

Intelligent Management
Bus (IMB) Driver (v8.10)
Specification

Jan 10, 2005

Revision 1.0

Intelligent Management Bus (IMB) Driver Specification

Revision History

Date Rev Modifications
 1.0 Initial Version

 ii

Intelligent Management Bus (IMB) Driver Specification

Disclaimers
This Intel IPMI Driver documentation, and the software described in it, are furnished
under license and may only be used or copied in accordance with the terms of the
license. Except as permitted by such license (which is provided with the software), no
part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the express written consent of Intel Corporation.

This Document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel
Corporation assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document or any software that may be provided in association with this
document.

No license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this Document. Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright
or other intellectual property right. Neither this documentation nor the software described
in it are intended for use in medical, life saving, or life sustaining applications.

Copyright © Intel Corporation 1999-2000. *Other brands and names are the property of
their respective owners.

 iii

Intelligent Management Bus (IMB) Driver Specification

Table Of Contents

Revision History ...ii

Disclaimers...iii

Table Of Contents..iv

1 Introduction.. 1-1

1.1 Features.. 1-1

1.2 References.. 1-1

2 Design... 2-2

2.1 Structure ... 2-2

3 IMB Generic Code.. 3-3

3.1 IMB Messaging ... 3-3

3.1.1 Files... 3-3

3.1.2 API... 3-3

3.2 System Shutdown Support .. 3-4

4 OS Specifics... 4-6

4.1.1 Files... 4-8

4.1.2 Driver Entry Points .. 4-8

4.1.3 Driver Structure... 4-9

4.1.4 Initialization ... 4-10

4.1.5 Request processing .. 4-10

5 Interface Specific Layer .. 5-11

5.1 SMIC Interface .. 5-11

5.2 KCS Interface.. 5-12

Appendix 1: API Calls ... 5-13

SendTimedImbpRequest .. 5-13

Parameters.. 5-13

Data Type Definitions.. 5-13

Return Value ... 5-13

SendTimedI2cRequest ... 5-14

Parameters.. 5-14

Data Type Definitions.. 5-14

Return Value ... 5-14

GetAsyncImbpMessage.. 5-15

Return Value ... 5-15

MapPhysicalMemory... 5-16

 iv

Intelligent Management Bus (IMB) Driver Specification

Parameters.. 5-16

Return Value ... 5-16

UnmapPhysicalMemory.. 5-17

Parameters.. 5-17

Return Value ... 5-17

Driver Access Structure Type Definition ... 5-17

Appendix 4: Glossary.. 5-18

 v

Intelligent Management Bus (IMB) Driver Specification

This page intentionally left blank

 vi

Intelligent Management Bus (IMB) Driver Specification

1 Introduction
The IMB driver is a reference implementation of an IPMI driver for the Windows operating
system. It is a driver that supports IPMB messaging to server management firmware on IPMI
conformant servers.

1.1 Features
The IMB driver provides the following features:

 Common source base across platforms
Only a small part of the driver is hardware interface specific. A common source base
allows bug fixes and enhancements to be shared by all platform implementations.

 Common source base across OS’s
Although the OS specific portion of the driver is significant, the IPMB and interface
portions of the driver are common across OS’s allowing bug fixes and enhancements to
be shared by all OS specific drivers.

 Interface type discovery
The driver allows multiple interface modules to be linked in and provides a mechanism
for discovery of the appropriate one at run time. I.e., the same driver object file,
compiled for a specific OS will run on all platforms with one of the supported hardware
interfaces. The driver supports both the IPMI SMIC and the IPMI KCS style interface
specifications.

 Asynchronous messaging
The asynchronous messaging capability required by the ICMB feature is provided by this
driver. This allows for the reception of unsolicited messages.

Note: The IMB driver package contains Windows 2000 and UnixWare specific code which is
not described in this document. This document along with the associated code is providing
the reference implementation of the IMB driver for the Windows NT operating system only.

