

Intel® Pentium® Dual-Core Mobile Processor

Datasheet

July 2007

Revision 003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and applications enabled for VT. Functionality, performance or other VT benefit will vary depending on hardware and software configurations. VT-enabled BIOS and VMM applications are currently in development.

Intel, Pentium, Intel Core, Intel SpeedStep, MMX and the Intel logo are registered trademarks or trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights reserved.

Contents

1	Intro	oduction	
	1.2	References	
2	Low	Power Features	9
	2.1	Clock Control and Low Power States	9
		2.1.1 Core Low-Power States	11
		2.1.2 Package Low Power States	
	2.2	Enhanced Intel SpeedStep® Technology	
	2.3	FSB Low Power Enhancements	
	2.4	Processor Power Status Indicator (PSI#) Signal	15
3	Elect	rical Specifications	17
	3.1	Power and Ground Pins	17
	3.2	FSB Clock (BCLK[1:0]) and Processor Clocking	17
	3.3	Voltage Identification	
	3.4	Catastrophic Thermal Protection	
	3.5	Signal Terminations and Unused Pins	
	3.6	FSB Frequency Select Signals (BSEL[2:0])	
	3.7	FSB Signal Groups	
	3.8	CMOS Signals	
	3.9	Maximum Ratings	
	3.10	Processor DC Specifications	
4	Pack	age Mechanical Specifications and Pin Information	
	4.1	Package Mechanical Specifications	
	4.2	Processor Pinout and Pin List	
	4.3	Alphabetical Signals Reference	55
5	Ther	mal Specifications and Design Considerations	63
	5.1	Monitoring Processor Temperature	64
		5.1.1 Thermal Diode	
		5.1.2 Thermal Diode Offset	
		5.1.3 Intel® Thermal Monitor	
		5.1.4 Digital Thermal Sensor	
		5.1.5 Out of Specification Detection	69
Figi	ures		
1	Pacl	kage-Level Low Power States	10
2		e Low Power States	
3	Acti	ve VCC and ICC Loadline for the Processor	26
4	Micr	ro-FCPGA Processor Package Drawing Sheet 1 of 2	30
5	Micr	ro-FCPGA Processor Package Drawing Sheet 2 of 2	31

Tables

1	References	8
2	Coordination of Core-Level Low Power States at the Package Level	9
3	Voltage Identification Definition	17
4	BSEL[2:0] Encoding for BCLK Frequency	21
5	FSB Pin Groups	22
6	Processor DC Absolute Maximum Ratings	23
7	Voltage and Current Specifications for Standard Voltage Processor	24
8	FSB Differential BCLK Specifications	27
9	AGTL+ Signal Group DC Specifications	27
10	CMOS Signal Group DC Specifications	28
11	Open Drain Signal Group DC Specifications	
12	Processor Pin Coordinates from Top of the Package (Sheet 1 of 2)	32
13	Processor Pin Coordinates from Top of the Package (Sheet 2 of 2)	33
14	Pin Listing by Pin Name	35
15	Pin Listing by Pin Number	
16	Signal Description	
17	Power Specifications	
18	Thermal Diode Interface	64
19	Thermal Diode Parameters using Diode Mode	
20	Thermal Diode Parameters using Transistor Mode	
21	Thermal Diode n _{trim} and Diode Correction Toffset	66

Revision History

Document Number	Revision	Description	Date
316519	001	Initial release	February 2007
316519	002	Added T2080 SKU	March 2007
316519	003	Added T2130 SKU	July 2007

1 Introduction

The Intel® Pentium® dual-core mobile processor is built on Intel's 65-nanometer process technology. This document provides specifications for the Pentium dual-core mobile processor.

Note:

All instances of "processor" in this document refer to the Pentium dual-core mobile processor with 1-MB L2 cache and 533-MHz Front Side Bus (FSB), unless specified otherwise.

The following list provides some of the key features on this processor:

- · Dual-core processor
- Supports Intel® Architecture with Dynamic Execution
- On-die, primary 32-KB instruction cache and 32-KB write-back data cache
- On-die, 1-MB second level cache with Advanced Transfer Cache Architecture
- · Data prefetch logic
- Streaming SIMD Extensions 2 (SSE2) and Streaming SIMD Extensions 3 (SSE3)
- 533-MHz FSB
- Enhanced Intel SpeedStep® Technology
- · Digital Thermal Sensor
- · Processor is offered in only Micro-FCPGA packages
- · Execute Disable Bit support for enhanced security

1.1 Terminology

Term	Definition
#	A "#" symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the "#" symbol implies that the signal is inverted. For example, D[3:0] = "HLHL" refers to a hex 'A', and D[3:0]# = "LHLH" also refers to a hex "A" (H= High logic level, L= Low logic level). XXXX means that the specification or value is yet to be determined.
Front Side Bus (FSB)	Refers to the interface between the processor and system core logic (also known as the chipset components).
AGTL+	Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+ signaling technology on some Intel processors.

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document.

Table 1. References

Document	Document Number
Intel® Pentium® Dual-Core Processor on 65-nm Technology Specification Update	316515
Mobile Intel® 945 Express Chipset Family Datasheet	309219
Mobile Intel® 945 Express Chipset Family Specification Update	309220
Intel® I/O Controller Hub 7 (ICH7) Family Datasheet	307013
Intel® I/O Controller Hub 7 (ICH7) Family Specification Update	307014
Intel® 64 and IA-32 Architectures Software Developer's Manuals	http:// www.intel.com/ products/processor/ manuals/index.htm
Volume 1 Basic Architecture	253665
Volume 2A: Instruction Set Reference (A-M)	253666
Volume 2B: Instruction Set Reference (N-Z)	253667
Volume 3A: System Programming Guide	253668
Volume 3B: System Programming Guide	253669
AP-485, Intel® Processor Identification and CPUID Instruction Application Note	241618

2 Low Power Features

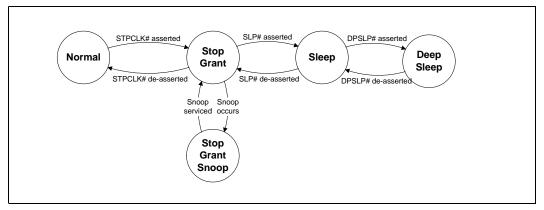
2.1 Clock Control and Low Power States

The processor supports low power states at the core level and the package level. A core may independently enter the C1/AutoHALT, C1/MWAIT, C2 and C3 low power states. Package low power states include Normal, Stop Grant, Stop Grant Snoop, Sleep and Deep Sleep. When both cores are in a common core, low-power state the central power management logic ensures the entire processor enters the respective package low power state by initiating a P_LVLx (P_LVL2 and P_LVL3) I/O read to the chipset.

The processor implements two software interfaces for requesting low power states, MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK register block mapped in the processor's I/O address space. The P_LVLx I/O reads are converted to equivalent MWAIT C-state requests inside the processor and do not directly result in I/O reads on the processor FSB. The monitor address does not need to be setup before using the P_LVLx I/O read interface. The sub-state hints used for each P_LVLx read can be configured in a software programmable MSR. If a core encounters a chipset break event while STPCLK# is asserted, then it asserts the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system logic that individual cores should return to the CO state and the processor should return to the Normal state.

Figure 1 shows the package low-power states Figure 2 shows the core low-power states. Table 2 provides a mapping of core, low-power states to package low power states.

Table 2. Coordination of Core-Level Low Power States at the Package Level


Resolved		Single	Dual Core: Core1 State				
Packag	e State	Core:	СО	C1 ¹	C2	С3	
nal	СО	Normal	Normal	Normal	Normal	Normal	
unctior	C1 ¹	Normal	Normal	Normal	Normal	Normal	
	C2	Stop Grant	Normal	Normal	Stop Grant	Stop Grant	
Core0 / F	С3	Deep Sleep	Normal	Normal	Stop Grant	Deep Sleep	

NOTES:

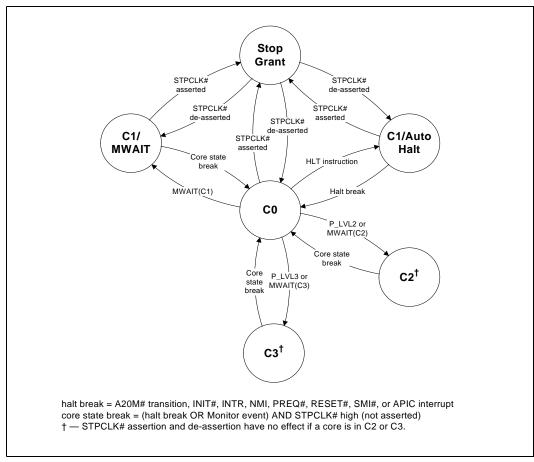

1. AutoHALT or MWAIT/C1.

Figure 1. Package-Level Low Power States

Figure 2. Core Low Power States

2.1.1 Core Low-Power States

2.1.1.1 CO State

This is the normal operating state for both cores of the processor.

2.1.1.2 C1/AutoHALT Powerdown State

C1/AutoHALT is a low power state entered when the processor core executes the HALT instruction. The processor core will transition to the C0 state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# will cause the processor to immediately initialize itself.

A System Management Interrupt (SMI) handler will return execution to either Normal state or the AutoHALT Powerdown state. See the *Intel® Architecture Software Developer's Manual, Volume 3A/3B: System Programming Guide* for more information.

The system can generate a STPCLK# while the processor is in the AutoHALT Powerdown state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.

While in AutoHALT Powerdown state, the Intel Pentium Dual-Core processor will process bus snoops and snoops from the other core. The processor core will enter a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the AutoHALT Powerdown state.

2.1.1.3 C1/MWAIT Powerdown State

MWAIT is a low power state entered when the processor core executes the MWAIT instruction. Processor behavior in the MWAIT state is identical to the AutoHALT state except that there is an additional event that can cause the processor core to return to the CO state: the Monitor event. See the Intel® Architecture Software Developer's Manual, Volume 2A/2B: Instruction Set Reference for more information.

2.1.1.4 Core C2 State

Individual cores of the processor can enter the C2 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C2) instruction, but the processor will not issue a Stop Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted.

While in C2 state, the processor will process bus snoops and snoops from the other core. The processor core will enter a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the C2 state.

2.1.1.5 Core C3 State

Core C3 state is a very low power state the processor core can enter while maintaining context. Individual cores of the Intel Pentium Dual-Core processor can enter the C3 state by initiating a P_LVL3 I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering the C3 state, the processor core flushes the contents of its L1 caches into the processor's L2 cache. Except for the caches, the processor core maintains all its architectural state in the C3 state. The Monitor remains armed if it is configured. All of the clocks in the processor core are stopped in the C3 state.

Because the core's caches are flushed the processor keeps the core in the C3 state when the processor detects a snoop on the FSB or when the other core of the processor accesses cacheable memory. The processor core will transition to the C0 state upon the occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# will cause the processor core to immediately initialize itself.

2.1.2 Package Low Power States

All package level low power states are described as follows:

2.1.2.1 Normal State

This is the normal operating state for the processor. The processor enters the Normal state when at least one of its cores is in the CO, C1/AutoHALT, or C1/MWAIT state.

2.1.2.2 Stop-Grant State

When the STPCLK# pin is asserted each core of the Intel Pentium Dual-Core processor enters the Stop-Grant state within 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle. Processor cores that are already in the C2, or C3 state remain in their current low-power state. When the STPCLK# pin is deasserted, each core returns to its previous core low power state.

Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven (allowing the level to return to $V_{\rm CCP}$) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the FSB should be driven to the inactive state.

RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. When RESET# is asserted by the system the STPCLK#, SLP#, and DPSLP# pins must be deasserted more than 450 µs prior to RESET# deassertion. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the deassertion of SLP#.

While in Stop-Grant state, the processor will service snoops and latch interrupts delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts and will service only one of each upon return to the Normal state.

The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# will be asserted if there is any pending interrupt or monitor event latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that the entire Intel Pentium Dual-Core processor should return to the Normal state.

A transition to the Stop Grant Snoop state will occur when the processor detects a snoop on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4) will occur with the assertion of the SLP# signal.

2.1.2.3 Stop Grant Snoop State

The processor will respond to snoop or interrupt transactions on the FSB while in Stop-Grant state by entering the Stop-Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched. The processor will return to the Stop-Grant state once the snoop has been serviced or the interrupt has been latched.

2.1.2.4 Sleep State

The Sleep state is a low power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP# pin should only be asserted when the processor is in the Stop-Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of specification and may result in unapproved operation.

In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep state. Snoop events that occur while in Sleep state or during a transition into or out of Sleep state will cause unpredictable behavior. Any transition on an input signal before the processor has returned to the Stop-Grant state will result in unpredictable behavior.

If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the Reset sequence.

While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state, by asserting the DPSLP# pin. (See Section 2.1.2.5.) While the processor is in the Sleep state, the SLP# pin must be deasserted if another asynchronous FSB event needs to occur.

2.1.2.5 Deep Sleep State

Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped during the Deep Sleep state for additional platform level power savings. BCLK stop/restart timings on appropriate chipset based platforms with the CK410M clock chip are as follows:

- Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.
- Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK periods.

To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted after DPSLP# deassertion as described above. A period of 15 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.

While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in Deep Sleep state. When the processor is in Deep Sleep state, it will not respond to interrupts or snoop transactions. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.

2.2 Enhanced Intel SpeedStep® Technology

The Intel Pentium Dual-Core processors feature Enhanced Intel SpeedStep Technology. Following are the key features of Enhanced Intel SpeedStep technology:

- Multiple voltage/frequency operating points provide optimal performance at the lowest power.
- Voltage/Frequency selection is software controlled by writing to processor MSR's (Model Specific Registers).
 - If the target frequency is higher than the current frequency, $V_{\rm CC}$ is ramped up in steps by placing new values on the VID pins and the PLL then locks to the new frequency.

- If the target frequency is lower than the current frequency, the PLL locks to the new frequency and the V_{CC} is changed through the VID pin mechanism.
- Software transitions are accepted at any time. If a previous transition is in progress, the new transition is deferred until the previous transition completes.
- The processor controls voltage ramp rates internally to ensure glitch free transitions.
- · Low transition latency and large number of transitions possible per second.
 - Processor core (including L2 cache) is unavailable for up to 10 μs during the frequency transition.
 - The bus protocol (BNR# mechanism) is used to block snooping.
- Improved Intel® Thermal Monitor mode.
 - When the on-die thermal sensor indicates that the die temperature is too high, the processor can automatically perform a transition to a lower frequency/ voltage specified in a software programmable MSR.
 - The processor waits for a fixed time period. If the die temperature is down to acceptable levels, an up transition to the previous frequency/voltage point occurs.
 - An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling better system level thermal management.
- · Enhanced thermal management features.
 - Digital thermal sensor and thermal interrupts with Out of Specification detection and interrupt generation.
 - TM1 in addition to TM2 in case of non successful TM2 transition.
 - Dual-core thermal management synchronization.

Each core in the processor implements an independent MSR for controlling Enhanced Intel SpeedStep Technology, but both cores must operate at the same frequency and voltage. The processor has performance state coordination logic to resolve frequency and voltage requests from the two cores into a single frequency and voltage request for the package as a whole. If both cores request the same frequency and voltage then the processor will transition to the requested common frequency and voltage. If the two cores have different frequency and voltage requests then the processor will take the highest of the two frequencies and voltages as the resolved request and transition to that frequency and voltage.

2.3 FSB Low Power Enhancements

The Intel Pentium Dual-Core processors incorporate FSB low power enhancements:

- · Dynamic FSB Power Down
- BPRI# control for address and control input buffers
- Dynamic Bus Parking
- Dynamic On Die Termination disabling
- Low V_{CCP} (I/O termination voltage)

The processor incorporates the DPWR# signal that controls the data bus input buffers on the processor. The DPWR# signal disables the buffers when not used and activates them only when data bus activity occurs, resulting in significant power savings with no performance impact. BPRI# control also allows the processor address and control input buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows a reciprocal power reduction in chipset address and control input buffers when the

processor deasserts its BRO# pin. The On Die Termination on the processor FSB buffers is disabled when the signals are driven low, resulting in additional power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times.

