Parallel Interface Controller

10.0

Ordering Information

intel.

170

The order number for the CD1284 is:

SCD128410QCE

-l—— Revision
Product line:

Communications, Data Temperature range:
C = Commercial

Part number

Package type:
Internal reference number — MQFP (metric quad flat pack)

Contact Intel Corporation for up-to-date information on revisions.

Datasheet

intel.

IEEE 1284-Compatible Parallel Interface Controller — CD1284

11.0 Appendix A

11.1 Commonly Asked Questions

Datasheet

Using the SPR to Change Acknowledge Pulse Width in Compatible Mode

Some older hosts may require an acknowledge pulse width longer than the default 500 nsin
Compatible mode. The SPR can be used to change the pulse width in Compatible mode, but it
will also affect the transfer rate in the other modes. If the ACK* pulse width is extended 1 ps,
the transfer rates in other modes is slowed also. This should not be a concern as | EEE 1284-
compliant hosts work with an ACK* pulse width of 500 ns as specified in the IEEE 1284
specification (page 30). While non-1EEE 1284-compliant hosts cannot support any of the
advanced modes. In other words, if the host supports | EEE 1284 advanced modes (for example
ECP), then it also supports an ACK* pulse width of 500 nsin Compatible mode. If the host is
not |EEE 1284-compliant, then it does not support any of the advanced modes and therefore
the SPR is only used for compatibility mode.

BUSY/ACK* Timing Variations

The SPR cannot be used to support the Ack-while-Busy timing. If the SPR valueis changed to
extend the ACK* pulse width, then the BUSY signal is extended as well. This means that the
CD1284 only supports the Compatible mode timing, Ack-in-Busy, as specified on pages 28—
30 of the IEEE 1284 specification. Please read Section 6.3 “Compatibility Mode” starting on
page 28. Based on this description of Compatibility mode, it is our belief that the Ack-in-Busy
timing on the peripheral -side interoperates with all existing hosts, including those that monitor
BUSY but not ACK*.

DevicelD

At thistime, Intel has no more information about device ID other than that islisted on page 52
of the IEEE 1284 specification. Contact Larry Stein, Chair of the IEEE 1284.3 working group,
at Far Point Communications (Fax: (805) 726-4438) for more information. Far Point
Communications also sells IEEE 1284-compliant |SA add-in boards for the PC. This board
can be useful for testing CD1284 applications.

Reversing the Channel with Data Remaining in the FIFO

The software must handle the situation where the host switches the direction of the parallel
interface from reverse to forward while data remains in the reverse FIFO. If this occurs then
the CD1284 produces a change of direction interrupt. When software detects this interrupt, it
must read the value in the PFQR (Parallel FIFO Quantity register) and use this value to
determine the bytes remaining in the FIFO. The software buffer pointer(s) must then be
adjusted by that amount so that the data in the FIFO can be resent when the direction is
reversed again. After the pointers are adjusted, the FIFO must be flushed (cleared) and the
direction of the FIFO must be changed to forward so that data may be received from the host.

RLE Data Count
Software can access the RLCR to obtain the current count for RLE data.

171

CD1284 — IEEE 1284-Compatible Parallel Interface Controller In

12.0 Appendix B

Figure 34. UART to RS232 and IR Port Interface Motherboard Example Schematic

10 OHM
i e 117
10 mF 0.1 mF 0.1 mF;; g10 mF
8 |12 NOTES:
(1) This circuit has not yet been
VAT VDY oLk (19 built and debugged.
5 (2) Choice of LED, power consumption,
AGND XTALIN| 17 and physical positioning will affect R value.
7 % 3.6864 MHz
BPV23NF PINC XTALOUT| 18
=z .
6
PINA RESET] 11
TSHA5502
+3V CS8130 Rxp|13
- 47 mF FORM/BSY | 16
_V'_S.ZW(z)l ol
LEDIC i i
52W (@), bic
LED2C —
Wy PWRDN | 10
CLKFR]-2
TGND1 TGND2 DGND
IS
0.33 mF
<
T
1
5]cia Vee en |24 RS-232/IR
L _ SELECT
033mF == 2|cias e
4 25
ClB- C2+
0.33 mF _,__3 MAX562 _—\— 0.33 mF ——
T JciB+ c2- HT CD1284
DSR 23|R1IN o R1OUT |6 .
6
CTS 22| R2IN o R20UT | 7 oTs
8
S?a?zl o Rx0__ 21[RaiN S R30UT | 8 oD
|
Connector 1 DCD 20 | R4IN ’|>C R40UT | 9 bCD
(COM PORT) 0 RI 19 | R5IN {>c R50UT | 10 R
DTR 18| T10UT < TN |11
4 DTR
RTS 17|t20uT T2IN | 12 RTS
7
5 XD 16| T30UT % T3IN | 13 O
SG
5
< v- |28
v+ 28
GND
J727 0.68 mF 0.33 mF