1.2 References
The following were used as references in creating this document.

 Intelligent Platform Management Interface Specification v 1.5. Revision 1.0

 1-1

Intelligent Management Bus (IMB) Driver Specification

2 Design
This section provides an overview of the driver design. The following three sections provide
detailed information on the specific subsystem implementations.

2.1 Structure
The IMB driver is divided into three main modules each of which exports specific functions to be
used by the others:

 OS Specific
This module encapsulates OS specific functions and provides the external interface for
access to the driver. It exports to the other modules functions for synchronization and
resource management and uses IPMB generic module functions to send and receive
IPMB messages.

 IMB Generic
This module encapsulates all the common IMB related functions which involve
composing and sending IMB messages, receiving and validating IMB messages, and
managing the asynchronous incoming message queue.

 Interface Specific
This module layer implements hardware interface specific functions. It exports functions
to discover the interface, send requests and get responses from the interface, and get
status on the availability of incoming messages. The driver implementation supports
systems that conform to the IPMI 0.9 specification as well as to the IMPI 1.0
specification.

The software stack is pictured in Figure 2-1.

OS

OS Specific Layer

Windows* NT*

IMB Generic
Layer

HW/FW

Probe

R/Wuchar
ImbReqTO
CopyMem

SendBmcReq
SmsMsgAvail

ImbReqTO
...

SendImbReq
...

Interface Specific Layer

Application

BMC / IMB

SMIC

KCS

Figure 2-1: IMB Driver Software Stack

 2-2

Intelligent Management Bus (IMB) Driver Specification

3 IMB Generic Code

3.1 IMB Messaging
The IMB driver sends messages either directly to BMC or through the BMC to other controllers,
and constructs IMB packets as necessary for the BMC to forward. The current implementation
only allows one IMB request, to either the BMC or another controller, to be outstanding at any
time. Although the BMC will only allow one outstanding request, it is theoretically possible to
have more than one outstanding request to another controller (e.g. an FPC or ICMB bridge).

Asynchronous sends are supported, in which the request is considered completed as soon as it is
sent. No response data is returned.

3.1.1 Files
The files containing the IMB Generic code are:

 imb_drv.c – functions to format requests and read responses
 imb_drv.h – defines structures and constants for the generic layer.
 imb_async.c – implements the generic part of the async messaging feature.

3.1.2 API
The generic code exports two IMB messaging functions to the OS specific layer:

SendImbRequest:
IMB_STATUS SendImbRequest (

ImbRequestBuffer * req, // IN – request to send
ImbResponseBuffer* resp, // OUT – where to put response
DWORD * respLength, // IN/OUT – max response and real size
void * context // IN – info used by OS specific routines
);

This function takes the request as provided by the application and translates it into a
request to the interface layer.

If the request is destined for the BMC, the user’s request is directly passed to the
interface layer for delivery (after first being copied into a BmcRequest structure). The
call to the interface layer is synchronous in that it doesn’t return until either it has the
BMC’s response or a request timeout has occurred. The appropriate data and/or status
are returned to the caller.

If the request is to a controller other than the BMC, a WriteRead I2C command is
constructed and passed to the interface layer to be delivered to the BMC. If the
NO_RESPONSE_EXPECTED flag had been set in the request buffer, the routine
immediately returns. Otherwise, it waits for the associated IMB response by periodically
polling for an available SMS message. SMS messages are received from the BMC until
either the expected response is received or a request timeout occurs. Any unexpected
SMS messages received are passed to the Asynchronous messaging subsystem.

 3-3

Intelligent Management Bus (IMB) Driver Specification

3.2 System Shutdown Support
The driver provides OS independent support for system shutdown – reset/power off. This is
implemented by the following IMB generic module function.