2.4 Processor Power Status Indicator (PSI#) Signal

The processor incorporates the PSI# signal that is asserted when the processor is in a reduced power consumption state. PSI# can be used to improve intermediate and light load efficiency of the voltage regulator, resulting in platform power savings and extended battery life. The algorithm that the processor uses for determining when to assert PSI# is different from the algorithm used in previous Intel® Pentium® M processors.

§

3 Electrical Specifications

3.1 Power and Ground Pins

For clean, on-chip power distribution, the processor will have a large number of V_{CC} (power) and V_{SS} (ground) inputs. All power pins must be connected to V_{CC} power planes while all V_{SS} pins must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I*R drop. Please contact your Intel representative for more details. The processor V_{CC} pins must be supplied the voltage determined by the VID (Voltage ID) pins.

3.2 FSB Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the processor's core frequency is a multiple of the BCLK[1:0] frequency. The processor uses a differential clocking implementation.

3.3 Voltage Identification

The processor uses seven voltage identification pins, VID[6:0], to support automatic selection of power supply voltages. The VID pins for the processor are CMOS outputs driven by the processor VID circuitry. Table 3 specifies the voltage level corresponding to the state of VID[6:0]. A 1 in this refers to a high-voltage level and a 0 refers to low-voltage level.

Table 3. Voltage Identification Definition (Sheet 1 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
0	0	0	0	0	0	0	1.5000
0	0	0	0	0	0	1	1.4875
0	0	0	0	0	1	0	1.4750
0	0	0	0	0	1	1	1.4625
0	0	0	0	1	0	0	1.4500
0	0	0	0	1	0	1	1.4375
0	0	0	0	1	1	0	1.4250
0	0	0	0	1	1	1	1.4125
0	0	0	1	0	0	0	1.4000
0	0	0	1	0	0	1	1.3875
0	0	0	1	0	1	0	1.3750
0	0	0	1	0	1	1	1.3625
0	0	0	1	1	0	0	1.3500
0	0	0	1	1	0	1	1.3375
0	0	0	1	1	1	0	1.3250
0	0	0	1	1	1	1	1.3125

Table 3. Voltage Identification Definition (Sheet 2 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
0	0	1	0	0	0	0	1.3000
0	0	1	0	0	0	1	1.2875
0	0	1	0	0	1	0	1.2750
0	0	1	0	0	1	1	1.2625
0	0	1	0	1	0	0	1.2500
0	0	1	0	1	0	1	1.2375
0	0	1	0	1	1	0	1.2250
0	0	1	0	1	1	1	1.2125
0	0	1	1	0	0	0	1.2000
0	0	1	1	0	0	1	1.1875
0	0	1	1	0	1	0	1.1750
0	0	1	1	0	1	1	1.1625
0	0	1	1	1	0	0	1.1500
0	0	1	1	1	0	1	1.1375
0	0	1	1	1	1	0	1.1250
0	0	1	1	1	1	1	1.1125
0	1	0	0	0	0	0	1.1000
0	1	0	0	0	0	1	1.0875
0	1	0	0	0	1	0	1.0750
0	1	0	0	0	1	1	1.0625
0	1	0	0	1	0	0	1.0500
0	1	0	0	1	0	1	1.0375
0	1	0	0	1	1	0	1.0250
0	1	0	0	1	1	1	1.0125
0	1	0	1	0	0	0	1.0000
0	1	0	1	0	0	1	0.9875
0	1	0	1	0	1	0	0.9750
0	1	0	1	0	1	1	0.9625
0	1	0	1	1	0	0	0.9500
0	1	0	1	1	0	1	0.9375
0	1	0	1	1	1	0	0.9250
0	1	0	1	1	1	1	0.9125
0	1	1	0	0	0	0	0.9000
0	1	1	0	0	0	1	0.8875
0	1	1	0	0	1	0	0.8750
0	1	1	0	0	1	1	0.8625
0	1	1	0	1	0	0	0.8500
0	1	1	0	1	0	1	0.8375

Table 3. Voltage Identification Definition (Sheet 3 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
0	1	1	0	1	1	0	0.8250
0	1	1	0	1	1	1	0.8125
0	1	1	1	0	0	0	0.8000
0	1	1	1	0	0	1	0.7875
0	1	1	1	0	1	0	0.7750
0	1	1	1	0	1	1	0.7625
0	1	1	1	1	0	0	0.7500
0	1	1	1	1	0	1	0.7375
0	1	1	1	1	1	0	0.7250
0	1	1	1	1	1	1	0.7125
1	0	0	0	0	0	0	0.7000
1	0	0	0	0	0	1	0.6875
1	0	0	0	0	1	0	0.6750
1	0	0	0	0	1	1	0.6625
1	0	0	0	1	0	0	0.6500
1	0	0	0	1	0	1	0.6375
1	0	0	0	1	1	0	0.6250
1	0	0	0	1	1	1	0.6125
1	0	0	1	0	0	0	0.6000
1	0	0	1	0	0	1	0.5875
1	0	0	1	0	1	0	0.5750
1	0	0	1	0	1	1	0.5625
1	0	0	1	1	0	0	0.5500
1	0	0	1	1	0	1	0.5375
1	0	0	1	1	1	0	0.5250
1	0	0	1	1	1	1	0.5125
1	0	1	0	0	0	0	0.5000
1	0	1	0	0	0	1	0.4875
1	0	1	0	0	1	0	0.4750
1	0	1	0	0	1	1	0.4625
1	0	1	0	1	0	0	0.4500
1	0	1	0	1	0	1	0.4375
1	0	1	0	1	1	0	0.4250
1	0	1	0	1	1	1	0.4125
1	0	1	1	0	0	0	0.4000
1	0	1	1	0	0	1	0.3875
1	0	1	1	0	1	0	0.3750
1	0	1	1	0	1	1	0.3625

Table 3. Voltage Identification Definition (Sheet 4 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
1	0	1	1	1	0	0	0.3500
1	0	1	1	1	0	1	0.3375
1	0	1	1	1	1	0	0.3250
1	0	1	1	1	1	1	0.3125
1	1	0	0	0	0	0	0.3000
1	1	0	0	0	0	1	0.2875
1	1	0	0	0	1	0	0.2750
1	1	0	0	0	1	1	0.2625
1	1	0	0	1	0	0	0.2500
1	1	0	0	1	0	1	0.2375
1	1	0	0	1	1	0	0.2250
1	1	0	0	1	1	1	0.2125
1	1	0	1	0	0	0	0.2000
1	1	0	1	0	0	1	0.1875
1	1	0	1	0	1	0	0.1750
1	1	0	1	0	1	1	0.1625
1	1	0	1	1	0	0	0.1500
1	1	0	1	1	0	1	0.1375
1	1	0	1	1	1	0	0.1250
1	1	0	1	1	1	1	0.1125
1	1	1	0	0	0	0	0.1000
1	1	1	0	0	0	1	0.0875
1	1	1	0	0	1	0	0.0750
1	1	1	0	0	1	1	0.0625
1	1	1	0	1	0	0	0.0500
1	1	1	0	1	0	1	0.0375
1	1	1	0	1	1	0	0.0250
1	1	1	0	1	1	1	0.0125

3.4 Catastrophic Thermal Protection

The processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor internal clocks and activity, leakage current can be high enough such that the processor cannot be protected in all conditions without the removal of power to the processor. If the external thermal sensor detects a catastrophic processor temperature of 125°C (maximum), or if the THERMTRIP# signal is asserted, the $\rm V_{CC}$ supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway of the processor.

3.5 Signal Terminations and Unused Pins

All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to V_{CC} , V_{SS} , or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Section 4.2 for a pin listing of the processor and the location of all RSVD pins.

For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground (V_{SS}). Unused outputs can be left unconnected.

The TEST1 pin must have a stuffing option connection to V_{SS} . The TEST2 pin must have a 51- Ω ±5%, pull-down resistor to V_{SS} .

3.6 FSB Frequency Select Signals (BSEL[2:0])

The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). These signals should be connected to the clock chip and the Mobile Intel 945 Express Chipset family on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 4.

Table 4. BSEL[2:0] Encoding for BCLK Frequency

BSEL[2]	BSEL[1]	BSEL[0]	BCLK Frequency
L	L	L	RESERVED
L	L	Н	133 MHz
L	Н	L	RESERVED
L	Н	Н	RESERVED

3.7 FSB Signal Groups

In order to simplify the following discussion, the FSB signals have been combined into groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving.

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependant upon the rising edge of BCLKO (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLKO. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 5 identifies which signals are common clock, source synchronous, and asynchronous.

Table 5. FSB Pin Groups

Signal Group	Туре	Signals ¹				
AGTL+ Common Clock Input	Synchronous to BCLK[1:0]	BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#, TRDY#				
AGTL+ Common Clock I/O	Synchronous to BCLK[1:0]	ADS#, BNR#, BPM[3:0]# ³ , BR0#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY# ³				
		Signals Associated Strobe				
	Compalentation	REQ[4:0]#, A[16:3]# ADSTB[0]#				
AGTL+ Source	Synchronous to assoc.	A[31:17]# ADSTB[1]#				
Synchronous I/O	strobe	D[15:0]#, DINVO# DSTBPO#, DSTBNO#				
		D[31:16]#, DINV1# DSTBP1#, DSTBN1#				
		D[47:32]#, DINV2# DSTBP2#, DSTBN2#				
		D[63:48]#, DINV3# DSTBP3#, DSTBN3#				
AGTL+ Strobes	Synchronous to BCLK[1:0]	ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#				
CMOS Input	Asynchronous	A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#, LINTO/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#, STPCLK#				
Open Drain Output	Asynchronous	FERR#, IERR#, THERMTRIP#				
Open Drain I/O	Asynchronous	PROCHOT# ⁴				
CMOS Output	Asynchronous	PSI#, VID[6:0], BSEL[2:0]				
CMOS Input Synchronous to TCK		TCK, TDI, TMS, TRST#				
Open Drain Output	Synchronous to TCK	TDO				
FSB Clock	Clock	BCLK[1:0]				
Power/Other		COMP[3:0], DBR# ² , GTLREF, RSVD, TEST2, TEST1, THERMDA, THERMDC, V _{CC} , V _{CCA} , V _{CCP} , V _{CC_SENSE} , V _{SS} , V _{SS_SENSE}				

NOTES:

- 1. Refer to Table 16 for signal descriptions and termination requirements.
- 2. In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.
- 3. BPM[2:1]# and PRDY# are AGTL+ output only signals.
- 4. PROCHOT# signal type is open drain output and CMOS input.

3.8 CMOS Signals

CMOS input signals are shown in Table 5. Legacy output FERR#, IERR# and other non-AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These signals do not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals are required to be asserted for at least three BCLKs in order for the processor to recognize them. See Section 3.10 for the DC specifications for the CMOS signal groups.

3.9 Maximum Ratings

Table 6 specifies absolute maximum and minimum ratings. Only within specified operation limits, can functionality and long-term reliability be expected.

At condition outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from electro static discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 6. Processor DC Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _{STORAGE}	Processor storage temperature	-40	85	°C	2
V _{CC}	Any processor supply voltage with respect to V_{SS}	-0.3	1.6	V	1
V _{inAGTL+}	AGTL+ buffer DC input voltage with respect to V _{SS}	-0.3	1.6	V	1, 2
V _{inAsynch_CMOS}	CMOS buffer DC input voltage with respect to V_{SS}	-0.3	1.6	٧	1, 2

NOTES:

- 1. This rating applies to any processor pin.
- 2. Contact Intel for storage requirements in excess of one year.

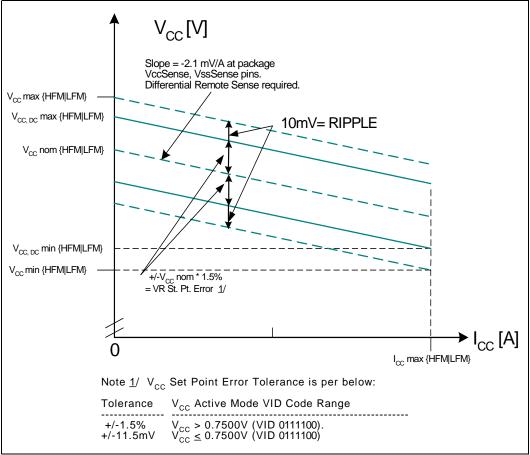
3.10 Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Table 5 for the pin signal definitions and signal pin assignments. Most of the signals on the FSB are in the AGTL+ signal group. The DC specifications for these signals are listed in Table 9. DC specifications for the CMOS group are listed in Table 10.

Table 7 through Table 11 list the DC specifications for the processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer to the highest and lowest core operating frequencies supported on the processor. Active mode load line specifications apply in all states. $V_{CC,BOOT}$ is the default voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified otherwise, all specifications for the processor are at Tjunction = 100°C. Care should be taken to read all notes associated with each parameter.

Table 7. Voltage and Current Specifications for Standard Voltage Processor

Symbol		Parameter	Min	Тур	Max	Unit	Notes
V _{CCHFM}	V _{CC} at Highe	est Frequency Mode (HFM)	1		1.3	V	1, 2
V _{CCLFM}	V _{CC} at Lowe	st Frequency Mode (LFM)		1.025		V	2
V _{CC,BOOT}	Default V _{CC} 'up	Voltage for Initial Power-		1.2		V	2, 7, 9
V _{CCP}	AGTL+ Term	ination Voltage			1.102	V	2
V _{CCA}	PLL Supply \	/oltage	1.425	1.5	1.575	V	
I _{CCDES}		® Pentium Dual-Core essor Recommended et			36	А	5
	I _{CC} for Penti Processor	um Dual-Core Mobile					
I _{cc}	Processor Number	Core Frequency/Voltage					
	T2060	1.60 GHz and HFM V _{CC}			36	Α	3
	T2080	1.73 GHz and HFM Vcc			36	Α	3
	T2130	1.86 GHz and HFM Vcc			36	Α	3
IAH, Isgnt	I _{CC} Auto-Hall LFM HFM	t & Stop-Grant			12.5 23.3	А	3,4
I _{SLP}	I _{CC} Sleep LFM HFM			12.4 23.2	А	3,4	
dI _{CC/DT}		V _{CC} Power Supply Current Slew Rate at CPU Package Pin			600	A/µs	6, 8
I _{CCA}	I _{CC} for V _{CCA}	Supply			120	mA	
I _{CCP}		Supply before V _{CC} Stable Supply after V _{CC} Stable			6.0 2.5	A A	11 10


NOTES:

- 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Intel ®Thermal Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt state).
- 2. The voltage specifications are assumed to be measured across V_{CC_SENSE} and V_{SS_SENSE} pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-M Ω minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- 3. Specified at 100°C Tj.
- 4. Specified at the VID voltage.
- 5. The I_{CCDES}(max) specification of 36 A comprehends only processor standard voltage HFM frequencies. Platforms should be designed to 44 A to be compatible with Intel® Centrino® Duo Processor Technology.
- 6. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal V_{CC} . Not 100% tested.
- 7. Measured at the bulk capacitors on the motherboard.
- 8. V_{CC,BOOT} tolerance is shown in Figure 3.
- 9. This is a steady-state I_{CCP} current specification, which is applicable when both V_{CCP} and V_{CC_CORE} are high.
- 10. This is a power-up peak current specification, which is applicable when V_{CCP} is high and V_{CC_CORE} is low.
- 11. Specified at the nominal V_{CC} .

Figure 3. Active V_{CC} and I_{CC} Loadline for the Processor

NOTE: For low voltage, if PSI# is not asserted then the 13-mV ripple allowance becomes 10 mV.