172 Datasheet

intal.

Index

A DMA

A 128419 buffer 74

AB[6:0] 19 interface 34

abbreviations 15 transfers 74

acronyms 15 DMAACK* 19

AkDaRq 19 DMAREQ* 19

asynchronous serial data protocol 50 DPASS* 19

DS* 19
B DSR* 55
DSR2* 20

baud rate DSR3* 20
derlvatllon 102 DTACK* 19
generation 72 DTR threshold 58

 fables103 DTR* 55

bit engines 50 DTR2* 20

BYTESWAP 19, 75 DTR3* 20

c E

CCLK 20 EBDIR 19

CLK 19 ECP mode 74

CLK/219

common service acknowledge 42
compressed-data sequences 75
context 49

context switch 35

CPU interface 86

CS* 19

CTS* 55

CTS2* 20

CTS3* 20

D

daisy-chaining 41

DBJ[15:0] 19

detailed register descriptions 108
devicereset 90

DGRANT* 19

diagnostic facilities 73

Datasheet

embedded transmit commands (ETC) 67
endian 35
EPP mode 79, 83

F
failed negotiation 81
Fair Share 41
fairness override 43
FIFO threshold 50
flow control 55

G

general-purpose |/O port 83
global function initialization 93
GND 18

GPF[7:0] 19

173

H

hardware-activated service examples 97
HstBsy 19

HstClk 19

I
ID request 82
|EEE Standards Department 73
|IEEE STD 1284 73
Implied XON mode 57
in-band flow control 55
initialization 90
interface 74
interrupts 36

DirCh 48

EPPAW 44

IDReq 48

NegCh 44
invalid termination 81
IVR 79

L

line break 52

line discipline 61

Local Loopback mode 73
loopback testing 73

M

modem service 96, 99
modes
ECP 74
EPP 79, 83
Implied XON 57
Local Loopback 73
Manual 79
Remote Loopback 73
Reverse Byte 82
Reverse Nibble 82
Serial Poll, examples 94
multi-channel processing unit (MPU) 31

174

intel.

N

nDatAv 19

ninit 19

no new datatime-out (NNDT) 51

@)

odd-byte transfers 35

ODR 79

OUTEN 19

out-of-band flow control 55, 58

P

parallel channel service routines 99
parallel port
FIFO 74
PD[7:0] 19
PDBEN 19
PerBsy 19
PerClk 19
pins
descriptions 20
diagram 17
list 18
polling 40
protocol timing 83

R

R/W* 19

read cycles 33

receive direction 75

receiving compressed data 75

register summary 24

register usage 27

registers

Channel — Pardlel

DER 26, 29
DMABUF (high) 26, 29
DMABUF (low) 26, 29
EAR 26, 29
HRSR 26, 29, 138
HTVR 26, 29

Datasheet

intel.