ImbShutdownSystem:
void ImbShutdownSystem (

DWORD shutdownCode,
DWORD delayTime,
void * context
);

This function implements the IMB functions to be executed when the system shuts down.
Currently, it sends a command to the firmware watchdog timer to configure it as appropriate to
the shutdown code and delay time provided. It then sends a command to the watchdog to trigger
its action. Asynchronous Messaging

One of the features of this driver is the ability to handle incoming requests or responses that have
no associated outstanding outgoing requests. This feature requires that the driver periodically
poll the interface to see if there are any new incoming messages available and that it deal with
unrelated messages when expecting a response to a previously sent IMB request. The IMB driver
provides a set of API calls related to this feature.

The polling loop is implemented in the OS specific code, but the IMB generic code provides the
functions to check for and process the asynchronous messages as well as the code to read
messages from the queue.

The feature is implemented by storing received SMS messages in a circular queue.

As messages come in, if they are not associated with an outstanding request, they are placed in
the queue, overwriting older messages as necessary. Each message has a “sequence number”,
different from the IMB sequence number, that can be used to determine if an application has seen
a particular message or not.

An application reads a received message by providing the sequence number of the last message
read, requesting the next one available. A timeout can be provided so that an application can wait
until the next message arrives (or a timeout occurs).

Access to the queue, and its state variables, is synchronized through a semaphore (maintained by
the OS specific code) to avoid problems with access by multiple threads.

The following figure demonstrates the organization of the asynchronous messaging feature.

 3-4

Intelligent Management Bus (IMB) Driver Specification

SmsBufferAvail

ImbAsyncMessageProcess

ImbAsyncOsLock/Unlock

ImbAsyncOsReqWait/Wakeup
OS Polling

Loop
OS Cmd
Handler

Application Request

OS
Specific

Code

Generic
IMB

Code

Interface
Specific

Code
SendBmcRequest

ImbAsyncGetMessage

Figure 3-1: Async Messaging Organization

The following functions are exported from the generic IMB code to the OS specific layer:

 ImbAsyncGetMessage
ACCESS_STATUS ImbAsyncGetMessage (

ImbAsyncRequest * req, // his request
ImbAsyncResponse * buf, // data buffer
DWORD * length, // IN - size of buf and OUT - size of msg
ImbAsyncQueueInfo * asyncQ // ptr to queue resources
DWORD channelNumber // BMC channel number that received the message

// 0 - IMBP channel number
// 1 - EMP channel number
// 2 - LAN channel number

);

The above function checks the queue for a message with a higher sequence number than that
indicated in the request structure. The message with the lowest sequence number less than
the supplied value will be returned. If there are none and the timeout indicated in the request
structure is not zero, then the thread will block waiting until either a message comes in or the
timeout has occurred.

 ImbAsyncMessageProcess
void ImbAsyncMessageProcess (

void * context // OS dependent handle
);

The OS polling loop will call the ImbAsyncMessageProcess function periodically to see if an
SMS message is waiting to be read from the BMC. If so, this function will read the message
and place it in the queue. This will result in waking up any threads waiting for such a
message.

 3-5

Intelligent Management Bus (IMB) Driver Specification

4 OS Specifics
This section details the implementation of the OS specific layer including the functions that are
exported to the generic IMB and interface specific layers.

The following functions are exported by the OS specific implementation to the IMB generic and
Interface specific layers:

 ImbOsStartReq
void ImbOsStartReq (

DWORD timeOut, // in uSec units
void * context // OS dependent handle
);

The ImbOsStartReq function is called at the start of request processing. It starts timing the
current request and acquires exclusive access to the interface.

 ImbOsEndReq
void ImbOsEndReq (

void * context // OS dependent handle
);

After the request has succeeded, failed, or timed out, the ImbOsEndReq function is called to
cancel the current request timer (if necessary) and release the interface access lock.

 ImbReqTimedOut
BOOL ImbReqTimedOut (

void *context // OS dependent handle
);

This function is called periodically to determine if the current request has timed out.

