Physics Phun!		
a)	A mortar shell projected at an angle of 65° above the horizontal strikes a tower 25 m	$\Delta s_x = v_{0x}t = v_0 \cos \theta_0 t t = \frac{\Delta s_x}{v_0 \cos \theta} = \frac{25m}{v_0 \cos 65}$
	away at a point 15 m above the point of projection. Find the initial speed v_0 of the projectile.	$\Delta s_{y} = v_{0} \sin \theta_{0} t + \frac{1}{2} g t^{2} 15m = v_{0} \sin 65 \left(\frac{25m}{v_{0} \cos 65}\right) + \frac{1}{2} \left(-9.8 \frac{m}{s^{2}}\right) \left(\frac{25m}{v_{0} \cos 65}\right)^{2}$
		$v_0 = 21.1 \frac{m}{s}$
b)	How long was it in the air?	$t = \frac{\Delta s_x}{v_0 \cos \theta} = \frac{25m}{\left(21.1\frac{m}{s}\right)\cos 65} = 2.8s$
c)	Find the magnitude and direction of the velocity of the projectile when it strikes the tower.	$v_x = v_0 \cos \theta = (21.1\frac{m}{s})\cos 65 = \boxed{8.92\frac{m}{s}}$ $v_y = v_0 \sin \theta + a_y t = (21.1\frac{m}{s})(\sin 65) + (-9.8\frac{m}{s^2})(2.8s) = \boxed{-8.32\frac{m}{s}}$
		$v = \sqrt{\left(8.92\frac{m}{s}\right)^2 + \left(-8.32\frac{m}{s}\right)^2} = 12.2\frac{m}{s} \tan \theta = \frac{-8.32\frac{m}{s}}{8.92\frac{m}{s}} = 12.2\frac{m}{s}$
d)	Find the maximum height of the projectile.	$v^{2} = v_{0}^{2} + 2a\Delta s$ $0 = ((21.1\frac{m}{s})(\sin 65))^{2} + 2(-9.8\frac{m}{s^{2}})h$ $h = 18.7m$
e)	If the projectile had not struck the tower, what would have	$y = 0 0 = v_{0y}t + \frac{1}{2}at^{2} = (21.1\frac{m}{s})(\sin 65)t + \frac{1}{2}(-9.8\frac{m}{s^{2}})t^{2}$
	been the range <i>R</i> of the projectile?	$t = \frac{(21.1\frac{m}{s})(\sin 65)}{\frac{1}{2}(9.8\frac{m}{s^2})} = 3.9s R = v_0 t = (21.1\frac{m}{s})(\cos 65)(3.9s) = \boxed{34.8m}$
f)	What would be the magnitude and direction of the velocity of the projectile upon impact?	$v_x = 8.92 \frac{m}{s} (\text{constant}) v_y = v_0 \sin\theta + a_y t = (21.1 \frac{m}{s})(\sin 65) + (-9.8 \frac{m}{s^2})(3.9s) = -19.1 \frac{m}{s}$ $v_z = \sqrt{(8.92 \frac{m}{s})^2 + (-19.1 \frac{m}{s})^2} = 21.1 \frac{m}{s} \tan \theta = \frac{-19.1 \frac{m}{s}}{1000} = 65^\circ \text{ below pos x}$
		$(0.2^{\circ})^{\circ}(1.1^{\circ})^{\circ}(2.11^{\circ})^{\circ}(1.1^{\circ})^{\circ}(1$

Example Projectile Motion Problems

An antiaircraft artillery gun fires	$v_0 = 1000 \frac{m}{s}$ $\Delta y = 4000m$ $\Delta x = 3000m$
a projectile with a muzzle r_{1000} m/s. If the	$a = 0$ $a = -9.8^{m}$
projectile is to explode at an	$u_x = 0$ $u_y = 5.0$ s^2
altitude of 4000 m and a	
horizontal range of 3000 m from	
the gun site, find the angle of	
elevation of the gun and the fuse	
setting of the projectile.	
Find the firing angle.	
	$\Delta x = v t = \frac{3000m}{100}$
	$\Delta x = v_{0x} t t = \overline{(1000 \frac{m}{s})(\cos \theta)}$
	$\Delta y = v_{0y}t + \frac{1}{2}at^2$
	$4000m = (1000 \frac{m}{s})(\sin\theta) \left(\frac{3000m}{(1000 \frac{m}{s})(\cos\theta)}\right) + \frac{1}{2} \left(-9.8 \frac{m}{s^2}\right) \left(\frac{3000m}{(1000 \frac{m}{s})(\cos\theta)}\right)^2$
	$4000 = \frac{\sin\theta}{\cos\theta} (3000) - \frac{44.1}{\cos^2\theta} \qquad \text{Multiply by } \cos^2\theta$
	$4000\cos^2\theta + 44.1 = 3000\sin\theta\cos\theta$ Divide by 1000 and let $\sin\theta = \sqrt{1 - \cos^2\theta}$
	$4\cos^2\theta + 0.0441 = 3\cos\theta\sqrt{1 - \cos^2\theta}$ Square both sides and collect similar terms
	$16\cos^4\theta + 0.353\cos^2\theta + 0.00195 = 9\cos^2\theta - 9\cos^4\theta$
	$25\cos^4\theta - 8.65\cos^2\theta + 0.00195 = 0$ Use the quadratic equation
	$\cos^2 \theta = \frac{8.65 \pm \sqrt{(8.65)^2 - 4(25)(0.00195)}}{2(25)} = 0,0.346 \qquad \theta = 54^\circ$
Find the time until detonation.	$t = \frac{3000m}{(1000 \frac{m}{s})(\cos 54)} = 5.1s$