Table 8. FSB Differential BCLK Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{IH}	Input High Voltage	0.660	0.710	0.85	V	1
V _{IL}	Input Low Voltage		0		V	1
V _{CROSS}	Crossing Voltage	0.25	0.35	0.55	V	1, 2
ΔV _{CROSS}	Range of Crossing Points			0.14	V	1, 6
V _{TH}	Threshold Region	V _{CROSS} -0.100		V _{CROSS} +0.100	V	1, 3
I _{LI}	Input Leakage Current			±100	μΑ	1, 4
Cpad	Pad Capacitance	0.95	1.2	1.45	pF	1, 5

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1.
- 3. Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver switches. It includes input threshold hysteresis.
- 4. For Vin between 0 V and V_{IH}.
- 5. Cpad includes die capacitance only. No package parasitics are included.
- 6. ΔV_{CROSS} is defined as the total variation of all crossing voltages as defined in note 2.

Table 9. AGTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{CCP}	I/O Voltage	0.997	1.05	1.102	V	1
GTLREF	Reference Voltage		2/3 V _{CCP}		V	1, 6
V _{IH}	Input High Voltage	GTLREF+0.1		V _{CCP} +0.1	V	1, 3,6
V _{IL}	Input Low Voltage	-0.1	0	GTLREF-0.1	V	1, 2,4
V _{OH}	Output High Voltage		V _{CCP}			1, 6
R _{TT}	Termination Resistance	50	55	61	Ω	1, 7,10
R _{ON}	Buffer on Resistance	22.3	25.5	28.7	Ω	1, 5
I _{LI}	Input Leakage Current			± 100	μΑ	1, 8
Cpad	Pad Capacitance	1.8	2.3	2.75	pF	1, 9

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- V_{IL} is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
- V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
- V_{IH} and V_{OH} may experience excursions above V_{CCP}. However, input signal drivers must comply with the signal quality specifications.
- 5. This is the pull-down driver resistance. Refer to processor I/O Buffer Models for I/V characteristics. Measured at $0.31*V_{CCP}$, R_{ON} (min) = $0.38*R_{TT}$, R_{ON} (typ) = $0.45*R_{TT}$, R_{ON} (max) = $0.52*R_{TT}$.
- GTLREF should be generated from V_{CCP} with a 1% tolerance resistor divider. Tolerance of resistor divider decides the tolerance of GTLREF. The V_{CCP} referred to in these specifications is the instantaneous V_{CCP}
- 7. R_{TT} is the on-die termination resistance measured at V_{OL} of the AGTL+ output driver. Measured at $0.31*V_{CCP}$ R_{TT} is connected to V_{CCP} on die. Refer to processor I/O buffer models for I/V characteristics.
- 8. Specified with on die R_{TT} and R_{ON} are turned off.
- 9. Cpad includes die capacitance only. No package parasitics are included.
- 10. This spec applies to all AGTL+ signals except for PREQ#. R_{TT} for PREQ# is between 1.5 $k\Omega$ to 6.0 $k\Omega$.

Table 10. **CMOS Signal Group DC Specifications**

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{CCP}	I/O Voltage	1.0	1.05	1.10	V	1
V _{IH}	Input High Voltage	0.7	1.05	1.20	V	1, 2
V _{IL}	Input Low Voltage CMOS		0.0	0.33	V	1, 2, 3
V _{OH}	Output High Voltage	0.9	V _{CCP}	1.20	V	1, 2
V _{OL}	Output Low Voltage	-0.1	0	0.11	V	1, 2
I _{OH}	Output High Current	1.3		4.1	mA	1, 5
I _{OL}	Output Low Current			4.1	mA	1, 4
I _{LI}	Input Leakage Current			±100	μΑ	1, 6
Cpad1	Pad Capacitance	1.8	2.3	2.75	pF	1, 7
Cpad2	Pad Capacitance for CMOS Input	0.95	1.2	1.45	pF	1, 8

NOTES:

- Unless otherwise noted, all specifications in this table apply to all processor frequencies. 1.
- The V_{CCP} referred to in these specifications refers to instantaneous V_{CCP} 2.
- 3. Refer to the processor I/O Buffer Models for I/V characteristics.
- 4.
- 5.
- Measured at $0.1*V_{CCP}$. Measured at $0.9*V_{CCP}$. For Vin between 0 V and V_{CCP} . Measured when the driver is tristated. 6.
- Cpad1 includes die capacitance only for DPSLP#,PWRGOOD. No package parasitics are included. 7.
- Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included.

Table 11. **Open Drain Signal Group DC Specifications**

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{OH}	Output High Voltage	1.0	1.05	1.10	V	1, 3
V _{OL}	Output Low Voltage	0		0.20	V	
I _{OL}	Output Low Current	11.40		50	mA	1, 2
I _{LO}	Output Leakage Current			±200	μΑ	1, 4
Cpad	Pad Capacitance	1.8	2.3	2.75	pF	1, 5

NOTES:

- Unless otherwise noted, all specifications in this table apply to all processor frequencies. 1.
- Measured at 0.2*V_{CCP}. 2.
- V_{OH} is determined by value of the external pull-up resistor to V_{CCP} . Please refer to platform design guide for 3.
- 4. For Vin between 0 V and V_{OH} .
- Cpad includes die capacitance only. No package parasitics are included. 5.

4 Package Mechanical Specifications and Pin Information

4.1 Package Mechanical Specifications

The processor is available in 478-pin Micro-FCPGA package. The package mechanical dimensions are shown in Figure 4 through Figure 5.

Figure 4. Micro-FCPGA Processor Package Drawing Sheet 1 of 2

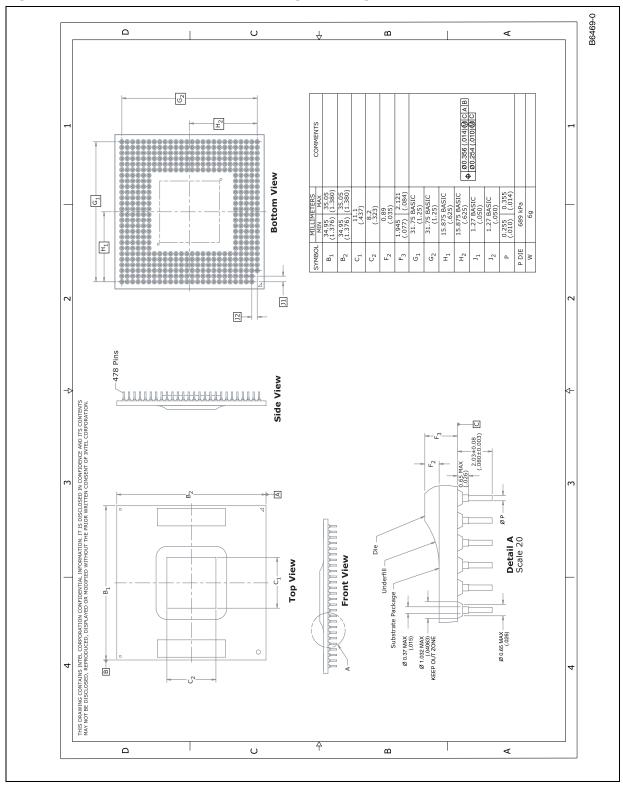
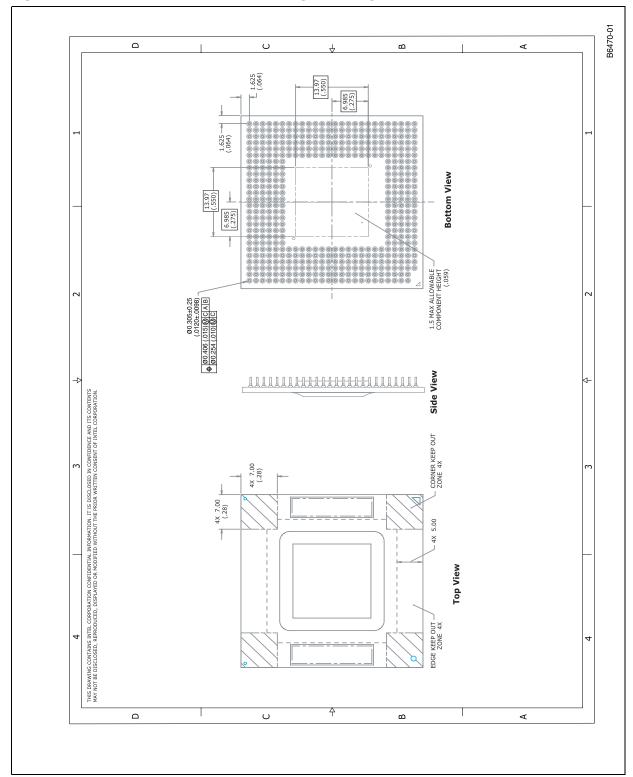



Figure 5. Micro-FCPGA Processor Package Drawing Sheet 2 of 2

4.2 Processor Pinout and Pin List

Table 12 shows the top view pinout of the processor. The pin list is arranged in two different formats is shown in the following pages.

Table 12. Processor Pin Coordinates from Top of the Package (Sheet 1 of 2)

	1	2	3	4	5	6	7	8	9	10	11	12	13	
Α			SMI#	VSS	FERR#	A20M#	VCC	VSS	VCC	VCC	VSS	VCC	VCC	Α
В	RESET#	RSVD	INIT#	LINT1	DPSLP#	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VSS	В
С	RSVD	VSS	RSVD	IGNNE #	VSS	LINTO	THERM TRIP#	VSS	VCC	VCC	VSS	VCC	VCC	С
D	VSS	RSVD	RSVD	VSS	STPCLK #	PWRGO OD	SLP#	VSS	VCC	VCC	VSS	VCC	VSS	D
Е	DBSY#	BNR#	VSS	HITM#	DPRSTP #	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VCC	Е
F	BR0#	VSS	RS[0]#	RS[1]#	VSS	RSVD	VCC	VSS	VCC	VCC	VSS	VCC	VSS	F
G	VSS	TRDY#	RS[2]#	VSS	BPRI#	HIT#								G
н	ADS#	REQ[1] #	VSS	LOCK#	DEFER#	VSS								н
J	A[9]#	VSS	REQ[3] #	A[3]#	VSS	VCCP								J
K	VSS	REQ[2] #	REQ[0] #	VSS	A[6]#	VCCP								К
L	A[13]#	ADSTB[0]#	VSS	A[4]#	REQ[4] #	VSS								L
M	A[7]#	VSS	A[5]#	RSVD	VSS	VCCP								М
N	VSS	A[8]#	A[10]#	VSS	RSVD	VCCP								N
Р	A[15]#	A[12]#	VSS	A[14]#	A[11]#	VSS								Р
R	A[16]#	VSS	A[19]#	A[24]#	VSS	VCCP								R
Т	VSS	RSVD	A[26]#	VSS	A[25]#	VCCP								т
U	COMP[2]	A[23]#	VSS	A[21]#	A[18]#	VSS								U
V	COMP[3]	VSS	RSVD	ADSTB [1]#	VSS	VCCP								v
W	VSS	A[30]#	A[27]#	VSS	A[28]#	A[20]#								w
Υ	A[31]#	A[17]#	VSS	A[29]#	A[22]#	VSS								Υ
AA	RSVD	VSS	RSVD	RSVD	VSS	TDI	VCC	VSS	VCC	VCC	VSS	VCC	VCC	AA
AB	VSS	RSVD	TDO	VSS	TMS	TRST#	VCC	VSS	VCC	VCC	VSS	VCC	VSS	AB
AC	PREQ#	PRDY#	VSS	BPM[3] #	TCK	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VCC	AC
AD	BPM[2]#	VSS	BPM[1] #	BPM[0] #	VSS	VID[0]	VCC	VSS	VCC	VCC	VSS	VCC	VSS	AD
AE	VSS	VID[6]	VID[4]	VSS	VID[2]	PSI#	VSS SENSE	VSS	VCC	VCC	VSS	VCC	VCC	AE
AF	RSVD	VID[5]	VSS	VID[3]	VID[1]	VSS	VCC SENSE	VSS	VCC	VCC	VSS	VCC	VSS	AF
•	1	2	3	4	5	6	7	8	9	10	11	12	13	

Table 13. Processor Pin Coordinates from Top of the Package (Sheet 2 of 2)

	14	15	16	17	18	19	20	21	22	23	24	25	26	
Α	VSS	VCC	VSS	VCC	VCC	VSS	VCC	BCLK[1]	BCLK[0]	VSS	THRMDA	THRMDC	VSS	Α
В	VCC	VCC	VSS	VCC	VCC	VSS	VCC	VSS	BSEL[0]	BSEL[1]	VSS	RSVD	VCCA	В
С	VSS	VCC	VSS	VCC	VCC	VSS	DBR#	BSEL[2]	VSS	RSVD	RSVD	VSS	TEST1	С
D	VCC	VCC	VSS	VCC	VCC	VSS	IERR#	PROC HOT#	RSVD	VSS	DPWR#	TEST2	VSS	D
E	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VSS	D[0]#	D[7]#	VSS	D[6]#	D[2]#	E
F	VCC	VCC	VSS	VCC	VCC	VSS	VCC	DRDY#	VSS	D[4]#	D[1]#	VSS	D[13]#	F
G								VCCP	DSTBP[0] #	VSS	D[9]#	D[5]#	VSS	G
Н								VSS	D[3]#	DSTBN[0] #	VSS	D[15]#	D[12]#	Н
J								VCCP	VSS	D[11]#	D[10]#	VSS	DINV[0]#	J
K								VCCP	D[14]#	VSS	D[8]#	D[17]#	VSS	K
L								VSS	D[21]#	D[22]#	VSS	D[20]#	D[29]#	L
M								VCCP	VSS	D[23]#	DSTBN[1] #	VSS	DINV[1]#	M
N								VCCP	D[16]#	VSS	D[31]#	DSTBP[1] #	VSS	N
P								VSS	D[25]#	D[26]#	VSS	D[24]#	D[18]#	Р
R								VCCP	VSS	D[19]#	D[28]#	VSS	COMP [0]	R
Т								VCCP	RSVD	VSS	D[27]#	D[30]#	VSS	т
U								VSS	D[39]#	D[37]#	VSS	D[38]#	COMP [1]	U
V								VCCP	VSS	DINV[2]#	D[34]#	VSS	D[35]#	V
W								VCCP	D[41]#	VSS	DSTBN[2] #	D[36]#	VSS	w
Υ								VSS	D[45]#	D[42]#	VSS	DSTBP[2] #	D[44]#	Υ
AA	VSS	VCC	VSS	VCC	VCC	VSS	VCC	D[51]#	VSS	D[32]#	D[47]#	VSS	D[43]#	A
AB	VCC	VCC	VSS	VCC	VCC	VSS	VCC	D[52]#	D[50]#	VSS	D[33]#	D[40]#	VSS	A B
AC	VSS	VCC	VSS	VCC	VCC	VSS	DINV[3]#	VSS	D[48]#	D[49]#	VSS	D[53]#	D[46]#	AC
A D	VCC	VCC	VSS	VCC	VCC	VSS	D[54]#	D[59]#	VSS	DSTBN[3] #	D[57]#	VSS	GTLREF	A D
AE	VSS	VCC	VSS	VCC	VCC	VSS	VCC	D[58]#	D[55]#	VSS	DSTBP[3] #	D[60]#	VSS	AE
AF	VCC	VCC	VSS	VCC	VCC	VSS	VCC	VSS	D[62]#	D[56]#	VSS	D[61]#	D[63]#	AF
	14	15	16	17	18	19	20	21	22	23	24	25	26	

Table 14. Pin Listing by Pin Name (Sheet 1 of 22)