 DelayRetryFunc
VOID DelayRetryFunc (

DWORD retryCount, // number of times called while waiting
DWORD delay, // time to delay (in uSecs)
void * context // OS dependent handle
);

DelayRetryFunc is called during request processing when the driver needs to wait for a time
before checking for status or changing to the next state. It uses a heuristic to determine if it
will really delay or immediately return. If retryCount is less than an OS specific value, the
routine will immediately return. Otherwise, the function will delay for the specified time. If
retryCount is equal to FORCE_DELAY, then the function is guaranteed to delay.

 GetNextImbSeq
BYTE GetNextImbSeq (

void * context // OS dependent handle
);

This function returns the current IMB sequence number for frame being built. It is used when
I2C frames are being built for requests for controllers other than the BMC.

 4-6

Intelligent Management Bus (IMB) Driver Specification

 ImbIf
ImbInterface * ImbIf (

void *context // OS dependent handle
);

A pointer to the interface function vector appropriate for this platform is returned.

 ImbAsyncQueue
ImbAsyncQueueInfo * ImbAsyncQueue(

void *context // OS dependent handle
);

A pointer to the async queue structure is returned.

 ImbAsyncOsInit
void ImbAsyncOsInit (

ImbAsyncQueueInfo *info
);

This function initializes OS specific resources associated with Async queue management.

 ImbAsyncOsReqWait
void ImbAsyncOsReqWait (

ImbAsyncQueueInfo * info,
DWORD timeOut
);

A request for an SMS message from the Async queue can sleep waiting for a message to
come in. This function implements that function. It will return either when the timeout
period has elapsed or the thread has been woken up by a call to ImbAsyncOsReqWakeup().

 ImbAsyncOsReqWakeup
void ImbAsyncOsReqWakeup (

ImbAsyncQueueInfo *info
);

This function will wake up all threads waiting for incoming async messages.

 ImbAsyncOsLock
BOOL ImbAsyncOsLock (

ImbAsyncQueueInfo *info
);

Because the Async queue data structures are potentially read and modified by multiple
threads, their access must be protected so that each thread sees a coherent view of the queue
state. This function synchronizes access to the queue and is called before accessing it.

 4-7

Intelligent Management Bus (IMB) Driver Specification

 ImbAsyncOsUnlock
BOOL ImbAsyncOsUnLock (

ImbAsyncQueueInfo *info
);

As with the previous function the ImbAsyncOsUnlock function releases exclusive access to
the Async queue.

Many of these functions take a void *context argument. This pointer represents OS specific
driver data that is passed back to the OS specific layer during up-calls. For Windows NT, this is
the device extension structure. Windows NT

This section describes the Windows NT specific layer implementation

4.1.1 Files
 The Windows NT specific sources are divided into five files.imb_nt.c

 – driver entry points and generic support
 imb_os.h – Windows NT specific data structure and constant definitions
 imb_log.h – error/status return value definitions
 memmap.c – support for physical memory access (SM/DM BIOS)
 memif.h – data structures and constants for above feature

4.1.2 Driver Entry Points
The implementation of the Windows NT specific code is structured with the standard
Windows NT driver entry points:

 DriverEntry – DriverEntry()

This function allocates and initializes driver specific resources such as:

 Dispatch semaphore
 Request semaphore
 Request timer (DPC)
 Async queue access semaphore (via ImbAsyncInit())
 Async messaging event

It also registers with the OS and creates file system namespace links.

 OpenCloseDispatch – ImbOpenCloseDispatch()
This function is effectively a no-op, always returning success.

 DeviceControl – ImbDeviceControl()
All requests for service come through this routine. Incoming IMB requests are
queued for processing by a driver thread. Async messaging requests directly call
ImbAsyncGetMessage() to get a message or wait for one to become available.

Shutdown state and memory mapping requests are handled as before.

 Shutdown – ImbShutdown()
This entry point is called when Windows NT is shutting down and it calls the generic
function ImbShutdownSystem() which sets up and triggers the BMC watchdog timer.

