Designing Effective Projects: Thinking Skills Frameworks Learning Styles

Differences in Learning

Today's teacher knows that the ways in which students learn vary greatly. Individual students have particular strengths and weaknesses which can be built upon and enhanced through effective instruction. Project-based learning with technology is a powerful way to use students' strengths to help them become better thinkers and more independent learners.

Project tasks that allow students to use their individual learning styles are not a direct path to higher-order thinking, however. It is possible to create products that reflect shallow and superficial thought. (Ennis, 2000). Nevertheless, the motivating factors associated with choice when individual learning styles are addressed in projects, suggest that teaching thinking skills in the context of individual learning styles increases the likelihood that students will learn them.

The use of technology in projects also provides opportunities for students to make choices about how they learn, allowing them to take advantage of the strengths of their learning styles. Using software and hardware to create videos, slide shows, publications, and musical compositions can help students learn thinking skills and subject matter content in ways that acknowledge their talents and interests.

Visual-Auditory-Kinesthetic Learning Styles

The simplest and most common way of identifying different learning styles is based on the senses. Commonly called the VAK model, this framework describes learners as visual, auditory, or kinesthetic. Visual learners most effectively process visual information; auditory learners understand best through hearing; and kinesthetic/tactile learners learn through touch and movement. A study conducted by Specific Diagnostic Studies found that 29 percent of all students in elementary and secondary schools are visual learners, 34% learn through auditory means, and 37% learn best through kinesthetic/tactile modes (Miller, 2001).

V-A-K Learning Styles

Visual	Pictures, videos, graphics, diagrams, charts, models
Auditory	Lecture, recording, storytelling, music, verbalization, questioning
Kinesthetic	Acting, role-play, clay modeling

There are many online inventories and questionnaires to help people determine their preferred learning style. Although most are not scientifically reliable, they provide insight into learning preferences. Teachers must exercise caution, however, in relying on students' self-assessment of their learning styles. Researchers Barbe, Milone, and Swassing (cited in Cotton, 1998) argue that learners' preferences are not necessarily the area in which they are the strongest. In addition, all learning styles are not necessarily appropriate for all content. While it may be possible to learn something about driving a car by watching or hearing someone discuss it, few of us would want to be on the road with people who haven't had considerable hands-on learning experiences in an automobile. Choosing teaching methods based on sensory learning styles requires deep subject matter knowledge and good teacher judgment.

Left-Brain/Right Brain Learning Differences

Another method of categorizing individual learning styles is by brain hemispheres. Asselin and Mooney (cited in Miller, 2001) described learners as either right brain, global, or left brain, analytic. In general, global learners "perceive things as a whole, make broad general distinctions among concepts, are people oriented, and learn material in a social context" (p. 3). Analytic learners, on the other hand, perceive things in parts rather than as whole and impose structure or restrictions on information and concepts" (Miller, 2001, p. 3).

How individuals concentrate on and remember new and difficult information is related to whether their cognitive processing style is global or analytic. Some students learn more easily when information is presented step-by-step in a sequential pattern that builds toward a conceptual understanding. Others learn more easily either when they understand the concept first and then concentrate on the details or when they are introduced to the information with a humorous story or anecdote related to their experience and replete with examples and graphics (Dunn, 1995, p. 18).

Brain Hemispheres

Left Brain:	Analytical, logical, sequential, step-by-step, rational, part-to-whole	
Right Brain:	Holistic, random, intuitive, subjective, synthesizing	

Howard Gardner's Multiple Intelligences

In the last decade, more and more educators have warmed to Howard Gardner's theory of Multiple Intelligences. Logical/mathematical and linguistic intelligences, the two ways of thinking most valued in school are only two of eight intelligences described by Gardner based on biological and cultural research. In addition, he found spatial, musical, bodily/kinesthetic, interpersonal, intrapersonal, and naturalist intelligences.

Multiple Intelligences

Logical-	The ability to detect patterns, reason deductively and think logically. This
Mathematical	intelligence is most often associated with scientific and mathematical thinking.
Linguistic	Mastery of language. This intelligence includes the ability to effectively
	manipulate language to express oneself rhetorically or poetically. It also allows
	one to use language as a means to remember information.
Spatial	The ability to manipulate and create mental images in order to solve problems.
	This intelligence is not limited to visual domains—Gardner notes that spatial
	intelligence is also formed in blind children.
Musical	The capability to recognize and compose musical pitches, tones, and rhythms
	(Auditory functions are required for a person to develop this intelligence in
	relation to pitch and tone, but it is not needed for the knowledge of rhythm.).
Bodily-	The ability to use one's mental abilities to coordinate one's own bodily
Kinesthetic	movements. This intelligence challenges the popular belief that mental and
	physical activity are unrelated (ERIC, 1996, p. 2).
Interpersonal	A core capacity to notice distinctions among others; in particular contrasts in
	their moods, temperaments, motivations, and intentions (Gardner, 1993, p. 42).
Intrapersonal	Access to one's own feeling life, one's range of emotions, the capacity to effect
	discriminations among these emotions and eventually to label them and to draw
	upon them as a means of understanding and guiding one's own behavior (p. 44).
Naturalist	Expertise in the recognition and classification of plants and animals. These same
	skills of observing, collecting, and categorizing might also be applied in the
	"human" environment (Campbell, 2003, p. 84).

