

How to Select a Discrete Inductor for the Intel[®] 82579 1.05 Vdc iSVR

Rev 1.51

September, 2011

82579 iSVR 1.05 Vdc specification

Demonster	Sp	ecificatio	ons	Unite	Comments	
Parameter	Min	Тур	Мах	Units		
Regulator Output Voltage	0.8		1.2	V dc	The 82579 default voltage is set to 1.05 Vdc	
Output Voltage Accuracy	-3		+3	%	Not including line and load regulation errors.	
Input Voltage Range	2.9	3.3	3.7	Vdc	Supply voltage range.	
Load Current	0.01	0.3	0.5	Α	Average value.	
Output Voltage Under/Over Shoot	-10		+10	%	For min-to-max average load current change.	
Transient Settling Time		100		μs	Duration of overshoot or undershoot.	
Conversion Efficiency	80	85	90	%		
Switching Frequency		1.5625		MHz		
Output Filter Inductor	3.9	4.7		μН		
Output Filter Inductor DCR		0.100	0.318	Ω	+/-20%, values higher than the typical DCR value will lower the SVR conversion efficiency.	
Output Filter Capacitor	20			μF		
Output Filter Capacitor ESR		5	50	mΩ		
Input Capacitor	22			μF		

*Note: This specification table can be found in 82579 datasheet

Things Need to Check

- ✓ **Type:** Select the power type inductor.
- ✓ Idc_max: Both inductor rating of Inductance Change and Temperature Change ≥500 mA (this is a good margin). 82579 silicon consumes up to Idc_max=~300 mA. If inductor rating is less than the 500 mA recommendation, all other parameters of inductor must be reviewed carefully.
- ✓ DCR (Rdc): Highly recommend to select DCR=~100 mohm (Higher DCR will effect the overall SVR efficiency. 318 mohm is maximum.).
- ✓ Tolerance, L%: At 82579 Idc_max = ~300 mA loading, the inductance should NOT drop less than 3.9 uH. Most inductors with +/-20% or +/-30% tolerance meet this requirement.
- ✓ Test Frequency: 82579's iSVR will operate at ~1.5 MHz. Most inductors are tested/specified at 1MHz which is acceptable. Do not use the inductor tested too far away from 1.5 MHz switching operation.

EXAMPLE FROM INDUCTOR DATASHEET

Summary Table

	Industance	ndustance Industance	Q	Test	Self-resonant	DC	Rated current*(mA)max.		
((µH) tolerance	tolerance		frequency	y L,Q frequency	resistance (Ω)±20%	Based on	Based on	Part No.
		tolerance	161.	(MHz)	(MHz)min.		inductance change	temperature rise	
	0.47	±30%	30	1	200	0.021	2800	2800	FLF3215T-R47N
	1	±30%	30	1	100	0.03	2000	2350	FLF3215T-1R0N
	22	±20%	20	1	60	0.05	1400	1800	FLF3215T-2R2M
\rightarrow	4.7	(±20%)	20	(1)	40	0.09	1000	1360	FLF3215T-4R7M
	10	±20%	25	Ý	25	0.20	700	900	FLF3215T-100M
	22	±20%	30	1	14	0.45	450	600	FLF3215T-220M
	47	±20%	35	1	9	0.90	280	430	FLF3215T-470M
	100	±20%	40	1	6	2.00	200	280	FLF3215T-101M

Inductor Impedance vs. Frequency

Inductance vs. DC Current Loading