 4-8

Intelligent Management Bus (IMB) Driver Specification

 Unload – ImbUnload()
When the driver is about to be unloaded, the system calls this function. It signals the
request processing thread to exit and waits for that to happen. It also releases driver
held resources such as semaphores and events.

4.1.3 Driver Structure
Driver data and other resources are held in the per-driver instance device extension
structure. This includes the request queue, synchronization resources (semaphores and
events), and the async queue state. The queue data itself is allocated at driver
initialization and pointed to by the device extension.

The Windows NT driver supports unloading and registers for shutdown notification.

As in the previous Windows NT drivers, there is a driver thread that processes the IMB
requests. In this driver, the driver thread waits for new requests to be posted and also
wakes up periodically to check to see if there are any asynchronous messages to be read
from the SMS buffer. The generic async messaging routine ImbAsyncMessageProcess()
is called to deal with this.

Async queue synchronization is implemented by a Windows NT semaphore to lock the
queue (syncSem) and a Windows NT event to wait for messages (waitEvent).

The following figure demonstrates the connections between the major Windows NT
specific code functions and the other layers.

 IRP Queue IRP Queue

DriverEntry ImbDeviceControl

ImbShutdown

ImbShutdownSystem

ImbAsyncGetMessage ImbAsyncMessageProcess

RequestProcessingThread

ImbProcessRequest

IfProbe

SendImbRequest

Windows NT
Specific
Code

IMB
Generic
Code

Interface
Specific
Code

OS driver
 load

Incoming
I/O Requests

OS
Shutdown

Completed
I/O Requests

Figure 4-1: Windows NT Code Structure

 4-9

Intelligent Management Bus (IMB) Driver Specification

4.1.4 Initialization
During initialization, the driver allocates the data structures it needs and registers with the
kernel, creating the appropriate symbolic link so that applications can find it. It also calls
the Interface specific probe routine for each interface type until one returns success.
Once interface is identified, driver attempts to identify capabilities of underlying platform
by finding IPMI version it supports. This is done based on SMBIOS specification. If
driver fails to find IPMI version, it assumes default version as 1.0

4.1.5 Request processing
All requests are IOCTLs. No read or write support is provided. Requests to send IMB
messages, read an async message, or map/unmap memory come in to the
ImbDeviceControl entry point. IMB message request IRP structures are queued for
disposition by the driver thread. All other requests are handled directly.

Once a request IRP is put on the device’s queue, the driver thread is signaled.

The driver thread is in a loop where it waits for either a signal or timeout. If either of
these occur, it will wakeup and query the queue for work.

If there is work to do, it will de-queue the oldest request and pass it down to the IMB
generic layer (SendImbRequest) for processing. The request will be marked completed
with appropriate status when the call into the IMB generic layer returns.

The thread will then call into the IMB generic layer (ImbAsyncMessageProcess) to check
to see if there is an SMS message (async message) to process, and if so process it.

After all this is over, the thread will go back to waiting for work.

 4-10

Intelligent Management Bus (IMB) Driver Specification

5 Interface Specific Layer
An interface module provides access to the IMB interface it supports in an OS and interface
independent way. The following assumptions are made about the driver.

 Each interface is through the baseboard BMC and requests to other controllers must be made
through the BMC.

 The BMC supports an SMS message buffer and the commands to read it. This buffer
receives IMB responses from other controllers and any other messages directed to the SMS
Lun on the BMC.

 Only one IMB interface exists on a platform
Each interface-specific module exports a structure that contains pointers to three functions. The
structures of all interface modules are pointed to by an array ImbInterfaces, which is walked at
driver initialization time when looking for the appropriate interface module for the platform.