(Sheet 1 of 22)									
Pin Name	Pin Number	Signal Buffer Type	Direction						
A[3]#	J4	Source Synch	Input/ Output						
A[4]#	L4	Source Synch	Input/ Output						
A[5]#	M3	Source Synch	Input/ Output						
A[6]#	K5	Source Synch	Input/ Output						
A[7]#	M1	Source Synch	Input/ Output						
A[8]#	N2	Source Synch	Input/ Output						
A[9]#	J1	Source Synch	Input/ Output						
A[10]#	N3	Source Synch	Input/ Output						
A[11]#	P5	Source Synch	Input/ Output						
A[12]#	P2	Source Synch	Input/ Output						
A[13]#	L1	Source Synch	Input/ Output						
A[14]#	P4	Source Synch	Input/ Output						
A[15]#	P1	Source Synch	Input/ Output						
A[16]#	R1	Source Synch	Input/ Output						
A[17]#	Y2	Source Synch	Input/ Output						
A[18]#	U5	Source Synch	Input/ Output						
A[19]#	R3	Source Synch	Input/ Output						
A[20]#	W6	Source Synch	Input/ Output						
A[21]#	U4	Source Synch	Input/ Output						
A[22]#	Y5	Source Synch	Input/ Output						
A[23]#	U2	Source Synch	Input/ Output						

Table 14. Pin Listing by Pin Name (Sheet 2 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
A[24]#	R4	Source Synch	Input/ Output
A[25]#	T5	Source Synch	Input/ Output
A[26]#	Т3	Source Synch	Input/ Output
A[27]#	W3	Source Synch	Input/ Output
A[28]#	W5	Source Synch	Input/ Output
A[29]#	Y4	Source Synch	Input/ Output
A[30]#	W2	Source Synch	Input/ Output
A[31]#	Y1	Source Synch	Input/ Output
A20M#	A6	CMOS	Input
ADS#	H1	Common Clock	Input/ Output
ADSTB[0]#	L2	Source Synch	Input/ Output
ADSTB[1]#	V4	Source Synch	Input/ Output
BCLK[0]	A22	Bus Clock	Input
BCLK[1]	A21	Bus Clock	Input
BNR#	E2	Common Clock	Input/ Output
BPM[0]#	AD4	Common Clock	Input/ Output
BPM[1]#	AD3	Common Clock	Output
BPM[2]#	AD1	Common Clock	Output
BPM[3]#	AC4	Common Clock	Input/ Output
BPRI#	G5	Common Clock	Input
BRO#	F1	Common Clock	Input/ Output
BSEL[0]	B22	CMOS	Output
BSEL[1]	B23	CMOS	Output
BSEL[2]	C21	CMOS	Output

Table 14. Pin Listing by Pin Name (Sheet 3 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
COMP[0]	R26	Power/ Other	Input/ Output
COMP[1]	U26	Power/ Other	Input/ Output
COMP[2]	U1	Power/ Other	Input/ Output
COMP[3]	V1	Power/ Other	Input/ Output
D[0]#	E22	Source Synch	Input/ Output
D[1]#	F24	Source Synch	Input/ Output
D[2]#	E26	Source Synch	Input/ Output
D[3]#	H22	Source Synch	Input/ Output
D[4]#	F23	Source Synch	Input/ Output
D[5]#	G25	Source Synch	Input/ Output
D[6]#	E25	Source Synch	Input/ Output
D[7]#	E23	Source Synch	Input/ Output
D[8]#	K24	Source Synch	Input/ Output
D[9]#	G24	Source Synch	Input/ Output
D[10]#	J24	Source Synch	Input/ Output
D[11]#	J23	Source Synch	Input/ Output
D[12]#	H26	Source Synch	Input/ Output
D[13]#	F26	Source Synch	Input/ Output
D[14]#	K22	Source Synch	Input/ Output
D[15]#	H25	Source Synch	Input/ Output
D[16]#	N22	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Name (Sheet 4 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
D[17]#	K25	Source Synch	Input/ Output
D[18]#	P26	Source Synch	Input/ Output
D[19]#	R23	Source Synch	Input/ Output
D[20]#	L25	Source Synch	Input/ Output
D[21]#	L22	Source Synch	Input/ Output
D[22]#	L23	Source Synch	Input/ Output
D[23]#	M23	Source Synch	Input/ Output
D[24]#	P25	Source Synch	Input/ Output
D[25]#	P22	Source Synch	Input/ Output
D[26]#	P23	Source Synch	Input/ Output
D[27]#	T24	Source Synch	Input/ Output
D[28]#	R24	Source Synch	Input/ Output
D[29]#	L26	Source Synch	Input/ Output
D[30]#	T25	Source Synch	Input/ Output
D[31]#	N24	Source Synch	Input/ Output
D[32]#	AA23	Source Synch	Input/ Output
D[33]#	AB24	Source Synch	Input/ Output
D[34]#	V24	Source Synch	Input/ Output
D[35]#	V26	Source Synch	Input/ Output
D[36]#	W25	Source Synch	Input/ Output
D[37]#	U23	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Name (Sheet 5 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
D[38]#	U25	Source Synch	Input/ Output
D[39]#	U22	Source Synch	Input/ Output
D[40]#	AB25	Source Synch	Input/ Output
D[41]#	W22	Source Synch	Input/ Output
D[42]#	Y23	Source Synch	Input/ Output
D[43]#	AA26	Source Synch	Input/ Output
D[44]#	Y26	Source Synch	Input/ Output
D[45]#	Y22	Source Synch	Input/ Output
D[46]#	AC26	Source Synch	Input/ Output
D[47]#	AA24	Source Synch	Input/ Output
D[48]#	AC22	Source Synch	Input/ Output
D[49]#	AC23	Source Synch	Input/ Output
D[50]#	AB22	Source Synch	Input/ Output
D[51]#	AA21	Source Synch	Input/ Output
D[52]#	AB21	Source Synch	Input/ Output
D[53]#	AC25	Source Synch	Input/ Output
D[54]#	AD20	Source Synch	Input/ Output
D[55]#	AE22	Source Synch	Input/ Output
D[56]#	AF23	Source Synch	Input/ Output
D[57]#	AD24	Source Synch	Input/ Output
D[58]#	AE21	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Name (Sheet 6 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
D[59]#	AD21	Source Synch	Input/ Output
D[60]#	AE25	Source Synch	Input/ Output
D[61]#	AF25	Source Synch	Input/ Output
D[62]#	AF22	Source Synch	Input/ Output
D[63]#	AF26	Source Synch	Input/ Output
DBR#	C20	CMOS	Output
DBSY#	E1	Common Clock	Input/ Output
DEFER#	H5	Common Clock	Input
DINV[0]#	J26	Source Synch	Input/ Output
DINV[1]#	M26	Source Synch	Input/ Output
DINV[2]#	V23	Source Synch	Input/ Output
DINV[3]#	AC20	Source Synch	Input/ Output
DPRSTP#	E5	CMOS	Not used
DPSLP#	B5	CMOS	Input
DPWR#	D24	Common Clock	Input
DRDY#	F21	Common Clock	Input/ Output
DSTBN[0]#	H23	Source Synch	Input/ Output
DSTBN[1]#	M24	Source Synch	Input/ Output
DSTBN[2]#	W24	Source Synch	Input/ Output
DSTBN[3]#	AD23	Source Synch	Input/ Output
DSTBP[0]#	G22	Source Synch	Input/ Output
DSTBP[1]#	N25	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Name (Sheet 7 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
DSTBP[2]#	Y25	Source Synch	Input/ Output
DSTBP[3]#	AE24	Source Synch	Input/ Output
FERR#	A 5	Open Drain	Output
GTLREF	AD26	Power/ Other	Input
HIT#	G6	Common Clock	Input/ Output
HITM#	E4	Common Clock	Input/ Output
IERR#	D20	Open Drain	Output
IGNNE#	C4	CMOS	Input
INIT#	В3	CMOS	Input
LINTO	C6	CMOS	Input
LINT1	B4	CMOS	Input
LOCK#	H4	Common Clock	Input/ Output
PRDY#	AC2	Common Clock	Output
PREQ#	AC1	Common Clock	Input
PROCHOT#	D21	Open Drain	Input/ Output
PSI#	AE6	CMOS	Output
PWRGOOD	D6	CMOS	Input
REQ[0]#	К3	Source Synch	Input/ Output
REQ[1]#	H2	Source Synch	Input/ Output
REQ[2]#	K2	Source Synch	Input/ Output
REQ[3]#	J3	Source Synch	Input/ Output
REQ[4]#	L5	Source Synch	Input/ Output
RESET#	B1	Common Clock	Input
RS[0]#	F3	Common Clock	Input

Table 14. Pin Listing by Pin Name (Sheet 8 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
RS[1]#	F4	Common Clock	Input
RS[2]#	G3	Common Clock	Input
RSVD	D2	Reserved	
RSVD	F6	Reserved	
RSVD	D3	Reserved	
RSVD	C1	Reserved	
RSVD	AF1	Reserved	
RSVD	D22	Reserved	
RSVD	C23	Reserved	
RSVD	C24	Reserved	
RSVD	AA1	Reserved	
RSVD	AA4	Reserved	
RSVD	AB2	Reserved	
RSVD	AA3	Reserved	
RSVD	M4	Reserved	
RSVD	N5	Reserved	
RSVD	T2	Reserved	
RSVD	V3	Reserved	
RSVD	B2	Reserved	
RSVD	C3	Reserved	
RSVD	T22	Reserved	
RSVD	B25	Reserved	
SLP#	D7	CMOS	Input
SMI#	A3	CMOS	Input
STPCLK#	D5	CMOS	Input
TCK	AC5	CMOS	Input
TDI	AA6	CMOS	Input
TDO	AB3	Open Drain	Output
TEST1	C26	Test	
TEST2	D25	Test	
THERMDA	A24	Power/ Other	
THERMDC	A25	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 9 of 22)

(Silect 7 of 22)				
Pin Name	Pin Number	Signal Buffer Type	Direction	
THERMTRIP #	C7	Open Drain	Output	
TMS	AB5	CMOS	Input	
TRDY#	G2	Common Clock	Input	
TRST#	AB6	CMOS	Input	
VCC	AB20	Power/ Other		
VCC	AA20	Power/ Other		
VCC	AF20	Power/ Other		
VCC	AE20	Power/ Other		
VCC	AB18	Power/ Other		
VCC	AB17	Power/ Other		
VCC	AA18	Power/ Other		
VCC	AA17	Power/ Other		
VCC	AD18	Power/ Other		
VCC	AD17	Power/ Other		
VCC	AC18	Power/ Other		
VCC	AC17	Power/ Other		
VCC	AF18	Power/ Other		
VCC	AF17	Power/ Other		
VCC	AE18	Power/ Other		
VCC	AE17	Power/ Other		
VCC	AB15	Power/ Other		
VCC	AA15	Power/ Other		

Table 14. Pin Listing by Pin Name (Sheet 10 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	AD15	Power/ Other	
VCC	AC15	Power/ Other	
VCC	AF15	Power/ Other	
VCC	AE15	Power/ Other	
VCC	AB14	Power/ Other	
VCC	AA13	Power/ Other	
VCC	AD14	Power/ Other	
VCC	AC13	Power/ Other	
VCC	AF14	Power/ Other	
VCC	AE13	Power/ Other	
VCC	AB12	Power/ Other	
VCC	AA12	Power/ Other	
VCC	AD12	Power/ Other	
VCC	AC12	Power/ Other	
VCC	AF12	Power/ Other	
VCC	AE12	Power/ Other	
VCC	AB10	Power/ Other	
VCC	AB9	Power/ Other	
VCC	AA10	Power/ Other	
VCC	AA9	Power/ Other	
VCC	AD10	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 11 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	AD9	Power/ Other	
VCC	AC10	Power/ Other	
VCC	AC9	Power/ Other	
VCC	AF10	Power/ Other	
VCC	AF9	Power/ Other	
VCC	AE10	Power/ Other	
VCC	AE9	Power/ Other	
VCC	AB7	Power/ Other	
VCC	AA7	Power/ Other	
VCC	AD7	Power/ Other	
VCC	AC7	Power/ Other	
VCC	B20	Power/ Other	
VCC	A20	Power/ Other	
VCC	F20	Power/ Other	
VCC	E20	Power/ Other	
VCC	B18	Power/ Other	
VCC	B17	Power/ Other	
VCC	A18	Power/ Other	
VCC	A17	Power/ Other	
VCC	D18	Power/ Other	
VCC	D17	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 12 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	C18	Power/ Other	
VCC	C17	Power/ Other	
VCC	F18	Power/ Other	
VCC	F17	Power/ Other	
VCC	E18	Power/ Other	
VCC	E17	Power/ Other	
VCC	B15	Power/ Other	
vcc	A15	Power/ Other	
vcc	D15	Power/ Other	
vcc	C15	Power/ Other	
VCC	F15	Power/ Other	
VCC	E15	Power/ Other	
VCC	B14	Power/ Other	
VCC	A13	Power/ Other	
vcc	D14	Power/ Other	
vcc	C13	Power/ Other	
VCC	F14	Power/ Other	
VCC	E13	Power/ Other	
VCC	B12	Power/ Other	
VCC	A12	Power/ Other	
VCC	D12	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 13 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	C12	Power/ Other	
VCC	F12	Power/ Other	
VCC	E12	Power/ Other	
VCC	B10	Power/ Other	
VCC	В9	Power/ Other	
VCC	A10	Power/ Other	
VCC	A9	Power/ Other	
vcc	D10	Power/ Other	
vcc	D9	Power/ Other	
vcc	C10	Power/ Other	
VCC	С9	Power/ Other	
VCC	F10	Power/ Other	
VCC	F9	Power/ Other	
VCC	E10	Power/ Other	
VCC	E9	Power/ Other	
VCC	B7	Power/ Other	
VCC	A7	Power/ Other	
VCC	F7	Power/ Other	
VCC	E7	Power/ Other	
VCCA	B26	Power/ Other	
VCCP	K6	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 14 of 22)

	1	1	Ī
Pin Name	Pin Number	Signal Buffer Type	Direction
VCCP	J6	Power/ Other	
VCCP	M6	Power/ Other	
VCCP	N6	Power/ Other	
VCCP	Т6	Power/ Other	
VCCP	R6	Power/ Other	
VCCP	K21	Power/ Other	
VCCP	J21	Power/ Other	
VCCP	M21	Power/ Other	
VCCP	N21	Power/ Other	
VCCP	T21	Power/ Other	
VCCP	R21	Power/ Other	
VCCP	V21	Power/ Other	
VCCP	W21	Power/ Other	
VCCP	V6	Power/ Other	
VCCP	G21	Power/ Other	
VCCSENSE	AF7	Power/ Other	
VID[0]	AD6	CMOS	Output
VID[1]	AF5	CMOS	Output
VID[2]	AE5	CMOS	Output
VID[3]	AF4	CMOS	Output
VID[4]	AE3	CMOS	Output
VID[5]	AF2	CMOS	Output
VID[6]	AE2	CMOS	Output
VSS	AB26	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 15 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	AA25	Power/ Other	
VSS	AD25	Power/ Other	
VSS	AE26	Power/ Other	
VSS	AB23	Power/ Other	
VSS	AC24	Power/ Other	
VSS	AF24	Power/ Other	
VSS	AE23	Power/ Other	
VSS	AA22	Power/ Other	
VSS	AD22	Power/ Other	
VSS	AC21	Power/ Other	
VSS	AF21	Power/ Other	
VSS	AB19	Power/ Other	
VSS	AA19	Power/ Other	
VSS	AD19	Power/ Other	
VSS	AC19	Power/ Other	
VSS	AF19	Power/ Other	
VSS	AE19	Power/ Other	
VSS	AB16	Power/ Other	
VSS	AA16	Power/ Other	
VSS	AD16	Power/ Other	
VSS	AC16	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 16 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	AF16	Power/ Other	
VSS	AE16	Power/ Other	
VSS	AB13	Power/ Other	
VSS	AA14	Power/ Other	
VSS	AD13	Power/ Other	
VSS	AC14	Power/ Other	
VSS	AF13	Power/ Other	
VSS	AE14	Power/ Other	
VSS	AB11	Power/ Other	
VSS	AA11	Power/ Other	
VSS	AD11	Power/ Other	
VSS	AC11	Power/ Other	
VSS	AF11	Power/ Other	
VSS	AE11	Power/ Other	
VSS	AB8	Power/ Other	
VSS	AA8	Power/ Other	
VSS	AD8	Power/ Other	
VSS	AC8	Power/ Other	
VSS	AF8	Power/ Other	
VSS	AE8	Power/ Other	
VSS	AA5	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 17 of 22)

