
As Figure 3 shows, I2O OSMs can be
implemented as part of the UDI stack.
Performance becomes a concern whenever
a new layer is added to a software stack,
but if the performance impact of running
UDI as an extra layer is negligible, then
running I2O under UDI adds an extra
dimension of portability. Along with
allowing non-I2O adapters and drivers
to coexist with I2O, it also ensures that
older operating system module types can
be upgraded across all operating system
varieties, and that new module types can
be developed and introduced by third parties.

Over the long run, UDI may supplant the
native I/O system, as shown in Figure 4.
This eliminates any “layers of performance”
issues as well as any translation overhead.
It gives driver developers the kind of
universal driver support in the UNIX
environment that they now experience
in the Windows NT environment; that is,
the assurance that a single driver will run
across all UNIX platforms and operating
system variants.

This provides maximum portability for
devices written to either the UDI or I2O
specifications.

The availability of both UDI and I2O
creates a win-win situation for hardware
and operating system vendors as well
as for businesses and users.

Operating system vendors can reduce
their development costs and ensure a
wide range of device support for the
operating systems without having to
undertake the expense of developing
the actual drivers.

Platform and hardware device vendors
can create portable, easily maintainable
drivers when they choose I2O and UDI,
while at the same time reducing their
development and validation costs.

IT benefits by having improved interoper-
ability and fewer and shorter qualification
cycles for new devices and hardware. In
addition, the availability of industry-wide
driver and I/O specifications should work
to increase the number, range and variety
of hardware devices.

Through its participation in the I2O SIG
and Project UDI, Intel will work with
other industry leaders to create maximum
synergy between I2O and UDI and help
realize the benefits of these two different
yet complementary approaches to device
portability and high-performance I/O.

Models for
Integrating UDI and I20

Figure 3
Greater portability: Incorporating
the I2O OSM into the UDI stack.

Figure 4
Complete I2O/UDI integration:
UDI to replace the native
I/O system.

UDI and I20™:
Complementary Approaches

To Portable, High-Performance I/O

An Intel White Paper

Input and output devices on computers, such as storage or network adapters,

are accessed and controlled by the operating system through device-specific

software known as device drivers. Recently, these I/O devices have become

more intelligent and sophisticated and, consequently, their drivers have

evolved from simple routines into highly complex, multilayered programs.

Because each operating system has its own unique I/O system and device

interface, hardware vendors have been faced with the challenge of creating

a different device driver for each operating system (including each variant

of the UNIX* operating system) that they want their devices to support.

Copyright © Intel Corporation 1999.
*Third-party brands and names are the property of their respective owners.
Part # 284095-001

For more information please visit www.xxx.com
For more information please visit http://developer.intel.com/go/dev_guides

8818.102UDI.WP.MM.07 2/18/99 11:14 AM Page 2

Creating High-Performance Drivers
for all I/O Devices

Two industry efforts are focused on standardizing platform and operating system I/O interfaces with the aim of

increasing device driver portability, efficiency and performance while reducing the maintenance burden for device

driver developers. Project UDI is developing the Uniform Driver Interface primarily focused on the UNIX* operating

system vendors, and the Intelligent I/O (I2O) Special Interest Group (SIG) is creating a specification for intelligent I/O

solutions. More information about UDI can be found on the Internet at http://www.sco.com/udi. For further information

about I2O, visit the SIG Web site http://www.i2osig.org.

These two projects are complementary efforts that together will benefit the industry, business Information Technology

(IT) departments and users by promoting portable, high-performance drivers for the full range of I/O devices.

Complementary
Approaches

I2O and UDI can easily coexist, giving
hardware developers maximum portability
for their devices and a chance to choose
whichever interface best matches the
characteristics of their device:
• UDI is the driver API specification of

choice for non-intelligent devices (that is,
those that don’t have an IOP), as well as
for intelligent devices. It is also preferred
for devices that stream their data.

• I2O is the driver architecture of choice for
intelligent storage and network devices
with an IOP. It is also the logical choice
for devices that would benefit from an
IOP and for which the target operating
system has an available OSM.

I20: Intelligent,
Distributed I/O

I2O technology, developed by the I2O SIG, is a cornerstone of intelligent, high-
performance distributed I/O for Intel architecture, including Intel’s forthcoming
IA-64 processors. The objective of I2O is to provide a standards-based approach
that complements existing drivers and offers a portable framework for the rapid
development of a new generation of portable, I/O solutions.

I2O is focused on intelligent, high-performance I/O subsystems, in which an
I/O processor (IOP) offloads much of the work of controlling an I/O device.
IOPs improve throughput by handling tasks such as buffering and transferring
data and handling interrupts. I2O supports message passing between multiple
intelligent I/O processors.

Figure 2 shows the difference between a traditional monolithic device driver
and the I2O model with a split-driver architecture that logically divides a driver
into two parts:
• The operating system services module (OSM), which interfaces to the host

operating system I/O infrastructure.
• The hardware device module (HDM), which generally runs on the IOP and

interfaces with the device itself. The two modules communicate through
a message-passing communications layer that provides a set of application
programming interfaces (APIs) for delivering messages and a set of routines
that manage and process them. I2O defines a consistent API interface down-
wards to the IOP and I/O adapters and a communication architecture that
spans multiple operating environments and native I/O systems, including
Windows® NT, NetWare® and UNIX operating systems. For any given operating
system, just one operating system module is needed for each class of I/O
devices (one for SCSI devices, one for network adapters, etc.) and this module
is generally written by the operating system vendor. As a result, if the OSM
already exists for that class of devices, the hardware vendor need only create
a hardware device module, and the vendor’s device can run on any operating
system that includes an OSM for that class of device.

1
The Computing Appliance Market, 1998-2002. Published 1998.

UDI: Portability
Across Operating Systems

Figure 1 shows how UDI is oriented toward a broad array of devices and
has the goal of enabling the driver for any given device to work across
different platforms and operating environments, particularly across various
implementations of the UNIX* operating system. This effort has yielded
an architecture for device drivers that provides standard interfaces to
which they can be written. In effect, OS-to-driver communications have
been abstracted to facilitate portability. While the driver source remains
the same, recompilation for platform- and OS-specific considerations are
sufficient to make that driver portable from one environment to the next.

UDI is developed through the cooperation of major industry forces such
as SCO, Hewlett-Packard, Compaq (Digital), Adaptec, Interphase, IBM,
Sun Microsystems and other participating companies. Intel has recently
joined this effort. The UDI specification is freely available to the industry
and provides standards for device driver developers on a wide range
of system services, as well as interfaces for intra-driver communication.
As shown in Figure 1, it facilitates driver encapsulation for portability
across various hardware and operating system environments.

UDI uses meta-languages to describe the support requirements for
specific device types. For example, meta-languages to support SCSI
and network adapter devices have been defined. Other meta-languages
will be defined to support additional device types.

Figure 1
UDI architecture

Figure 2
I2O split-driver model

8818.102UDI.WP.MM.07 2/18/99 11:14 AM Page 4