The driver supports the SMIC and KCS interfaces described in the IPMI specification. The
functions provided are:

 ifProbe
BOOL ifProbe (void);

The ifProbe function searches for an instance of it type of interface. It returns TRUE if the
interface is present.

 sendBmcRequest
IMB_STATUS sendBmcRequest (

BmcRequest * request,
DWORD reqLength,
BmcResponse * response,
DWORD * respLength,
void * context
);

This function sends the specified request to the BMC and collects its response. The response
length argument respLength should be set to the maximum size of the response buffer on
entry and will contain the actual response size on return. The value is undefined if the return
status is not IMB_SUCCESS. When sending requests to other controllers than the BMC, a
WriteI2C command is first sent via this interface. This function will return as soon as it has
gotten the response from the BMC that it has sent the request. A second call to this function
must be made with a ReadSMSBuffer command to retrieve the response from the other
controller (after verifying that the response is available via the smsBufferAvail function).

 smsBufferAvail
BOOL smsBufferAvail (void);

The smsBufferAvail function provides an indication of whether there is a message available
in the BMC’s SMS buffer. It returns TRUE if such a message is available.

5.1 SMIC Interface
This interface module is state machine driven and follows the IPMI SMIC interface specification.

 5-11

Intelligent Management Bus (IMB) Driver Specification

5.2 KCS Interface
This interface module is state machine driven and follows the IPMI Keyboard Controller Style
interface specification. KCS interface address is dynamically fetched during initialization.

 5-12

Intelligent Management Bus (IMB) Driver Specification

Appendix 1: API Calls
This section describes the API calls exported by the driver.

SendTimedImbpRequest
Send a specified IPMI protocol based request on I2c bus. Retry until specified timeout.

ACCESS_STATUS SendTimedImbpRequest(

IMBPREQUESTDATA *requestDataPtr,
DWORD timeout,
BYTE *responseDataPtr,
DWORD *responseDataLength,
BYTE *completionCode
)

Parameters
requestDataPtr pointer to the request related data structure
timeout retry timeout (in milliseconds)
responseDataPtr pointer to the response data buffer. On call, a NULL pointer would

indicate that no response is expected. On return this will point to
response data(Framing information stripped off). The calling
application should allocate sufficient space for the returned data.

responseDataLength pointer to the length of the response data. On call, this parameter
points to the size of the allocated buffer for response data. The
driver will use this number to check for overflow condition of the
received data. On return it will point to the actual number of data
bytes received.

completionCode Pointer to the completion code. On return it will point to the
completion code returned by the firmware. For details of the
completion code types refer to the IPMI documents.

Data Type Definitions
typedef struct {

unsigned char *data; // command body

 int dataLength; // body size
 unsigned char cmdType; // IMB command
 unsigned char rsSa; // command destination address
 unsigned char busType; // not used
 unsigned char netFn; // IMB command class

 unsigned char rsLun; // subsystem on destination

} IMBPREQUESTDATA;

Return Value
Returns the driver access status code.

 5-13

Intelligent Management Bus (IMB) Driver Specification

SendTimedI2cRequest
Send a raw message on I2c bus. Retry until specified timeout.

ACCESS_STATUS SendTimedI2cRequest(

I2CREQUESTDATA *reqPtr,
DWORD timeout,
BYTE *responseDataPtr,
DWORD *responseDataLength
BYTE *completionCode
)

Parameters
reqPtr Pointer to the request block
timeout retry timeout (in milliseconds)
responseDataPtr Pointer to the response buffer. A NULL pointer would indicate

that no response is expected.
responseDataLength Length of the response message
completionCode Pointer to the completion code returned by the firmware

Data Type Definitions
typedef struct {

unsigned char *data; // write data
int dataLength; // write data size
unsigned char rsSa; // device address
unsigned char busType; // which I2C bus
unsigned char numberOfBytesToRead;// how much data to return

} I2CREQUESTDATA;

Return Value
Returns driver access status code.

 5-14

Intelligent Management Bus (IMB) Driver Specification

GetAsyncImbpMessage
This API call returns the Asynchronous message received by the driver on a specific BMC
channel.