Signal Pin Pin Name **Buffer Direction** Number **Type** Power/ VSS AD5 Other Power/ VSS AC6 Other Power/ AF6 VSS Other Power/ VSS AB4 Other Power/ VSS AC3 Other Power/ VSS AF3 Other Power/ VSS AE4 Other Power/ **VSS** AB1 Other Power/ VSS AA2 Other Power/ VSS AD2 Other Power/ VSS AE1 Other Power/ VSS В6 Other Power/ VSS С5 Other Power/ **VSS** F5 Other Power/ VSS E6 Other Power/ VSS Н6 Other Power/ VSS J5 Other Power/ VSS M5 Other Power/ VSS L6 Other Power/ Р6 VSS Other Power/ **VSS** R5 Other

Table 14. Pin Listing by Pin Name (Sheet 18 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	V5	Power/ Other	
VSS	U6	Power/ Other	
VSS	Y6	Power/ Other	
VSS	A4	Power/ Other	
VSS	D4	Power/ Other	
VSS	E3	Power/ Other	
VSS	Н3	Power/ Other	
VSS	G4	Power/ Other	
VSS	K4	Power/ Other	
VSS	L3	Power/ Other	
VSS	Р3	Power/ Other	
VSS	N4	Power/ Other	
VSS	Т4	Power/ Other	
VSS	U3	Power/ Other	
VSS	Y3	Power/ Other	
VSS	W4	Power/ Other	
VSS	D1	Power/ Other	
VSS	C2	Power/ Other	
VSS	F2	Power/ Other	
VSS	G1	Power/ Other	
VSS	K1	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 19 of 22)

			,
Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	J2	Power/ Other	
VSS	M2	Power/ Other	
VSS	N1	Power/ Other	
VSS	T1	Power/ Other	
VSS	R2	Power/ Other	
VSS	V2	Power/ Other	
VSS	W1	Power/ Other	
VSS	A26	Power/ Other	
VSS	D26	Power/ Other	
VSS	C25	Power/ Other	
VSS	F25	Power/ Other	
VSS	B24	Power/ Other	
VSS	A23	Power/ Other	
VSS	D23	Power/ Other	
VSS	E24	Power/ Other	
VSS	B21	Power/ Other	
VSS	C22	Power/ Other	
VSS	F22	Power/ Other	
VSS	E21	Power/ Other	
VSS	B19	Power/ Other	
VSS	A19	Power/ Other	

Table 14. Pin Listing by Pin Name (Sheet 20 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	D19	Power/ Other	
VSS	C19	Power/ Other	
VSS	F19	Power/ Other	
VSS	E19	Power/ Other	
VSS	B16	Power/ Other	
VSS	A16	Power/ Other	
VSS	D16	Power/ Other	
VSS	C16	Power/ Other	
VSS	F16	Power/ Other	
VSS	E16	Power/ Other	
VSS	B13	Power/ Other	
VSS	A14	Power/ Other	
VSS	D13	Power/ Other	
VSS	C14	Power/ Other	
VSS	F13	Power/ Other	
VSS	E14	Power/ Other	
VSS	B11	Power/ Other	
VSS	A11	Power/ Other	
VSS	D11	Power/ Other	
VSS	C11	Power/ Other	
VSS	F11	Power/ Other	

Datasheet Datasheet

Table 14. Pin Listing by Pin Name (Sheet 21 of 22)

(Silect 21 of 22)				
Pin Name	Pin Number	Signal Buffer Type	Direction	
VSS	E11	Power/ Other		
VSS	B8	Power/ Other		
VSS	A8	Power/ Other		
VSS	D8	Power/ Other		
VSS	C8	Power/ Other		
VSS	F8	Power/ Other		
VSS	E8	Power/ Other		
VSS	G26	Power/ Other		
VSS	K26	Power/ Other		
VSS	J25	Power/ Other		
VSS	M25	Power/ Other		
VSS	N26	Power/ Other		
VSS	T26	Power/ Other		
VSS	R25	Power/ Other		
VSS	V25	Power/ Other		
VSS	W26	Power/ Other		
VSS	H24	Power/ Other		
VSS	G23	Power/ Other		
VSS	K23	Power/ Other		
VSS	L24	Power/ Other		
VSS	P24	Power/ Other		

Table 14. Pin Listing by Pin Name (Sheet 22 of 22)

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	N23	Power/ Other	
VSS	T23	Power/ Other	
VSS	U24	Power/ Other	
VSS	Y24	Power/ Other	
VSS	W23	Power/ Other	
VSS	H21	Power/ Other	
VSS	J22	Power/ Other	
VSS	M22	Power/ Other	
VSS	L21	Power/ Other	
VSS	P21	Power/ Other	
VSS	R22	Power/ Other	
VSS	V22	Power/ Other	
VSS	U21	Power/ Other	
VSS	Y21	Power/ Other	
VSSSENSE	AE7	Power/ Other	Output

Table 15. Pin Listing by Pin Number (Sheet 1 of 16)

	(01.001	1 01 10)	
Pin Number	Pin Name	Signal Buffer Type	Direction
А3	SMI#	CMOS	Input
A4	VSS	Power/Other	
A5	FERR#	Open Drain	Output
A6	A20M#	CMOS	Input
A7	VCC	Power/Other	
A8	VSS	Power/Other	
A9	VCC	Power/Other	
A10	VCC	Power/Other	
A11	VSS	Power/Other	
A12	VCC	Power/Other	
A13	VCC	Power/Other	
A14	VSS	Power/Other	
A15	VCC	Power/Other	
A16	VSS	Power/Other	
A17	VCC	Power/Other	
A18	VCC	Power/Other	
A19	VSS	Power/Other	
A20	VCC	Power/Other	
A21	BCLK[1]	Bus Clock	Input
A22	BCLK[0]	Bus Clock	Input
A23	VSS	Power/Other	
A24	THERMDA	Power/Other	
A25	THERMDC	Power/Other	
A26	VSS	Power/Other	
AA1	RSVD	Reserved	
AA2	VSS	Power/Other	
AA3	RSVD	Reserved	
AA4	RSVD	Reserved	
AA5	VSS	Power/Other	
AA6	TDI	CMOS	Input
AA7	VCC	Power/Other	
AA8	VSS	Power/other	
AA9	VCC	Power/Other	
AA10	VCC	Power/Other	
AA11	VSS	Power/Other	

Table 15. Pin Listing by Pin Number (Sheet 2 of 16)

Pin			
Number	Pin Name	Signal Buffer Type	Direction
AA12	VCC	Power/Other	
AA13	VCC	Power/Other	
AA14	VSS	Power/Other	
AA15	VCC	Power/Other	
AA16	VSS	Power/Other	
AA17	VCC	Power/Other	
AA18	VCC	Power/Other	
AA19	VSS	Power/Other	
AA20	VCC	Power/Other	
AA21	D[51]#	Source Synch	Input/ Output
AA22	VSS	Power/Other	
AA23	D[32]#	Source Synch	Input/ Output
AA24	D[47]#	Source Synch	Input/ Output
AA25	VSS	Power/Other	
AA26	D[43]#	Source Synch	Input/ Output
AB1	VSS	Power/Other	
AB2	RSVD	Reserved	
AB3	TDO	Open Drain	Output
AB4	VSS	Power/Other	
AB5	TMS	CMOS	Input
AB6	TRST#	CMOS	Input
AB7	VCC	Power/Other	
AB8	VSS	Power/Other	
AB9	VCC	Power/Other	
AB10	VCC	Power/Other	
AB11	VSS	Power/Other	
AB12	VCC	Power/Other	
AB13	VSS	Power/Other	
AB14	VCC	Power/Other	
AB15	VCC	Power/Other	
AB16	VSS	Power/Other	
AB17	VCC	Power/Other	
AB18	VCC	Power/Other	
AB19	VSS	Power/Other	_

Table 15. Pin Listing by Pin Number (Sheet 3 of 16)

(Sheet 3 of 16)				
Pin Number	Pin Name	Signal Buffer Type	Direction	
AB20	VCC	Power/Other		
AB21	D[52]#	Source Synch	Input/ Output	
AB22	D[50]#	Source Synch	Input/ Output	
AB23	VSS	Power/Other		
AB24	D[33]#	Source Synch	Input/ Output	
AB25	D[40]#	Source Synch	Input/ Output	
AB26	VSS	Power/Other		
AC1	PREQ#	Common Clock	Input	
AC2	PRDY#	Common Clock	Output	
AC3	VSS	Power/Other		
AC4	BPM[3]#	Common Clock	Input/ Output	
AC5	TCK	CMOS	Input	
AC6	VSS	Power/Other		
AC7	VCC	Power/Other		
AC8	VSS	Power/Other		
AC9	VCC	Power/Other		
AC10	VCC	Power/Other		
AC11	VSS	Power/Other		
AC12	VCC	Power/Other		
AC13	VCC	Power/Other		
AC14	VSS	Power/Other		
AC15	VCC	Power/Other		
AC16	VSS	Power/Other		
AC17	VCC	Power/Other		
AC18	VCC	Power/Other		
AC19	VSS	Power/Other		
AC20	DINV[3]#	Source Synch	Input/ Output	
AC21	VSS	Power/Other		
AC22	D[48]#	Source Synch	Input/ Output	
AC23	D[49]#	Source Synch	Input/ Output	

Table 15. Pin Listing by Pin Number (Sheet 4 of 16)

Pin Number	Pin Name	Signal Buffer Type	Direction
AC24	VSS	Power/Other	
AC25	D[53]#	Source Synch	Input/ Output
AC26	D[46]#	Source Synch	Input/ Output
AD1	BPM[2]#	Common Clock	Output
AD2	VSS	Power/Other	
AD3	BPM[1]#	Common Clock	Output
AD4	BPM[0]#	Common Clock	Input/ Output
AD5	VSS	Power/Other	
AD6	VID[0]	CMOS	Output
AD7	VCC	Power/Other	
AD8	VSS	Power/Other	
AD9	VCC	Power/Other	
AD10	VCC	Power/Other	
AD11	VSS	Power/Other	
AD12	VCC	Power/Other	
AD13	VSS	Power/Other	
AD14	VCC	Power/Other	
AD15	VCC	Power/Other	
AD16	VSS	Power/Other	
AD17	VCC	Power/Other	
AD18	VCC	Power/Other	
AD19	VSS	Power/Other	
AD20	D[54]#	Source Synch	Input/ Output
AD21	D[59]#	Source Synch	Input/ Output
AD22	VSS	Power/Other	
AD23	DSTBN[3] #	Source Synch	Input/ Output
AD24	D[57]#	Source Synch	Input/ Output
AD25	VSS	Power/Other	
AD26	GTLREF	Power/Other	Input
AE1	VSS	Power/Other	

Table 15. Pin Listing by Pin Number (Sheet 5 of 16)

Pin NumberPin NameSignal Buffer TypeDirectionAE2VID[6]CMOSOutputAE3VID[4]CMOSOutputAE4VSSPower/OtherAE5VID[2]CMOSOutputAE5VID[2]CMOSOutputAE6PSI#CMOSOutputAE7VSSSENSEPower/OtherOutputAE8VSSPower/OtherAE8VSSPower/OtherAE9VCCPower/OtherAE10VCCPower/OtherAE11VSSPower/OtherAE11VSSPower/OtherAE12VCCPower/OtherAE12VCCPower/OtherAE14VSSPower/OtherAE14VSSPower/OtherAE15VCCPower/OtherAE15VCCPower/OtherAE16VSSPower/OtherAE17VCCPower/OtherAE18VCCPower/OtherAE20VCCPower/OtherAE20VCCPower/OtherAE21D[58]#Source SynchInput/OutputAE22D[55]#Source SynchInput/Output
AE3 VID[4] CMOS Output AE4 VSS Power/Other AE5 VID[2] CMOS Output AE6 PSI# CMOS Output AE7 VSSSENSE Power/Other Output AE8 VSS Power/Other AE9 VCC Power/Other AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE4 VSS Power/Other AE5 VID[2] CMOS Output AE6 PSI# CMOS Output AE7 VSSSENSE Power/Other Output AE8 VSS Power/Other AE9 VCC Power/Other AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE5 VID[2] CMOS Output AE6 PSI# CMOS Output AE7 VSSSENSE Power/Other Output AE8 VSS Power/Other AE9 VCC Power/Other AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE6 PSI# CMOS Output AE7 VSSSENSE Power/Other Output AE8 VSS Power/Other AE9 VCC Power/Other AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE7 VSSSENSE Power/Other Output AE8 VSS Power/Other AE9 VCC Power/Other AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE8 VSS Power/Other AE9 VCC Power/Other AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE9 VCC Power/Other AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE10 VCC Power/Other AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE11 VSS Power/Other AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE12 VCC Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output
AE16 VSS Power/Other AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Input/Output AE22 D[55]# Source Synch Input/
AE17 VCC Power/Other AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Output AE22 D[55]# Source Synch Input/
AE18 VCC Power/Other AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Output AE22 D[55]# Source Synch Input/
AE19 VSS Power/Other AE20 VCC Power/Other AE21 D[58]# Source Synch Output AE22 D[55]# Source Synch Input/
AE20 VCC Power/Other AE21 D[58]# Source Synch Output AE22 D[55]# Source Synch Input/
AE21 D[58]# Source Synch Input/Output AE22 D[55]# Source Synch Input/
AE21 D[58]# Source Synch Output AE22 D[55]# Source Synch Input/
AE23 VSS Power/Other
AE24 DSTBP[3]# Source Synch Input/ Output
AE25 D[60]# Source Synch Input/ Output
AE26 VSS Power/Other
AF1 RSVD Reserved
AF2 VID[5] CMOS Output
AF3 VSS Power/Other
AF4 VID[3] CMOS Output
AF5 VID[1] CMOS Output
AF6 VSS Power/Other
AF7 VCCSENSE Power/Other
AF8 VSS Power/Other
AF9 VCC Power/Other

Table 15. Pin Listing by Pin Number (Sheet 6 of 16)

	`		
Pin Number	Pin Name	Signal Buffer Type	Direction
AF10	VCC	Power/Other	
AF11	VSS	Power/Other	
AF12	VCC	Power/Other	
AF13	VSS	Power/Other	
AF14	VCC	Power/Other	
AF15	VCC	Power/Other	
AF16	VSS	Power/Other	
AF17	VCC	Power/Other	
AF18	VCC	Power/Other	
AF19	VSS	Power/Other	
AF20	VCC	Power/Other	
AF21	VSS	Power/Other	
AF22	D[62]#	Source Synch	Input/ Output
AF23	D[56]#	Source Synch	Input/ Output
AF24	VSS	Power/Other	
AF25	D[61]#	Source Synch	Input/ Output
AF26	D[63]#	Source Synch	Input/ Output
B1	RESET#	Common Clock	Input
B2	RSVD	Reserved	
B3	INIT#	CMOS	Input
B4	LINT1	CMOS	Input
B5	DPSLP#	CMOS	Input
B6	VSS	Power/Other	
B7	VCC	Power/Other	
B8	VSS	Power/Other	
В9	VCC	Power/Other	
B10	VCC	Power/Other	
B11	VSS	Power/Other	
B12	VCC	Power/Other	
B13	VSS	Power/Other	
B14	VCC	Power/Other	
B15	VCC	Power/Other	
B16	VSS	Power/Other	

