

Copyright © 2010 Intel Corporation. All rights reserved. Adapted with permission. Intel, the Intel logo and the Intel Education Initiative are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

The Problem

- If you line up 100 equilateral triangles in a row, what will the perimeter be? Find a rule for any number of triangles.
- What if you lined up:
- Squares?

- Regular Pentagons?
- Regular Hexagons?

- n -sided Polygons?

Our Mathematical Process

End + Middles + End	\# of Sides 3	Each End Contributes $3-1$	Middles Contribute $3-2$
\square	4	$4-1$	$4-2$
	5	$5-1$	$5-2$
	6	$6-1$	$6-2$

Copyright © 2010 Intel Corporation. All rights reserved. Adapted with permission. Intel, the Intel logo and the Intel Education Initiative are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Our Generalized Claim

- Visually: (using squares)
- Algebraically:

Separating the row of polygons into middlle and end polygons, the perimeter equals the number of middlle polygons times the amount contributed to the perimeter by each of the middlle polygons, plus the amount contributed by the two end polygons.

Our Evidence

- Still using squares to visually support our evidence:
- Our variables represent:
- p= perimeter of total
- s= \# of sides (squares have 4)
- $\mathrm{n}=$ the \# of squares

Our Evidence

- ($\mathrm{n}-2$) equals the number of middle polygons (in this case there are 5-2 middle squares)
- (s-2) equals the amount of sides each middle polygon contributes to the perimeter (in this case each square in the middle contributes 2 --one top and one bottom side)
- 2(s-1) equals the two end polygons--each contributing the \# of sides minus 1 to the perimeter (in this case each end square contributes 4-1--the 3 sides forming a cap \square

Our Conclusion

- Our claim that $\mathrm{p}=(\mathrm{n}-2)(\mathrm{s}-2)+2(\mathrm{~s}-1)$ is supported by our evidence to show that for any number of polygons lined up in a row, our rule works.
- Any questions?