Learning Styles and Thinking Skills

A student who relies on hunches, feelings, and intuition to make decisions may have difficulty recognizing the value of a thinking process that prizes the careful analysis of assumptions and weighing of evidence. On the other hand, a student who is comfortable with linear thinking and the rational dissection of arguments, may find global, connected thinking extremely challenging. In any case, individuals can exhibit different learning and thinking styles in different contexts, and adding on a new credible way of processing information can only enhance a person's ability to make smart decisions in life. In order to help all students become the best thinkers they can be, may require not only expanding our ideas of what good thinking is, but also finding ways to persuade students of the value of using thinking strategies that may, at first, feel strange and uncomfortable.

In the Classroom: Learning Styles at Work

Elementary Concept: Simple Machines

V-A-K	Learning Style	Activity
	Visual	Look for pictures of simple machines in newspapers or movies
	Auditory	Listen to and watch a construction worker explain how he or she uses simple machines at work
	Kinesthetic	Build a simple machine from clay, Legos or tinker toys
Left	Left Brain	Follow step-by-step directions to build a simple machine
Brain/Right Brain	Right Brain	Discuss the role that machines play in our lives
Multiple Intelligences	Logical- Mathematical	Break complex machines down into simple machines
	Linguistic	Write or paper or make a speech describing the importance of a machine
	Spatial	Create a presentation showing the different ways in which a simple machine is used.
	Musical	Compose a song about a simple machine that uses the appropriate vocabulary.
	Bodily- Kinesthetic	Use everyday objects to create a simple machine
	Interpersonal	Work with a group to make a video about simple machines for pre-school children
	Intrapersonal	Keep a journal reflecting on how your learning about simple machines is progressing
	Naturalist	Find examples of simple machines in nature, such as birds' beaks as levers

Secondary Concept: Interpretation of Allegories in Literature

V-A-K	Visual	Watch one of the <i>Lord of the Rings</i> movies and interpret it as an allegory
	Auditory	Listen to a sermon on parables or allegories from a religious perspective
	Kinesthetic	Make a video of an allegory
Personality	Introvert	Find an allegory that is especially meaningful to you and write a
Types		paper explaining its meaning.
	Extravert	Participate in a discussion of the allegory in Lord of the Flies
	Sensing	Compose an allegory based on something you have observed in

		your school
	Intuitive	Look at allegories from different cultures and identify patterns
	Thinking	Apply the components of an allegory to specifics of daily life
	Feeling	Write an allegory addressing an aspect of human experience
		that affects people's happiness
	Judging	Write a detailed project plan for developing an animated allegory
	Perceiving	Generate a list of possible projects related to allegories and
		select one to work on in more detail
Multiple	Logical-	Interpret an allegory and discuss the consequences of its
Intelligences	Mathematical	assumptions in a different context
	Linguistic	Write an original allegory
	Spatial	Make a model that represents an allegory
	Musical	Analyze the allegorical components of Don McLean's "American Pie"
	Bodily-	Perform an allegory
	Kinesthetic	- Chemical allegely
	Interpersonal	Work with a group to produce a multimedia presentation about
		an allegory
	Intrapersonal	Apply the meaning of an allegory to your own life
	Naturalist	Write an allegory inspired by the behavior of animals in the wild

References

Campbell, B. (2003). *The naturalist intelligence*. Seattle, WA: New Horizons for Learning. www.newhorizons.org/strategies/mi/campbell.htm*

Cotton, K. (1998). *Education for lifelong learning: Literature synthesis*. ED 422608. Washington, DC: OERI.

Dunn, R. (1995). Strategies for educating diverse learners. Bloomington, IN: Phi Delta Kappa.

Ennis, R. H. (2000). Goals for a critical thinking curriculum and its assessment. In A. L. Costa (Ed.), *Developing minds: A resource book for teaching thinking*, (pp. 44-46). Alexandria, VA: ASCD.

ERIC (1996). Multiple intelligences: Gardner's theory. ED 410226. Washington, DC: OERI.

Gardner, H. (1993). Multiple intelligences: The theory in practice. New York: Harper Collins.

Miller, P. (2001). Learning styles: The multimedia of the mind. ED 451340.