Table 15. Pin Listing by Pin Number (Sheet 7 of 16)

Pin Signal Pin Name **Direction Buffer Type** Number B17 VCC Power/Other VCC B18 Power/Other B19 VSS Power/Other B20 VCC Power/Other VSS B21 Power/Other B22 CMOS BSEL[0] Output B23 BSEL[1] **CMOS** Output B24 VSS Power/Other B25 **RSVD** Reserved B26 **VCCA** Power/Other RSVD C1 Reserved VSS C2 Power/Other C3 **RSVD** Reserved CMOS C4 IGNNE# Input C5 VSS Power/Other C6 LINTO **CMOS** Input THERMTRI C7 Open Drain Output P# VSS C8 Power/Other C9 VCC Power/Other C10 VCC Power/Other C11 VSS Power/Other C12 VCC Power/Other C13 VCC Power/Other C14 VSS Power/Other C15 VCC Power/Other C16 VSS Power/Other C17 VCC Power/Other C18 VCC Power/Other C19 VSS Power/Other C20 DBR# **CMOS** Output BSEL[2] C21 **CMOS** Output C22 VSS Power/Other C23 **RSVD** Reserved C24 **RSVD** Reserved C25 VSS Power/Other C26 TEST1 Test

Table 15. Pin Listing by Pin Number (Sheet 8 of 16)

Pin		Signal	
Number	Pin Name	Buffer Type	Direction
D1	VSS	Power/Other	
D2	RSVD	Reserved	
D3	RSVD	Reserved	
D4	VSS	Power/Other	
D5	STPCLK#	CMOS	Input
D6	PWRGOOD	CMOS	Input
D7	SLP#	CMOS	Input
D8	VSS	Power/Other	
D9	VCC	Power/Other	
D10	VCC	Power/Other	
D11	VSS	Power/Other	
D12	VCC	Power/Other	
D13	VSS	Power/Other	
D14	VCC	Power/Other	
D15	VCC	Power/Other	
D16	VSS	Power/Other	
D17	VCC	Power/Other	
D18	VCC	Power/Other	
D19	VSS	Power/Other	
D20	IERR#	Open Drain	Output
D21	PROCHOT#	Open Drain	Input/ Output
D22	RSVD	Reserved	
D23	VSS	Power/Other	
D24	DPWR#	Common Clock	Input
D25	TEST2	Test	
D26	VSS	Power/Other	
E1	DBSY#	Common Clock	Input/ Output
E2	BNR#	Common Clock	Input/ Output
E3	VSS	Power/Other	
E4	HITM#	Common Clock	Input/ Output
E5	DPRSTP#	CMOS	Not used
E6	VSS	Power/Other	
E7	VCC	Power/Other	

Table 15. Pin Listing by Pin Number (Sheet 9 of 16)

Pin Number	Pin Name	Signal Buffer Type	Direction
E8	VSS	Power/Other	
E9	VCC	Power/Other	
E10	VCC	Power/Other	
E11	VSS	Power/Other	
E12	VCC	Power/Other	
E13	VCC	Power/Other	
E14	VSS	Power/Other	
E15	VCC	Power/Other	
E16	VSS	Power/Other	
E17	VCC	Power/Other	
E18	VCC	Power/Other	
E19	VSS	Power/Other	
E20	VCC	Power/Other	
E21	VSS	Power/Other	
E22	D[0]#	Source Synch	Input/ Output
E23	D[7]#	Source Synch	Input/ Output
E24	VSS	Power/Other	
E25	D[6]#	Source Synch	Input/ Output
E26	D[2]#	Source Synch	Input/ Output
F1	BR0#	Common Clock	Input/ Output
F2	VSS	Power/Other	
F3	RS[0]#	Common Clock	Input
F4	RS[1]#	Common Clock	Input
F5	VSS	Power/Other	
F6	RSVD	Reserved	
F7	VCC	Power/Other	
F8	VSS	Power/Other	
F9	VCC	Power/Other	
F10	VCC	Power/Other	
F11	VSS	Power/Other	
F12	VCC	Power/Other	
F13	VSS	Power/Other	

Table 15. Pin Listing by Pin Number (Sheet 10 of 16)

(0.1000 10 01 10)				
Pin Name	Signal Buffer Type	Direction		
VCC	Power/Other			
VCC	Power/Other			
VSS	Power/Other			
VCC	Power/Other			
VCC	Power/Other			
VSS	Power/Other			
VCC	Power/Other			
DRDY#	Common Clock	Input/ Output		
VSS	Power/Other			
D[4]#	Source Synch	Input/ Output		
D[1]#	Source Synch	Input/ Output		
VSS	Power/Other			
D[13]#	Source Synch	Input/ Output		
VSS	Power/Other			
TRDY#	Common Clock	Input		
RS[2]#	Common Clock	Input		
VSS	Power/Other			
BPRI#	Common Clock	Input		
HIT#	Common	Input/		
14000		Output		
VCCP	Power/Other	,		
DSTBP[0]#	Source Synch	Input/ Output		
VSS	Power/Other			
D[9]#	Source Synch	Input/ Output		
D[5]#	Source Synch	Input/ Output		
VSS	Power/Other			
ADS#	Common Clock	Input/ Output		
REQ[1]#	Source Synch	Input/ Output		
VSS	Power/Other			
	VCC VCC VSS VCC VSS VCC VSS VCC DRDY# VSS D[4]# D[1]# VSS D[13]# VSS TRDY# RS[2]# VSS BPRI# HIT# VCCP DSTBP[0]# VSS D[9]# VSS ADS# REQ[1]#	VCC Power/Other VCC Power/Other VCC Power/Other DRDY# Common Clock VSS Power/Other D[4]# Source Synch VSS Power/Other D[1]# Source Synch VSS Power/Other TRDY# Common Clock RS[2]# Common Clock VSS Power/Other BPRI# Common Clock VSS Power/Other BPRI# Common Clock VCCP Power/Other DSTBP[0]# Source Synch VSS Power/Other D[5]# Source Synch VSS Power/Other D[5]# Source Synch VSS Power/Other ADS# Common Clock REQ[1]# Source Synch		

Table 15. Pin Listing by Pin Number (Sheet 11 of 16)

(Sheet 11 of 10)				
Pin Number	Pin Name	Signal Buffer Type	Direction	
H4	LOCK#	Common Clock	Input/ Output	
H5	DEFER#	Common Clock	Input	
H6	VSS	Power/Other		
H21	VSS	Power/Other		
H22	D[3]#	Source Synch	Input/ Output	
H23	DSTBN[0] #	Source Synch	Input/ Output	
H24	VSS	Power/Other		
H25	D[15]#	Source Synch	Input/ Output	
H26	D[12]#	Source Synch	Input/ Output	
J1	A[9]#	Source Synch	Input/ Output	
J2	VSS	Power/Other		
J3	REQ[3]#	Source Synch	Input/ Output	
J4	A[3]#	Source Synch	Input/ Output	
J5	VSS	Power/Other		
J6	VCCP	Power/Other		
J21	VCCP	Power/Other		
J22	VSS	Power/Other		
J23	D[11]#	Source Synch	Input/ Output	
J24	D[10]#	Source Synch	Input/ Output	
J25	VSS	Power/Other		
J26	DINV[0]#	Source Synch	Input/ Output	
K1	VSS	Power/Other		
K2	REQ[2]#	Source Synch	Input/ Output	
К3	REQ[0]#	Source Synch	Input/ Output	
K4	VSS	Power/Other		
K5	A[6]#	Source Synch	Input/ Output	

Table 15. Pin Listing by Pin Number (Sheet 12 of 16)

	Т	1	
Pin Number	Pin Name	Signal Buffer Type	Direction
K6	VCCP	Power/Other	
K21	VCCP	Power/Other	
K22	D[14]#	Source Synch	Input/ Output
K23	VSS	Power/Other	
K24	D[8]#	Source Synch	Input/ Output
K25	D[17]#	Source Synch	Input/ Output
K26	VSS	Power/Other	
L1	A[13]#	Source Synch	Input/ Output
L2	ADSTB[0]#	Source Synch	Input/ Output
L3	VSS	Power/Other	
L4	A[4]#	Source Synch	Input/ Output
L5	REQ[4]#	Source Synch	Input/ Output
L6	VSS	Power/Other	
L21	VSS	Power/Other	
L22	D[21]#	Source Synch	Input/ Output
L23	D[22]#	Source Synch	Input/ Output
L24	VSS	Power/Other	
L25	D[20]#	Source Synch	Input/ Output
L26	D[29]#	Source Synch	Input/ Output
M1	A[7]#	Source Synch	Input/ Output
M2	VSS	Power/Other	
M3	A[5]#	Source Synch	Input/ Output
M4	RSVD	Reserved	
M5	VSS	Power/Other	
M6	VCCP	Power/Other	
M21	VCCP	Power/Other	
M22	VSS	Power/Other	

Table 15. Pin Listing by Pin Number (Sheet 13 of 16)

-			
Pin Number	Pin Name	Signal Buffer Type	Direction
M23	D[23]#	Source Synch	Input/ Output
M24	DSTBN[1] #	Source Synch	Input/ Output
M25	VSS	Power/Other	
M26	DINV[1]#	Source Synch	Input/ Output
N1	VSS	Power/Other	
N2	A[8]#	Source Synch	Input/ Output
N3	A[10]#	Source Synch	Input/ Output
N4	VSS	Power/Other	
N5	RSVD	Reserved	
N6	VCCP	Power/Other	
N21	VCCP	Power/Other	
N22	D[16]#	Source Synch	Input/ Output
N23	VSS	Power/Other	
N24	D[31]#	Source Synch	Input/ Output
N25	DSTBP[1]#	Source Synch	Input/ Output
N26	VSS	Power/Other	
P1	A[15]#	Source Synch	Input/ Output
P2	A[12]#	Source Synch	Input/ Output
P3	VSS	Power/Other	
P4	A[14]#	Source Synch	Input/ Output
P5	A[11]#	Source Synch	Input/ Output
P6	VSS	Power/Other	
P21	VSS	Power/Other	
P22	D[25]#	Source Synch	Input/ Output
P23	D[26]#	Source Synch	Input/ Output
P24	VSS	Power/Other	

Table 15. Pin Listing by Pin Number (Sheet 14 of 16)

	ı	1	1
Pin Number	Pin Name	Signal Buffer Type	Direction
P25	D[24]#	Source Synch	Input/ Output
P26	D[18]#	Source Synch	Input/ Output
R1	A[16]#	Source Synch	Input/ Output
R2	VSS	Power/Other	
R3	A[19]#	Source Synch	Input/ Output
R4	A[24]#	Source Synch	Input/ Output
R5	VSS	Power/Other	
R6	VCCP	Power/Other	
R21	VCCP	Power/Other	
R22	VSS	Power/Other	
R23	D[19]#	Source Synch	Input/ Output
R24	D[28]#	Source Synch	Input/ Output
R25	VSS	Power/Other	
R26	COMP[0]	Power/Other	Input/ Output
T1	VSS	Power/Other	
T2	RSVD	Reserved	
Т3	A[26]#	Source Synch	Input/ Output
T4	VSS	Power/Other	
T5	A[25]#	Source Synch	Input/ Output
T6	VCCP	Power/Other	
T21	VCCP	Power/Other	
T22	RSVD	Reserved	
T23	VSS	Power/Other	
T24	D[27]#	Source Synch	Input/ Output
T25	D[30]#	Source Synch	Input/ Output
T26	VSS	Power/Other	
U1	COMP[2]	Power/Other	Input/ Output

Table 15. Pin Listing by Pin Number (Sheet 15 of 16)

