

Forces

"Push or Pull" that acts between two bodies

- Tension
- Gravitational force
- Frictional force
- Air resistance
- Electrostatic force
- Strong nuclear force
- Weak nuclear force

Newton's First Law

"Law of Inertia"
筑 An object will continue in its state of motion unless compelled to change by a force impressed upon it.
䈘 What net force is required to maintain a 5000 kg object moving at a constant velocity of magnitude $7500 \mathrm{~m} / \mathrm{s}$?

- Net force of $0 \Rightarrow$ constant motion

Weight

The weight of an object is the gravitational force exerted on it by Earth (or whatever planetary mass the object is on).
笜 What is the mass of an object that weighs 500 N?

$$
\begin{aligned}
& F_{w}=m g \\
& m=\frac{F_{w}}{g}=\frac{500 \mathrm{~N}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=51 \mathrm{~kg}
\end{aligned}
$$

Other Examples

in A book with a mass of 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. F_{N}

$$
\begin{aligned}
& F_{g}=m g=F_{N} \\
& F_{g}=(2 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=20 \mathrm{~N}=F_{N}
\end{aligned}
$$

Note: This force is called the Normal force because it acts perpendicular to the contact surface of the object.

Other Examples

A can of paint with a mass of 6 kg hangs from a rope. If the can is to be pulled up to

$$
十
$$

direction |rin $\begin{gathered}\mathrm{F}_{\mathrm{T}} \\ \mathrm{F}_{\mathrm{g}}\end{gathered}$

$$
\begin{aligned}
& F_{T}=F_{g}=m g \\
& F_{T}=6 \mathrm{~kg}\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=59 \mathrm{~N}
\end{aligned}
$$

Friction

m Friction is a contact force that is parallel to the contact surface and perpendicular to the normal force.
in Static friction $\left(F_{\mathrm{s}}\right)$ occurs when a force tries unsuccessfully to set a body in motion.
出 Kinetic (sliding) friction $\left(F_{k}\right)$ occurs when a force acts on a body in motion.
出 Generally $F_{\mathrm{s}}>F_{\mathrm{k}}$

Friction Equations

$$
\begin{aligned}
& F_{s(\max)}=\mu_{s} F_{N} \\
& F_{k}=\mu_{k} F_{N}
\end{aligned}
$$

出 $\boldsymbol{\mu}$ represents the coefficient of friction - a number that is related to the nature of the surfaces in contact with each other.
m F_{s} has a range of values dependent on the magnitude of the horizontal force being applied.

Friction Problems

出 A crate of mass 20 kg is sliding across a wooden floor. μ_{k} between the crate and the floor is 0.3 . Determine the strength of the force acting on the crate.

Friction Problems

筑 A crate of mass 100 kg rests on the floor. μ_{s} is 0.4. If a force of 250 N (parallel to the floor) is applied to the crate, what is the magnitude of F_{s} on the crate?

$F_{s, \max } \mu_{s} F_{N}=\mu_{s} m g$
$F_{s, \overline{m a x}}(0.4)(100 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=390 \mathrm{~N}$
NOTE: Remember that F_{s} represents a range of values. In this case, the applied force of 250 N is less than the maximum F_{s} so the actual magnitude of F_{s} is 250 N .

Pulleys

m Pulleys are devices that change the direction of the tension force in cords that slide over them.
m In problems, we generally ignore the mass and friction associated with pulleys.

Inclined Planes

m When a mass sits on an inclined plane, its weight has two components: normal and parallel to the plane.

How do the laws of motion describe everyday events?

L(0) Can the motion of any object be predicted? How?

