Example Projectile Motion Problems
 Physics Phun!

An antiaircraft artillery gun fires a projectile with a muzzle velocity of $1000 \mathrm{~m} / \mathrm{s}$. If the projectile is to explode at an altitude of 4000 m and a horizontal range of 3000 m from the gun site, find the angle of elevation of the gun and the fuse setting of the projectile.	$\begin{aligned} & v_{0}=1000 \frac{m}{s} \quad \Delta y=4000 m \quad \Delta x=3000 m \\ & a_{x}=0 \quad a_{y}=-9.8 \frac{m}{s^{2}} \end{aligned}$
Find the firing angle.	$\begin{aligned} & \Delta x=v_{0 x} t \quad t=\frac{3000 m}{\left(1000 \frac{m}{s}\right)(\cos \theta)} \\ & \Delta y=v_{0 y} t+\frac{1}{2} a t^{2} \\ & 4000 m=\left(1000 \frac{m}{s}\right)(\sin \theta)\left(\frac{3000 m}{\left(1000 \frac{m}{s}\right)(\cos \theta)}\right)+\frac{1}{2}\left(-9.8 \frac{m}{s^{2}}\right)\left(\frac{3000 m}{\left(1000 \frac{m}{s}\right)(\cos \theta)}\right)^{2} \\ & 4000=\frac{\sin \theta}{\cos \theta}(3000)-\frac{44.1}{\cos ^{2} \theta} \quad \text { Multiply by } \cos ^{2} \theta \\ & 4000 \cos ^{2} \theta+44.1=3000 \sin \theta \cos \theta \quad \text { Divide by } 1000 \text { and let } \sin \theta=\sqrt{1-\cos ^{2} \theta} \\ & 4 \cos ^{2} \theta+0.0441=3 \cos \theta \sqrt{1-\cos ^{2} \theta} \quad \text { Square both sides and collect similar terms } \\ & 16 \cos ^{4} \theta+0.353 \cos ^{2} \theta+0.00195=9 \cos ^{2} \theta-9 \cos ^{4} \theta \\ & 25 \cos ^{4} \theta-8.65 \cos ^{2} \theta+0.00195=0 \quad \text { Use the quadratic equation } \\ & \cos ^{2} \theta=\frac{8.65 \pm \sqrt{(8.65)^{2}-4(25)(0.00195)}}{2(25)}=0,0.346 \text { } \theta=54^{0} \end{aligned}$
Find the time until detonation.	$t=\frac{3000 \mathrm{~m}}{\left(1000 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(\cos 54)} 5.1 \mathrm{~s}$