IVR 26, 29
LIVR 26, 29, 38
MDR 26, 29
NER 26, 29
NSR 26, 29
ODR 26, 29
OVR 26, 29
PACR 26, 29
PCIER 26, 29
PCISR 26, 29
PCR 26, 29
PCRR 26, 29
PFCR 26, 29
PFEP 26, 29
PFFP 26, 29
PFHR1 26, 29
PFHR2 26, 29
PFQOR 26, 29
PFSR 26, 29
PFTR 26, 29
RLCR 26, 29
SCR 26, 30
SDTCR 26, 29
SDTPR 26, 29
SPR 27, 30
SSR 27,30
ZDR 27,30
Channel — Seria
CCR 25, 28
CCSR 25, 28
COR1 25, 28
COR2 25, 28
CORS3 25, 28
COR4 25, 28
CORS5 25, 28
LIVR 25, 28
LNC 25, 28
MCORL1 25, 28
MCOR?2 25, 28
MSVR1 25, 28
MSVR2 25, 28
RBPR 25, 28
RCOR 25, 28

Datasheet

RDCR 25, 28

RTPR 25, 28

SCHR1 25, 28

SCHR2 25, 28

SCHRS3 25, 28

SCHR4 25, 28

SCRH 25, 28

SCRL 25, 28

SRER 25, 28

TBPR 25, 28

TCOR 25, 28
Channel Control Status (CCSR) 56
Global

CAR 24, 27

GFRCR 24, 27

GPDIR 24, 27

GPIO 24, 27

MICR 24, 27

MIR 24, 27

PIR 24, 27

PPR 24, 27

RICR 24, 27

RIR 24, 27

SVRR 24, 27

TICR 24, 27

TIR 24, 27
Parallel Port

NSR 81

PCR 151

SCR 81, 152
Receive Data Count (RDCR) 51
Receive Data/Status (RDSR) 52
Virtual — All

EOSRR 24, 28
Virtual — Seria

MISR 24, 27

MIVR 24, 27

PIVR 24, 27

RDSR (data) 24, 27

RDSR (status) 24, 27

RIVR 24, 27

TDR 24, 27

TIVR 24, 27

175

Remote L oopback mode 73
RESET* 18, 54

RLE (run-length-encoding) 75
RTS* 55

RTS2* 20

RTS3* 20

RxD 73

RXD2 20

RXD3 20

RxFloff 56

RxFlon 56

S

scanning loop 94

SCHR1 55

SCHR2 55

Serial Poll mode 94

seria receive service 95, 97
seria transmit service 96, 98
service-request/acknowledge 35
special characters 61

SSR 79

stale datatimer 76

start bit 50

stop bit 50

SVCACK* 37

SVCACKM* 19
SVCACKP* 19
SVCACKR* 19, 37
SVCACKT* 19, 37
SVCREQM* 19

176

intel.

SVCREQP* 19

SVCREQR* 19

SVCREQT* 19

SVRR 40

synchronous timing reference parameters 157,
164

T
timer 51, 55

Transmitter Holding register 50
Transmitter Shift register 50
TxD 73

TXD2 20

TXD319

U

units of measure used 15

W

write cycles 34

X

Xflag 19
X OFF 55
XON 55

Z
ZDR 79

Datasheet

	Figure 1. Functional Block Diagram
	1.0 Overview
	Figure 2. CD1284 Sample System Block Diagram

	2.0 Conventions
	2.1 Abbreviations
	2.2 Acronyms

	3.0 Pin Information
	3.1 Pin Diagram
	3.2 Pin List
	Table 1. Pin Descriptions (Sheet 1 of 4)

	4.0 Register Summary
	4.1 Register Summary Tables
	Table 2. Global Registers
	Table 3. Virtual Registers — Serial�
	Table 4. Virtual Registers — Serial and Parallel
	Table 5. Channel Registers — Serial�
	Table 6. Channel Registers — Parallel Pipeline (Selected by Channel 0 in CAR)�
	Table 7. Channel Registers — Parallel Port (Selected by Channel 0 in CAR) (Sheet 1 of 2)

	4.2 Register Usage
	Table 8. Global Registers
	Table 9. Virtual Registers
	Table 10. Virtual Registers — Serial and Parallel
	Table 11. Channel Registers — Serial
	Table 12. Channel Registers — Parallel Pipeline (Selected by Channel 0 in CAR)
	Table 13. Channel Registers — Parallel Port (Selected by Channel 0 in CAR) (Sheet 1 of 2)

	5.0 Functional Description
	5.1 Device Architecture
	Figure 3. CD1284 Functional Block Diagram
	Figure 4. Internal Address Generation