Pin Number Pin Name Signal Buffer Type Direction U2 A[23]# Source Synch Output Input/Output U3 VSS Power/Other Input/Output U4 A[21]# Source Synch Input/Output Input/Output U5 A[18]# Source Synch Input/Output Input/Output U6 VSS Power/Other Input/Output U21 VSS Power/Other Input/Output U22 D[39]# Source Synch Input/Output Input/Output U23 D[37]# Source Synch Input/Output Input/Output U24 VSS Power/Other Input/Output U25 D[38]# Source Synch Input/Output Input/Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other Input/Output V3 RSVD Reserved Input/Output V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V21 VCCP	(Sheet 15 of 16)				
U2 A[23]# Source Synch Output U3 VSS Power/Other U4 A[21]# Source Synch Input/Output U5 A[18]# Source Synch Input/Output U6 VSS Power/Other U21 VSS Power/Other U22 D[39]# Source Synch Input/Output U23 D[37]# Source Synch Input/Output U24 VSS Power/Other Input/Output U25 D[38]# Source Synch Input/Output V1 COMP[1] Power/Other Input/Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V20 VSS Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output		Pin Name		Direction	
U4 A[21]# Source Synch Input/Output U5 A[18]# Source Synch Input/Output U6 VSS Power/Other U21 VSS Power/Other U22 D[39]# Source Synch Input/Output U23 D[37]# Source Synch Input/Output U24 VSS Power/Other Input/Output U25 D[38]# Source Synch Input/Output U26 COMP[1] Power/Other Input/Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[35]# Source Synch	U2	A[23]#	Source Synch		
U5 A[21]# Source Synch Output U6 VSS Power/Other U21 VSS Power/Other U22 D[39]# Source Synch Output U23 D[37]# Source Synch Output U24 VSS Power/Other U25 D[38]# Source Synch Input/Output U26 COMP[1] Power/Other Input/Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other Input/Output V2 VSS Power/Other Input/Output V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Ou	U3	VSS	Power/Other		
U5 A[18]# Source Synch Output U6 VSS Power/Other U21 VSS Power/Other U22 D[39]# Source Synch Output U23 D[37]# Source Synch Input/Output U24 VSS Power/Other U25 D[38]# Source Synch Input/Output U26 COMP[1] Power/Other Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other <t< td=""><td>U4</td><td>A[21]#</td><td>Source Synch</td><td></td></t<>	U4	A[21]#	Source Synch		
U21 VSS Power/Other U22 D[39]# Source Synch Output U23 D[37]# Source Synch Input/Output U24 VSS Power/Other U25 D[38]# Source Synch Output U26 COMP[1] Power/Other Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output	U5	A[18]#	Source Synch		
U22 D[39]# Source Synch Output U23 D[37]# Source Synch Output U24 VSS Power/Other U25 D[38]# Source Synch Output U26 COMP[1] Power/Other Output V1 COMP[3] Power/Other Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output	U6	VSS	Power/Other		
U23D[37]#Source Synch OutputU24VSSPower/OtherU25D[38]#Source Synch OutputU26COMP[1]Power/Other OutputV1COMP[3]Power/Other OutputV2VSSPower/Other OutputV3RSVDReservedV4ADSTB[1]#Source Synch OutputV5VSSPower/OtherV6VCCPPower/OtherV21VCCPPower/OtherV22VSSPower/OtherV23DINV[2]#Source Synch OutputV24D[34]#Source Synch OutputV25VSSPower/OtherV26D[35]#Source Synch OutputW1VSSPower/OtherW2A[30]#Source Synch Input/OutputW3A[27]#Source Synch Input/Output	U21	VSS	Power/Other		
U24 VSS Power/Other U25 D[38]# Source Synch Input/Output U26 COMP[1] Power/Other Input/Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output V27 VSS Power/Other V28 Power/Other V29 Source Synch Input/Output V20 D[35]# Source Synch Input/Output V30 D[35]# Source Synch Input/Output V31 VSS Power/Other V32 A[30]# Source Synch Input/Output V33 A[27]# Source Synch Input/Output V44 D[34]# Source Synch Input/Output V55 D[35]# Source Synch Input/Output V66 D[35]# Source Synch Input/Output V77 A[30]# Source Synch Input/Output V78 A[30]# Source Synch Input/Output V79 A[30]# Source Synch Input/Output V79 A[30]# Source Synch Input/Output V79 A[27]# Source Synch Input/Output V79 A[27]# Source Synch Input/Output V79 A[27]# Source Synch Input/Output	U22	D[39]#	Source Synch		
U25 D[38]# Source Synch Input/Output U26 COMP[1] Power/Other Input/Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output U35 Input/Output W4 Source Synch Input/Output W5 Power/Other W6 D[35]# Source Synch Input/Output W6 Dissipation Source Synch Input/Output W6 Dissipation Source Synch Input/Output W6 Dissipation Source Synch Input/Output W8 A[27]# Source Synch Input/Output W9 A[27]# Source Synch Input/Output W9 A[27]# Source Synch Input/Output W9 Input/Output	U23	D[37]#	Source Synch		
U26 COMP[1] Power/Other Input/Output V1 COMP[3] Power/Other Input/Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output W1 Input/Output W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output W3 Input/Output W3 Input/Output W4 Source Synch Input/Output W4 Source Synch Input/Output W5 Source Synch Input/Output W6 Input/Output W8 Source Synch Input/Output W9 A[27]# Source Synch Input/Output	U24	VSS	Power/Other		
V1 COMP[3] Power/Other Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output V1 VSS Power/Other V26 D[35]# Source Synch Input/Output V1 VSS Power/Other V2 A[30]# Source Synch Input/Output V3 A[27]# Source Synch Input/Output	U25	D[38]#	Source Synch		
V1 COMP[3] Power/Other Output V2 VSS Power/Other V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output W3 Input/Output W1 Input/Output W2 Input/Output W3 Input/Output W3 Input/Output W4 Source Synch Input/Output W4 Input/Output W5 Input/Output W6 Input/Output W8 Input/Output W9 Input/Output W9 Input/Output W9 Input/Output	U26	COMP[1]	Power/Other		
V3 RSVD Reserved V4 ADSTB[1]# Source Synch Input/Output V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output U1 VSS Power/Other W2 Input/Output W3 A[27]# Source Synch Input/Output W3 Input/Output	V1	COMP[3]	Power/Other		
V4ADSTB[1]#Source SynchInput/OutputV5VSSPower/OtherV6VCCPPower/OtherV21VCCPPower/OtherV22VSSPower/OtherV23DINV[2]#Source SynchInput/OutputV24D[34]#Source SynchInput/OutputV25VSSPower/OtherV26D[35]#Source SynchInput/OutputW1VSSPower/OtherW2A[30]#Source SynchInput/OutputW3A[27]#Source SynchInput/Output	V2	VSS	Power/Other		
V5 VSS Power/Other V6 VCCP Power/Other V21 VCCP Power/Other V22 VSS Power/Other V23 DINV[2]# Source Synch Input/Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output U1 VSS U2 VSS U2 VSS U3 VSS U3 VSS U3 VSS U3 VSS U4 VSS	V3	RSVD	Reserved		
V6VCCPPower/OtherV21VCCPPower/OtherV22VSSPower/OtherV23DINV[2]#Source Synch OutputV24D[34]#Source Synch OutputV25VSSPower/OtherV26D[35]#Source Synch OutputW1VSSPower/OtherW2A[30]#Source Synch OutputW3A[27]#Source Synch Input/Output	V4	ADSTB[1]#	Source Synch		
V21VCCPPower/OtherV22VSSPower/OtherV23DINV[2]#Source Synch OutputV24D[34]#Source Synch Input/OutputV25VSSPower/OtherV26D[35]#Source Synch Input/OutputW1VSSPower/OtherW2A[30]#Source Synch Input/OutputW3A[27]#Source Synch Input/Output	V 5	VSS	Power/Other		
V22VSSPower/OtherV23DINV[2]#Source SynchInput/OutputV24D[34]#Source SynchInput/OutputV25VSSPower/OtherV26D[35]#Source SynchInput/OutputW1VSSPower/OtherW2A[30]#Source SynchInput/OutputW3A[27]#Source SynchInput/Output	V6	VCCP	Power/Other		
V23DINV[2]#Source SynchInput/OutputV24D[34]#Source SynchInput/OutputV25VSSPower/OtherV26D[35]#Source SynchInput/OutputW1VSSPower/OtherW2A[30]#Source SynchInput/OutputW3A[27]#Source SynchInput/Output	V21	VCCP	Power/Other		
V23 DINV[2]# Source Synch Output V24 D[34]# Source Synch Input/Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output	V22	VSS	Power/Other		
V24 D[34]# Source Synch Output V25 VSS Power/Other V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output	V23	DINV[2]#	Source Synch		
V26 D[35]# Source Synch Input/Output W1 VSS Power/Other W2 A[30]# Source Synch Input/Output W3 A[27]# Source Synch Input/Output	V24	D[34]#	Source Synch		
W1 VSS Power/Other W2 A[30]# Source Synch Output W3 A[27]# Source Synch Input/Output W3 D[35]# Source Synch Input/Output	V25	VSS	Power/Other		
W2 A[30]# Source Synch Input/ Output W3 A[27]# Source Synch Input/ Output	V26	D[35]#	Source Synch		
W3 A[27]# Source Synch Output Source Synch Input/ Output	W1	VSS	Power/Other		
W3 A[27]# Source Synch Output	W2	A[30]#	Source Synch		
W4 VSS Power/Other	W3	A[27]#	Source Synch		
	W4	VSS	Power/Other		

Table 15. Pin Listing by Pin Number (Sheet 16 of 16)

	•		
Pin Number	Pin Name	Signal Buffer Type	Direction
W5	A[28]#	Source Synch	Input/ Output
W6	A[20]#	Source Synch	Input/ Output
W21	VCCP	Power/Other	
W22	D[41]#	Source Synch	Input/ Output
W23	VSS	Power/Other	
W24	DSTBN[2] #	Source Synch	Input/ Output
W25	D[36]#	Source Synch	Input/ Output
W26	VSS	Power/Other	
Y1	A[31]#	Source Synch	Input/ Output
Y2	A[17]#	Source Synch	Input/ Output
Y3	VSS	Power/Other	
Y4	A[29]#	Source Synch	Input/ Output
Y5	A[22]#	Source Synch	Input/ Output
Y6	VSS	Power/Other	
Y21	VSS	Power/Other	
Y22	D[45]#	Source Synch	Input/ Output
Y23	D[42]#	Source Synch	Input/ Output
Y24	VSS	Power/Other	
Y25	DSTBP[2]#	Source Synch	Input/ Output
Y26	D[44]#	Source Synch	Input/ Output

4.3 Alphabetical Signals Reference

Table 16. Signal Description (Sheet 1 of 8)

Name	Type		Description			
A[31:3]#	Input/ Output	A[31:3]# (Address) define a 2 ³² -byte physical memory address space. In sub-phase 1 of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the processor FSB. A[31:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is deasserted.				
A20M#	Input	If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit 20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wraparound at the 1-MB boundary. Assertion of A20M# is only supported in real mode. A20M# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.				
ADS#	Input/ Output	ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.				
		Address strobes are used rising and falling edges. Stellow:				
ADSTB[1:0]#	Input/ Output	Signals	Associated Strobe			
		REQ[4:0]#, A[16:3]#	ADSTB[0]#			
		A[31:17]#	ADSTB[1]#			
BCLK[1:0]	Input	The differential pair BCLK (Bus Clock) determines the FSB frequency. All FSB agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of BCLKO crossing V _{CROSS} .				
BNR#	Input/ Output	BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.				
BPM[2:1]# BPM[3,0]#	Output Input/ Output					

Table 16. Signal Description (Sheet 2 of 8)

Name	Туре		De	escription		
BPRI#	Input	BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It must connect the appropriate pins of both FSB agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#.				
BRO#	Input/ Output	done between		Symmetric Age	e bus. The arbitration is ent) and Mobile Intel® riority Agent).	
BSEL[2:0]	Output	BSEL[2:0] (Bus Select) are used to select the processor input clock frequency. Table 4 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. The Intel® Pentium® dual-core mobile processor operates at 533-MHz system bus frequency (133-MHz BCLK[1:0] frequency).				
COMP[3:0]	Analog	COMP[3:0] must be terminated on the system board using precision (1% tolerance) resistors. For termination requirements please contact your Intel representative.				
		D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the FSB agents, and must connect the appropriate pins on both agents. The data driver asserts DRDY# to indicate a valid data transfer. D[63:0]# are quad-pumped signals and will thus be driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DINV#. Quad-Pumped Signal Groups				
D[63:0]#	Input/	D-4-	DOTDN///]	
<i>D</i> [03.0]#	Output	Data Group	DSTBN#/ DSTBP#	DINV#		
		D[15:0]#	0	0		
		D[31:16]#	1	1		
		D[47:32]#	2	2		
		D[63:48]# 3 3				
		Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high.				
DBR#	Output	DBR# (Data Bus Reset) is used only in processor systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no connect in the system. DBR# is not a processor signal.				

Table 16. Signal Description (Sheet 3 of 8)

Name	Туре		Description		
DBSY#	Input/ Output	DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the FSB to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on both FSB agents.			
DEFER#	Input	be guaranteed in-ordethe responsibility of t	y an agent to indicate that er completion. Assertion o he addressed memory or lect the appropriate pins o	f DEFER# is normally Input/Output agent.	
		DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the data on the data bus is inverted. The bus agent will invert the data bus signals if more than half the bits, within the covered group, would change level in the next cycle.			
		DINV[3:0]# Assign	ment to Data Bus		
DINV[3:0]#	Input/ Output	Bus Signal	Data Bus Signals		
	Output	DINV[3]#	D[63:48]#	1	
		DINV[2]#	D[47:32]#	=	
		DINV[1]#	D[31:16]#	1	
		DINV[0]#	D[15:0]#		
				_	
DPRSTP#	Not used	DPRSTP# is not used	l by Pentium dual-core mo	bbile processor.	
DPSLP#	Input	DPSLP# when asserted on the platform causes the processor to transition from the Sleep State to the Deep Sleep state. In order to return to the Sleep State, DPSLP# must be deasserted. DPSLP# is driven by the ICH7-M chipset.			
DPWR#	Input		gnal from the Intel 945 Ex processor data bus input l		
DRDY#	Input/ Output	DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of both FSB agents.			
		Data strobe used to la	atch in D[63:0]#.		
		Signals	Associated Strobe		
	Innut/	D[15:0]#, DINV[0]#	# DSTBN[0]#		
DSTBN[3:0]#	Input/ Output	D[31:16]#, DINV[1]			
		D[47:32]#, DINV[2]	# DSTBN[2]#		
		D[63:48]#, DINV[3]	# DSTBN[3]#		
			•		

Table 16. Signal Description (Sheet 4 of 8)

Name	Туре		Description		
		Data strobe used to latch in D[63:0]#.			
		Signals	Associated Strobe		
	Input/	D[15:0]#, DINV[0]#	DSTBP[0]#		
DSTBP[3:0]#	Output	D[31:16]#, DINV[1]#	DSTBP[1]#		
		D[47:32]#, DINV[2]#	DSTBP[2]#		
		D[63:48]#, DINV[3]#	DSTBP[3]#		
)		
FERR#/PBE#	Output	FERR# (Floating-point Enmultiplexed signal and it STPCLK# is not asserted when the processor dete is similar to the ERROR# included for compatibility floating-point error report assertion of FERR#/PBE# break event waiting for sindicates that the process When FERR#/PBE# is as remain asserted until ST when STPCLK# is active For additional information including identification of information, refer to Volu Architectures Software Enforcessor Identification of For termination requirem representative.	s meaning is qualified wing FERR#/PBE# indicates cts an unmasked floating is signal on the Intel 387 with systems using MS-ting. When STPCLK# is indicates that the processor in the indicates that the processor is sor should be returned to service. The assertion of sor should be returned to service, indicating a bread PCLK# is deasserted. As will also cause an FERR# on the pending break of support of the feature as ume 3 of the Intel® 64 and Developer's Manuals and and CPUID Instruction Applications.	th STPCLK#. When a floating point point error. FERR# coprocessor, and is -DOS*-type asserted, an essor has a pending FERR#/PBE# o the Normal state. k event, it will sertion of PREQ# break event. event functionality, and enable/disable and IA-32 the Intel® oplication Note.	
GTLREF	Input	GTLREF determines the s GTLREF should be set at receivers to determine if termination requirement for details on GTLREF im	2/3 V _{CCP} GTLREF is use a signal is a logical 0 or s please contact your Int	d by the AGTL+ logical 1.For	
HIT#	Input/ Output	HIT# (Snoop Hit) and HI			
		snoop operation results. HITM# together to indica			
HITM#	Input/ Output	HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.			
IERR#	Output	IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the FSB. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#, BINIT#, or INIT#. For termination requirements please contact your Intel representative.			

Table 16. Signal Description (Sheet 5 of 8)

Name	Туре	Description
IGNNE#	Input	IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CRO) is set. IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/
		Output Write bus transaction.
INIT#	Input	INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both FSB agents.
		If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST).
		For termination requirements please contact your Intel representative.
LINT[1:0]	0] Input	LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINTO signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium processor. Both signals are asynchronous.
		Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default configuration.
LOCK#	Input/ Output	LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of both FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction. When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the FSB throughout the bus locked operation and ensure the atomicity of lock.
PRDY#	Output	Probe Ready signal used by debug tools to determine processor debug readiness.
PREQ#	Input	Probe Request signal used by debug tools to request debug operation of the processor.

Table 16. Signal Description (Sheet 6 of 8)

Name	Туре	Description
PROCHOT#	Input/ Output	As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC, if enabled. The TCC will remain active until the system deasserts PROCHOT#. By default PROCHOT# is configured as an output only. Bidirectional PROCHOT# must be enabled via the BIOS. This signal may require voltage translation on the motherboard. For termination requirements please contact your Intel representative.
PSI#	Output	Processor Power Status Indicator signal. This signal is asserted when the processor is in a normal state (HFM and LFM) and lower state (Deep Sleep). For termination requirements please contact your Intel representative.
PWRGOOD	Input	PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. 'Clean' implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation. For termination requirements please contact your Intel representative.
REQ[4:0]#	Input/ Output	REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#.
RESET#	Input	Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after Vcc and BCLK have reached their proper specifications. On observing active RESET#, both FSB agents will deassert their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is deasserted. For termination requirements please contact your Intel representative. There is a 55 Ω (nominal) on die pull-up resistor on this signal.
RS[2:0]#	Input	RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of both FSB agents.
RSVD	Reserved /No Connect	These pins are RESERVED and must be left unconnected on the board. However, it is recommended that routing channels to these pins on the board be kept open for possible future use. For termination requirements please contact your Intel representative.

Datasheet Datasheet

Table 16. Signal Description (Sheet 7 of 8)

Name	Туре	Description
SLP#	Input	SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state.
SMI#	Input	SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enter System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler. If SMI# is asserted during the deassertion of RESET# the processor will tristate its outputs.
STPCLK#	Input	STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
тск	Input	TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port). For termination requirements please contact your Intel representative.
TDI	Input	TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support. For termination requirements please contact your Intel representative.
TDO	Output	TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support. For termination requirements please contact your Intel representative.
TEST1	Input	TEST1 must have a stuffing option of separate pull down resistor to V _{SS} . For termination requirements please contact your Intel representative.
TEST2	Input	TEST2 must have a 51- Ω ±5% pull-down resistor to V _{SS} . For termination requirements please contact your Intel representative.
THERMDA	Other	Thermal Diode Anode.
THERMDC	Other	Thermal Diode Cathode.

