Name \qquad

Balloon Rockets

Trial One

Create a balloon rocket that can carry a payload.

Weigh the mass of the payload \qquad

Time the flight \qquad
Measure the distance of the flight \qquad

What is the speed of the flight? \qquad

What is the acceleration rate of the flight? \qquad
What is the force applied from the balloon rocket? \qquad

Trial Two

1. Pick a string that is horizontal and has a slope.
2. Follow the same directions as before, except time the flight and measure the distance at three different points in the flight. This will take three to four people to accomplish.
3. Measure the payload \qquad
4.

Time the Flight Measure the Distance
Point A \qquad Point A \qquad
Point B \qquad Point B \qquad
Point C \qquad Point C \qquad
5. Calculate the force \qquad
6.

Calculate the speed and acceleration rate at each point

Speed:
Point A \qquad
Point B \qquad
Point C \qquad

Acceleration:
Point A \qquad
Point B \qquad
Point C \qquad
7.

Calculate the average speed, acceleration rate, force and total distance and time.
Total Time \qquad -
Average Speed \qquad Total Distance \qquad
Average Force \qquad Average Acceleration \qquad Average
8. Construct graphs (notice this is plural) representing all this information from Trial Two.

Trial Three

1. What is your plan for this trial? What do you plan to do differently to the design of your rocket or the test trial?
2. Construct a trial of your own calculating speed, distance, time, acceleration rate, and force. Represent the results on a graph. Label the graph.
3. Compare this graph to the graphs in trial two. List some of the comparisons and differences.