	5.2 CPU Interface
	5.2.1 Read Cycles
	5.2.2 Write Cycles
	5.2.3 Service-Acknowledge Cycles
	5.2.4 DMA Cycles

	5.3 Serial Port Service Requests
	5.3.1 Interrupts
	5.3.2 DMAREQ* as Parallel Interrupt Source
	5.3.2.1 Hardware-Activated Context Switch — Serial Channels
	Figure 5. Control Signal Generation
	Table 14. Request-Type Bit Assignments�

	5.3.2.2 Summary of Interrupt Driven Service Requests, Serial Channels
	5.3.2.3 Common Service Acknowledge
	5.3.2.4 Software-Activated Context Switch — Serial Channels

	5.3.3 Serial Service Request Polling
	5.3.3.1 Summary of Serial Poll-Mode Service Requests

	5.3.4 Daisy-Chaining Service Requests with CD1400s
	Figure 6. CD1284 Daisy-Chain Connections

	5.4 Parallel Port Service Requests
	Figure 7. Interrupt Generation Logic
	5.4.1 Hardware-Activated Context Switch, Parallel
	5.4.2 Software-Activated Context Switch, Parallel

	5.5 Serial Data Reception and Transmission
	5.5.1 Receiver Operation
	5.5.2 Receiver Timer Operations
	5.5.3 Receive Exceptions
	Figure 8. FIFO Timer Processing

	5.5.4 Transmitter Operation

	5.6 Flow Control
	5.6.1 In-Band Flow Control
	5.6.2 Receiver In-Band Flow Control
	Table 15. CCSR[6:5] Encoding
	5.6.2.1 Transmitter In-Band Flow Control
	Table 16. CCSR[2:1] Encoding
	Table 17. COR Control Bits

	5.6.3 Out-of-Band Flow Control
	5.6.3.1 Receiver Out-of-Band Flow Control
	5.6.3.2 Transmitter Out-of-Band Flow Control

	5.6.4 Modem Signals and General�Purpose I/O
	Table 18. Out-of-Band Pin Connections
	Table 19. Modem Control Pin Functions
	5.6.4.1 Generating Service Requests with Modem Pins
	5.6.4.2 Using Modem Pins as General�Purpose I/O

	5.7 Receive Special Character Processing
	5.7.1 UNIX‚ Character Processing
	5.7.1.1 Line-Terminating Characters
	5.7.1.2 Errored Character Processing
	5.7.1.3 LNext
	5.7.1.4 ISTRIP

	5.7.2 Non-UNIX‚ Receive Special Character Processing
	Figure 9. CD1284 Receive Character Processing

	5.8 Transmit Special Character Processing
	5.8.1 Line Terminating Characters
	5.8.2 Embedded Transmit Commands
	5.8.3 Send Special Character Command
	Figure 10. CD1284 Transmit Character Processing

	5.9 Baud Rate Generation
	5.10 Serial Diagnostic Facilities — Loopback
	5.11 Parallel Port FIFO and Data Pipeline Overview
	5.11.1 IEEE STD 1284 Protocols
	5.11.2 Bus Interface
	5.11.3 Parallel Port FIFO
	5.11.4 Receive Direction
	5.11.5 Receiving Compressed Data
	5.11.6 Stale Data (Stale, OneChar, and Timeout Status Bits)
	5.11.7 Transmit Direction

	5.12 CD1284 Parallel Port Overview
	5.12.1 Terminology
	5.12.2 Signal Names
	Table 20. Signal Names (Sheet 1 of 2)

	5.12.3 State Machine
	5.12.4 Configuration
	Figure 11. FIFO Data Path Functional Diagram — Receive

	5.12.5 Interrupts
	5.12.6 Manual Mode
	5.12.7 Control Signals
	Figure 12. FIFO Data Path Functional Diagram — Transmit

	5.12.8 Parallel Port Interface to the FIFO
	5.12.9 1284 Negotiations
	5.12.10 Data Transfers
	5.12.11 Compatible Mode Status

	5.13 1284 Parallel Protocol Support
	5.13.1 Compatibility Mode
	5.13.2 Reverse-Nibble and Reverse-Byte Modes
	5.13.3 ID Request
	5.13.4 ECP Mode
	5.13.5 EPP Mode