Table 16. Signal Description (Sheet 8 of 8)

Name	Туре	Description
THERMTRIP#	Output	The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will stop all execution when the junction temperature exceeds approximately 125°C. This is signalled to the system by the THERMTRIP# (Thermal Trip) pin.
		For termination requirements please contact your Intel representative.
TMS	Input	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools. For termination requirements please contact your Intel representative.
TRDY#	Input	TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both FSB agents. For termination requirements please contact your Intel representative.
TRST#	Input	TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. For termination requirements please contact your Intel representative.
V _{CC}	Input	Processor core power supply.
V _{CCA}	Input	V_{CCA} provides isolated power for the internal processor core PLL's. For termination requirements please contact your Intel representative.
V _{CCP}	Input	Processor I/O Power Supply.
V _{CC_SENSE}	Output	$V_{\text{CC_SENSE}}$ together with $V_{\text{SS_SENSE}}$ are voltage feedback signals to IMVP6 that control the 2.1-m Ω loadline at the processor die. It should be used to sense voltage near the silicon with little noise. For termination requirements please contact your Intel representative.
VID[6:0]	Output	VID[6:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (V_{CC}). Unlike some previous generations of processors, these are CMOS signals that are driven by the processor. The voltage supply for these pins must be valid before the VR can supply Vcc to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 3.3 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself.
V _{SS_SENSE}	Output	V_{SS_SENSE} together with V_{CC_SENSE} are voltage feedback signals to Intel® MVP6 that control the 2.1-m Ω loadline at the processor die. It should be used to sense ground near the silicon with little noise. For termination requirements please contact your Intel representative.

Datasheet Datasheet

5 Thermal Specifications and Design Considerations

The processor requires a thermal solution to maintain temperatures within operating limits

For optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed so that the processor remains within the minimum and maximum junction temperature (Tj) specifications at the corresponding thermal design power (TDP) value listed in Table 17 to Table 21.

Warning:

Any attempt to operate that processor outside these operating limits may result in permanent damage to the processor and potentially other components in the system.

Table 17. Power Specifications

Symbol	Processor Number	Core Frequency & Voltage	Thermal Design Power		Unit	Notes	
TDP	T2060	1.60 GHz & HFM Vcc	31		31		At 100°C Notes 1, 4, 5
TDP	T2080	1.73 GHz & HFM Vcc	31		31		At 100°C Notes 1, 4, 5
TDP	T2130	1.86 GHz & HFM Vcc	31		31		At 100°C Notes 1, 4, 5
Symbol	Parameter		Min	Тур	Max	Unit	Notes
P _{AH} , P _{SGNT}	Auto Halt, Stop Grant Power at HFM V _{CC} at LFM V _{CC}				15.8 4.8	W	At 50°C Note 2
P _{SLP}	Sleep Power at HFM V_{CC} at LFM V_{CC}				15.5 4.7	W	At 50°C Note 2
P _{DSLP}	Deep Sleep Power at HFM V_{CC} at LFM V_{CC}				10.5 3.4	W	At 35°C Note 2
T_J	Junction Temperature		0		100	°C	Notes 3, 4

NOTES:

- 1. The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate.
- 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.
- 3. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor's automatic mode is used to indicate that the maximum T_J has been reached. Refer to Section 5.1 for more details.
- 4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications.

5.1 Monitoring Processor Temperature

The processor incorporates three methods of monitoring die temperature:

- · Digital thermal sensor
- · Intel Thermal Monitor
- Thermal Diode

5.1.1 Thermal Diode

The processor incorporates an on-die PNP transistor whose base emitter junction is used as a thermal "diode", with its collector shorted to Ground. The thermal diode, can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard, or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but is not a reliable indication that the maximum operating temperature of the processor has been reached. When using the thermal diode, a temperature offset value must be read from a processor Model Specific Register (MSR) and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not asserted.

Note:

The reading of the external thermal sensor (on the motherboard) connected to the processor thermal diode signals, will not necessarily reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the location of the thermal diode and the hottest location on the die, and time based variations in the die temperature measurement. Time based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the T_J temperature can change.

Offset between the thermal diode based temperature reading and the Intel Thermal Monitor reading may be characterized using the Intel Thermal Monitor's Automatic mode activation of thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events. This offset is different than the diode Toffset value programmed into the processor Model Specific Register (MSR).

Table 18, Table 19, Table 20, and Table 21 provide the diode interface and specifications. Two different sets of diode parameters are listed in Table 19 and Table 20. The Diode Model parameters (Table 19) apply to traditional thermal sensors that use the Diode Equation to determine the processor temperature. Transistor Model parameters (Table 20) have been added to support thermal sensors that use the transistor equation method. The Transistor Model may provide more accurate temperature measurements when the diode ideality factor is closer to the maximum or minimum limits. Please contact your external thermal sensor supplier for their recommendation. This thermal diode is separate from the Intel Thermal Monitor's thermal sensor and cannot be used to predict the behavior of the Intel Thermal Monitor.

Table 18. Thermal Diode Interface

Signal Name	Pin/Ball Number	Signal Description
THERMDA	A24	Thermal diode anode
THERMDC	A25	Thermal diode cathode

Table 19. Thermal Diode Parameters using Diode Mode

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	5	-	200	μΑ	1
n	Diode Ideality Factor	1.000	1.009	1.050	-	2, 3, 4
R _T	Series Resistance	2.79	4.52	6.24	Ω	2, 3, 5

NOTES:

- Intel does not support or recommend operation of the thermal diode under reverse bias.
 Intel does not support or recommend operation of the thermal diode when the processor power supplies are not within their specified tolerance range.
- 2. Characterized across a temperature range of 50 100°C.
- 3. Not 100% tested. Specified by design characterization.
- 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:

$$I_{FW} = I_S * (e^{qV_D/nkT} - 1)$$

where I_S = saturation current, q = electronic charge, V_D = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).

5. The series resistance, R_T, is provided to allow for a more accurate measurement of the junction temperature. R_T, as defined, includes the lands of the processor but does not include any socket resistance or board trace resistance between the socket and the external remote diode thermal sensor. R_T can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:

$$T_{error} = [R_T * (N-1) * I_{FWmin}] / [nk/q * In N]$$

where T_{error} = sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic charge.

Table 20. Thermal Diode Parameters using Transistor Mode

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	5	-	200	μΑ	1, 2
I _E	Emitter Current	5		200	μΑ	
n _Q	Transistor Ideality	0.997	1.001	1.005	-	3, 4, 5
Beta		0.3		0.760		3, 4
R _T	Series Resistance	2.79	4.52	6.24	Ω	3, 6

NOTES:

- 1. Intel does not support or recommend operation of the thermal diode under reverse bias.
- 2. Same as I_{FW} in Table 18.
- 3. Characterized across a temperature range of 50 100 °C.
- 4. Not 100% tested. Specified by design characterization.
- 5. The ideality factor, nQ, represents the deviation from ideal transistor model behavior as exemplified by the equation for the collector current:

$$I_C = I_S * (e^{qV_{BE}/n_QkT} - 1)$$

Where I_S = saturation current, q = electronic charge, V_{BE} = voltage across the transistor base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute temperature (Kelvin).

 The series resistance, R_T, provided in the Diode Model Table (Table 19) can be used for more accurate readings as needed.

When calculating a temperature based on thermal diode measurements, a number of parameters must be either measured or assumed. Most devices measure the diode ideality and assume a series resistance and ideality trim value, although some are capable of also measuring the series resistance. Calculating the temperature is then accomplished using the equations listed under Table 18. In most temperature sensing devices, an expected value for the diode ideality is designed-in to the temperature calculation equation. If the designer of the temperature sensing device assumes a perfect diode the ideality value (also called n_{trim}) will be 1.000. Given that most diodes are not perfect, the designers usually select an n_{trim} value that more closely matches the behavior of the diodes in the processor. If the processors diode ideality deviates from that of n_{trim}, each calculated temperature will be offset by a fixed amount. This temperature offset can be calculated with the equation:

$$T_{error(nf)} = T_{measured} X (1 - n_{actual}/n_{trim})$$

 $T_{error(nf)} = T_{measured} \ X \ (1 - n_{actual}/n_{trim})$ Where $T_{error(nf)}$ is the offset in degrees C, $T_{measured}$ is in Kelvin, n_{actual} is the measured ideality of the diode, and n_{trim} is the diode ideality assumed by the temperature sensing device.

5.1.2 Thermal Diode Offset

In order to improve the accuracy of diode based temperature measurements, a temperature offset value (specified as Toffset) will be programmed into a processor Model Specific Register (MSR) which will contain thermal diode characterization data. During manufacturing each processors thermal diode will be evaluated for its behavior relative to a theoretical diode. Using the equation above, the temperature error created by the difference between n_{trim} and the actual ideality of the particular processor will be calculated.

If the n_{trim} value used to calculate Toffset differs from the n_{trim} value used in a temperature sensing device, the $T_{error(nf)}$ may not be accurate. If desired, the Toffset can be adjusted by calculating n_{actual} and then recalculating the offset using the actual n_{trim} as defined in the temperature sensor manufacturers' datasheet.

The n_{trim} used to calculate the Diode Correction Toffset are listed in Table 21.

Table 21. Thermal Diode n_{trim} and Diode Correction Toffset

Symbol Parameter			Unit
n _{trim}	Diode ideality used to calculate Toffset	1.01	

5.1.3 Intel® Thermal Monitor

The Intel Thermal Monitor helps control the processor temperature by activating the TCC (Thermal Control Circuit) when the processor silicon reaches its maximum operating temperature. The temperature at which the Intel Thermal Monitor activates the TCC is not user configurable. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be minor and hence not detectable. An underdesigned thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under designed may not be capable of cooling the processor even when the TCC is active continuously.

The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep Technology transition when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses two modes to activate the TCC: Automatic mode and on-demand mode. If both modes are activated, Automatic mode takes precedence.

Note:

The Intel Thermal Monitor automatic mode must be enabled through BIOS for the processor to be operating within specifications.

There are two automatic modes called Intel Thermal Monitor 1 (TM1) and Intel Thermal Monitor 2 (TM2). These modes are selected by writing values to the Model Specific Registers (MSRs) of the processor. After Automatic mode is enabled, the TCC will activate only when the internal die temperature reaches the maximum allowed value for operation.

Likewise, when Intel Thermal Monitor 2 is enabled, and a high temperature situation exists, the processor will perform an Enhanced Intel SpeedStep technology transition to a lower operating point. When the processor temperature drops below the critical level, the processor will make an Enhanced Intel SpeedStep technology transition to the last requested operating point.

TM1 and TM2 can co-exist within the processor. If both TM1 and TM2 bits are enabled in the auto-throttle MSR, TM2 will take precedence over TM1. However, if TM2 is not sufficient to cool the processor below the maximum operating temperature then TM1 will also activate to help cool down the processor. Intel recommends Thermal Monitor 1 and Thermal Monitor 2 be enabled on the Intel Pentium Dual-Core processor.

If a processor load based Enhanced Intel SpeedStep technology transition (through MSR write) is initiated when an Intel Thermal Monitor 2 period is active, there are two possible results:

- 1. If the processor load based Enhanced Intel SpeedStep technology transition target frequency is **higher** than the Intel Thermal Monitor 2 transition based target frequency, the processor load-based transition will be deferred until the Intel Thermal Monitor 2 event has been completed.
- 2. If the processor load-based Enhanced Intel SpeedStep technology transition target frequency is **lower** than the Intel Thermal Monitor 2 transition based target frequency, the processor will transition to the processor load-based Enhanced Intel SpeedStep technology target frequency point.

When Intel Thermal Monitor 1 is enabled while a high temperature situation exists, the clocks will be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and will decrease linearly as processor core frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured and cannot be modified. Also, automatic mode does not require any additional hardware, software drivers, or interrupt handling routines. Processor performance will be decreased by the same amount as the duty cycle when the TCC is active.

The TCC may also be activated via on-demand mode. If bit 4 of the ACPI Intel Thermal Monitor control register is written to a 1, the TCC will be activated immediately, independent of the processor temperature. When using on-demand mode to activate the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-demand mode may be used at the same time automatic mode is enabled, however, if the system tries to enable the TCC via on-demand mode at the same time automatic mode is enabled and a high temperature condition exists, automatic mode will take precedence.

An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active.

Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also includes one ACPI register, one performance counter register, three Model Specific Registers (MSR), and one I/O pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.

Note:

PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep and Deep Sleep low power states (internal clocks stopped), hence the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within maximum specification. If the platform thermal solution is not able to maintain the processor junction temperature within the maximum specification, the system must initiate an orderly shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the low power state and the processor junction temperature drops below the thermal trip point.

If Thermal Monitor automatic mode is disabled, the processor will be operating out of specification. Regardless of enabling the automatic or on-demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 125°C. At this point the THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified in Chapter 3.

5.1.4 Digital Thermal Sensor

The Intel Pentium Dual-Core processor also contains an on die digital thermal sensor that can be read via a MSR (no I/O interface). In a dual core implementation of the processor, each core will have a unique digital thermal sensor whose temperature is accessible via processor MSR. The digital thermal sensor is the preferred method of reading the processor die temperature since it can be located much closer to the hottest portions of the die and can thus more accurately track the die temperature and

potential activation of processor core clock modulation via the Thermal Monitor. The digital thermal sensor is only valid while the processor is in the normal operating state (CO state).

Unlike traditional thermal devices, the Digital Thermal sensor will output a temperature relative to the maximum supported operating temperature of the processor ($T_{J,MAX}$). It is the responsibility of software to convert the relative temperature to an absolute temperature. The temperature returned by the digital thermal sensor will always be at or below $T_{J,MAX}$. Over temperature conditions are detectable via an Out Of Spec status bit. This bit is also part of the Digital Thermal sensor MSR. When this bit is set, the processor is operating out of specification and immediate shutdown of the system should occur. The processor operation and code execution is not guaranteed once the activation of the Out of Spec status bit is set.

The Digital Thermal Sensor (DTS) relative temperature readout corresponds to the Intel Thermal Monitor (TM1/TM2) trigger point. When the DTS indicates maximum processor core temperature has been reached the TM1 or TM2 hardware thermal control mechanism will activate. The DTS and TM1/TM2 temperature may not correspond to the thermal diode reading since the thermal diode is located in a separate portion of the die and thermal gradient between the individual core DTS. Additionally, the thermal gradient from DTS to thermal diode can vary substantially due to changes in processor power, mechanical and thermal attach and software application. The system designer is required to use the DTS to guarantee proper operation of the processor within its temperature operating specifications.

Changes to the temperature can be detected via two programmable thresholds located in the processor MSRs. These thresholds have the capability of generating interrupts via the core's local APIC. Refer to the <code>Intel®</code> Architecture Software Developer's Manual for specific register and programming details

5.1.5 Out of Specification Detection

Overheat detection is performed by monitoring the processor temperature and temperature gradient. This feature is intended for graceful shut down before the THERMTRIP# is activated. If the processor's TM1 or TM2 are triggered and the temperature remains high, an "Out Of Spec" status and sticky bit are latched in the status MSR register and generates thermal interrupt. PROCHOT# Signal Pin.

An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature has reached its maximum operating temperature. If the Intel Thermal Monitor 1 or Intel Thermal Monitor 2 is enabled (note that the Thermal Monitor 1 or Thermal Monitor 2 must be enabled for the processor to be operating within specification), the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.

The processor implement a bi-directional PROCHOT# capability to allow system designs to protect various components from over-temperature situations. The PROCHOT# signal is bi-directional in that it can either signal when the processor has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components.

In a dual-core implementation, only a single PROCHOT# pin exists at a package level. When either core's thermal sensor trips, PROCHOT# signal will be driven by the processor package. If only TM1 is enabled, PROCHOT# will be asserted and only the core that is above TCC temperature trip point will have its core clocks modulated. If TM2 is enabled, then regardless of which core(s) are above TCC temperature trip point, both cores will enter the lowest programmed TM2 performance state.

Note: Intel recommends both Intel Thermal Monitors be enabled.

When PROCHOT# is driven by an external agent, if only TM1 is enabled on both cores, then both processor cores will have their core clocks modulated. If TM2 is enabled on both cores, then both processor core will enter the lowest programmed TM2 performance state.

One application is the thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR can cool down as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its TDP. With a properly designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An underdesigned thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss.