Review Comments

Our train problem gave us practice working out a mathematical solution to a one-dimensional problem. It was more difficult than most problems, because we did not know if it had a final answer. We first had to see if the trains collided. (They did.)

Once we did this, then we could tell how long it took ($20 \mathrm{~m} / \mathrm{s}$) and how far away it occurred (400 m) from the

Train, train, go away. Come acain another

Isaac Newton's work represents one of the greatest contributions to science ever made by an individual. Most notably, Newton derived the law of universal gravitation, invented the branch of mathematics called calculus, and performed experiments
investigating the nature of light and color.

Microsoft ${ }^{8}$ Encarta ${ }^{\circledR}$ Encyclopedia 2002 © 1993-2001 Microsoft Corporation.
All rights reserved.

Avoiding Disaster

Two Trains on the Same Track

The engineer of a passenger train traveling at $\mathbf{3 0} \mathbf{~ m} / \mathrm{s}$ sights a freight train whose caboose is $\mathbf{2 0 0} \mathbf{~ m}$ ahead on the same track. The freight train is traveling in the same direction as the passenger train with a velocity of $\mathbf{1 0} \mathbf{~ m} / \mathrm{s}$. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of $-1 \mathbf{~ m} / \mathbf{s}^{2}$, while the freight train continues with constant speed. If there is a collision, where and when will it take place?

Equations

The basic equation we used was:

$$
x=v_{0} t+\frac{1}{2} a t^{2}
$$

We chose the passengertrain as our reference point because the engineer is the one that applied the brakes. The equation describing the motion of the freight train was:

$$
x=\left(30 \frac{m}{s}\right) t+\frac{1}{2}\left(-1 \frac{m}{s^{2}}\right) t^{2}
$$

The freight train moved at a constant velocity, but it was 200 meters away from the engineer. The equation describing its motion was:

$$
x-200 m=\left(10 \frac{m}{s}\right) t+\frac{1}{2}\left(0 \frac{m}{s^{2}}\right) t^{2}
$$

Because both of these motions were happening simultaneously in the same direction, they were set equal to each other to see if they could be solved.

$$
x=\left(30 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t+\left(-0.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}=\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t+200 \mathrm{~m}
$$

Rearanging and putting like terms togethergave:

$$
\left(0.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}-\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t+200 \mathrm{~m}=0
$$

Using the quadratic equation we substituted to give:

$$
\begin{aligned}
& \text { give: } \\
& t=\frac{20 \pm \sqrt{(-20)^{2}-4(0.5)(200)}}{2(0.5)}
\end{aligned}
$$

$$
\begin{gathered}
x=\left(10 \frac{m}{s}\right)(20 s)+200 m \\
x=400 m
\end{gathered}
$$

Substituting into:

Graph of Motion

Encarta Encyclopedia, Robert Harding Picture Library