ACCESS_STATUS
GetAsyncImbpMessage (
 BYTE * msgPtr, // request info and data
 DWORD * msgLen, // IN – length of buffer,

// OUT - msg len
 DWORD timeOut, // how long to wait for the message
 DWORD * seqNo, // IN/OUT - pointer to previously returned sequence

// number To get the first message start with 0
 DWORD channelNumber // IN - number of the BMC channel that received the message

// 0 –IPMB channel
)

For the asynchronous messages received on the IMBP channel, the ‘msgPtr’ points to the
message data that is structured as follows:
//
// This is the generic IMB packet format, the final checksum can't be
// represented in this structure and will show up as the last data byte
//
typedef struct {

 BYTE rsSa;
 BYTE nfLn;
 BYTE cSum1;
 BYTE rqSa;
 BYTE seqLn;
 BYTE cmd;
 BYTE data[1];

} ImbPacket;

Return Value
Returns driver access status code.

 5-15

Intelligent Management Bus (IMB) Driver Specification

MapPhysicalMemory
This api maps a given range of physical memory into the address space of the calling process.
The driver will handle only one mapping at any time. It is the responsibility of the calling
process to unmap the memory before a next mapping call can be processed. An error status code
will be returned to the calling process if an active mapping call already exists with the driver.

ACCESS_STATUS MapPhysicalMemory (

DWORD startAddress,
DWORD length,
DWORD *virtualAddress
)

Parameters
startAddress starting address of the physical memory to be mapped
length length of the physical memory to be mapped
virtualAddress pointer to the virtual address to be mapped. On return, it will point to the

virtual address that is mapped to the physical memory.

Return Value
Returns driver access status code.

 5-16

Intelligent Management Bus (IMB) Driver Specification

UnmapPhysicalMemory
This API call un-maps a given range of physical memory that was mapped by the driver into the
calling processe’s address space. Calling process should use this call to unmap the physical
memory that was mapped using ‘MapPhysicalMemory’

ACCESS_STATUS MapPhysicalMemory (

DWORD virtualAddress
)

Parameters
virtualAddress The mapped virtual address. This was returned by ‘MapPhysicalMemory’.

Return Value
Returns driver access status code.

Driver Access Structure Type Definition
typedef enum {

ACCESS_OK,
ACCESS_ERROR,
ACCESS_OUT_OF_RANGE,
ACCESS_END_OF_DATA,
ACCESS_UNSUPPORTED,
ACCESS_INVALID_TRANSACTION,
ACCESS_TIMED_OUT

} ACCESS_STATUS;

 5-17

Intelligent Management Bus (IMB) Driver Specification

Appendix 4: Glossary

Term Definition
BMC Baseboard Management Controller
FPC Front Panel Controller
ICMB Inter Chassis Management Bus
IPMI Intelligent Platform Management Interface
IPMB Intelligent Platform management Bus
I2C bus Inter Integrated Circuit bus. A 2-wire bi-directional serial bus developed by Philips for an

independent communications path between embedded ICs on printed circuit boards and
subsystems. The I2C bus is used on many servers for system management and diagnostics.

KCS Keyboard Controller Style Interface
SMIC Server Management Interface Chip - an ASIC that provides a parallel I/O mapped interface

between the “ISA” bus and the BMC.

 5-18

	Revision History
	Disclaimers
	Table Of Contents
	Introduction
	1.1 Features
	References

	Design
	Structure

	IMB Generic Code
	IMB Messaging
	Files
	API

	System Shutdown Support

	OS Specifics
	Files
	Driver Entry Points
	Driver Structure
	Initialization
	Request processing

	Interface Specific Layer
	SMIC Interface
	KCS Interface

	Appendix 1: API Calls
	SendTimedImbpRequest
	Parameters
	Data Type Definitions
	Return Value

	SendTimedI2cRequest
	Parameters
	Data Type Definitions
	Return Value

	GetAsyncImbpMessage
	Return Value

	MapPhysicalMemory
	Parameters
	Return Value

	UnmapPhysicalMemory
	Parameters
	Return Value
	Driver Access Structure Type Definition

	Appendix 4: Glossary