	5.14 Protocol Timing
	Table 21. System Clock Settings

	5.15 General-Purpose I/O Port
	5.16 Parallel Port Interface
	Figure 13. Cable Connection
	Figure 14. External Buffer Control

	5.17 Hardware Configurations
	5.17.1 Interfacing to an Intel‚ Microprocessor-Based System
	5.17.2 Interfacing to a Motorola‚ Microprocessor-Based System
	5.17.3 Interfacing to a National Semiconductor‚ Microprocessor-Based System
	Figure 15. Intel‚ 80x86 Family Interface
	Figure 16. Motorola‚ 68020 Interface
	Figure 17. National Semiconductor‚ 32000 Interface

	6.0 Programming
	6.1 Overview
	6.2 Initialization
	6.2.1 Device Reset
	Figure 18. Flow Diagram of CD1284 Master Initialization Sequence

	6.2.2 Global Function Initialization
	6.2.3 Serial Channel Initialization

	6.3 Serial Poll Mode Examples
	6.3.1 Polling Routine Examples
	6.3.1.1 Scanning Loop
	6.3.1.2 Serial Receive Service
	6.3.1.3 Serial Transmit Service
	6.3.1.4 Modem Service

	6.4 Hardware-Activated Service Examples
	6.4.1 Serial Receive Service
	6.4.2 Serial Transmit Service
	6.4.3 Modem Service

	6.5 Parallel Channel Service Routines
	Figure 19. Polling Flow Chart
	6.5.1 Software-Activated Service Examples (Poll)
	6.5.2 Hardware-Activated Service Examples

	6.6 Baud Rate Derivation
	6.7 Baud Rate Tables
	Table 22. Baud Rate Constants — CLK = 25 MHz
	Table 23. Baud Rate Constants — CLK = 20.2752 MHz�
	Table 24. Baud Rate Constants — CLK = 20.00 MHz (Sheet 1 of 2)
	Table 25. Baud Rate Constants — CLK = 18.432 MHz�
	Table 26. Baud Rate Constants — CLK = 16 MHz (Sheet 1 of 2)

	6.8 ASCII Code Tables
	6.8.1 Hexadecimal — Character
	6.8.2 Decimal — Character

	7.0 Detailed Register Descriptions
	7.1 Global Registers
	7.1.1 Channel Access Register
	7.1.2 Global Firmware Revision Code Register
	7.1.3 General-Purpose I/O Direction Register
	7.1.4 General-Purpose I/O Register
	7.1.5 Modem Interrupting Channel Register
	7.1.6 Modem Interrupt Register
	7.1.7 Parallel Interrupt Register
	7.1.8 Prescaler Period Register
	7.1.9 Receive Interrupting Channel Register
	7.1.10 Receive Interrupt Register
	7.1.11 Service Request Register
	7.1.12 Transmit Interrupting Channel Register
	7.1.13 Transmit Interrupt Register

	7.2 Virtual Registers
	7.2.1 Modem Interrupt Status Register
	7.2.2 Modem Interrupt Vector Register
	7.2.3 Parallel Interrupt Vector Register
	7.2.4 Receive Data/Status Registers
	7.2.5 Receive Interrupt Vector Register
	7.2.6 Transmit Data Register
	7.2.7 Transmit Interrupt Vector Register
	7.2.8 End of Service Request Register

	7.3 Channel Registers
	7.3.1 Channel Command Register
	7.3.1.1 Format 1 — Reset Channel Command
	7.3.1.2 Format 2 — Channel Option Register Change Command
	7.3.1.3 Format 3 — Send Special Character Command
	7.3.1.4 Format 4 — Channel Control Command

	7.3.2 Channel Control Status Register

	7.4 Channel Registers — Parallel Pipeline
	7.4.1 Channel Option Register 1
	7.4.2 Channel Option Register 2
	7.4.3 Channel Option Register 3
	7.4.4 Channel Option Register 4
	7.4.5 Channel Option Register 5
	7.4.6 Local Interrupt Vector Register
	7.4.7 LNext Character Register

	7.5 Modem Change Option Registers
	7.5.1 Modem Change Option Register 1
	7.5.2 Modem Change Option Register 2
	7.5.3 Modem Signal Value Register 1
	7.5.4 Modem Signal Value Register 2
	7.5.5 Receive Baud Rate Period Register
	7.5.6 Receive Clock Option Register
	7.5.7 Received Data Count Register
	7.5.8 Receive Timeout Period Register

	7.6 Special Character Registers
	7.6.1 Special Character Register 1
	7.6.2 Special Character Register 2
	7.6.3 Special Character Register 3
	7.6.4 Special Character Register 4
	7.6.5 Received Character Range Detection
	7.6.6 Special Character Range — High
	7.6.7 Special Character Range — Low
	7.6.8 Serial Service Request Enable Register
	7.6.9 Transmit Baud Rate Period Register
	7.6.10 Transmit Clock Option Register

	7.7 Channel Registers — Parallel Pipeline
	7.7.1 Data Error Register
	7.7.2 DMA Buffer Data Register — High
	7.7.3 DMA Buffer Data Register — Low
	7.7.4 Firmware Revision Code Holding Register Status Register
	7.7.5 Local Interrupt Vector Register
	7.7.6 Parallel Auxiliary Control Register
	7.7.7 Parallel Channel Reset Register
	7.7.8 Parallel FIFO Control Register
	7.7.9 Parallel FIFO Empty Pointer Register
	7.7.10 Parallel FIFO Fill Pointer Register
	7.7.11 Parallel FIFO Holding Register 1
	7.7.12 Parallel FIFO Holding Register 2
	7.7.13 Parallel FIFO Quantity Register
	7.7.14 Parallel FIFO Status Register
	7.7.15 Parallel FIFO Threshold Register
	7.7.16 Run Length Count Register
	7.7.17 Stale Data Timer Count Register
	7.7.18 Stale Data Timer Period Register

	7.8 Channel Registers — Parallel Port
	7.8.1 EPP Address Register
	7.8.2 Host Timeout Value Register
	7.8.3 Input Value Register
	7.8.4 Manual Data Register
	7.8.5 Negotiation Enable Register
	7.8.6 Negotiation Status Register
	7.8.7 Ones Detect Register
	7.8.8 Output Value Register
	7.8.9 Parallel Channel Interrupt Enable Register
	7.8.10 Parallel Channel Interrupt Status Register
	7.8.11 Parallel Configuration Register
	7.8.12 Special Command Register
	7.8.13 Short Pulse Register

	7.9 Pin Control Registers
	7.9.1 Signal Status Register
	7.9.2 Zeros Detect Register

	8.0 Electrical Specifications
	8.1 Absolute Maximum Ratings
	8.2 Recommended Operating Conditions
	8.3 AC Characteristics
	8.3.1 Asynchronous Timing
	Table 27. Asynchronous Timing Reference Parameters (Sheet 1 of 2)
	Figure 20. Reset Timing
	Figure 21. Clock Timing
	Figure 22. Asynchronous Read Cycle Timing
	Figure 23. Asynchronous Write Cycle Timing
	Figure 24. Asynchronous Service Acknowledge Cycle Timing
	Figure 25. Asynchronous DMA Read Cycle Timing
	Figure 26. Asynchronous DMA Read Cycle Timing (Two Back-to-Back DMA Reads)
	Figure 27. Asynchronous DMA Write Cycle Timing
	Figure 28. Asynchronous DMA Write Cycle Timing (Two Back-to-Back DMA Writes)

	8.3.2 Synchronous Timing
	Table 28. Synchronous Timing Reference Parameters�
	Figure 29. Synchronous Read Cycle Timing
	Figure 30. Synchronous Write Cycle Timing
	Figure 31. Synchronous Service Acknowledge Cycle Timing
	Figure 32. Synchronous DMA Write Cycle Timing (Two Back-to-Back 3-Cycle DMA Writes)
	Figure 33. Synchronous DMA Read Cycle Timing (Two Back-to-Back 3-Cycle DMA Reads)

	9.0 Package Dimensions
	10.0 Ordering Information
	11.0 Appendix A
	11.1 Commonly Asked Questions

	12.0 Appendix B
	Figure 34. UART to RS232 and IR Port Interface Motherboard Example Schematic

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

