
EECS 370
Exam 1
Fall 2003

October 9, 2003

Name:

University of Michigan uniqname:

(NOT your student ID number!)

Honor code pledge: I have neither given nor received aid on this

examination, nor have I concealed any violations of the Honor Code.

Signature:

(examinations without a signed honor pledge will not be graded)

12 pages, 10 questions, 100 points

1

1. True/False (12 points):

Circle TRUE or FALSE for each statement.

(a) TRUE FALSE It is theoretically possible to implement any boolean function in only two
levels of digital logic.

(b) TRUE FALSE In a load/store architecture, only loads and stores are allowed to access
data memory.

(c) TRUE FALSE A machine cycle is a process through which one machine instruction is
executed.

(d) TRUE FALSE All functions must save callee save registers when they are called, and
load their values back before returning.

(e) TRUE FALSE A processor without floating point instructions cannot perform floating
point computations.

(f) TRUE FALSE Optimizing a single cycle datapath for the average case will improve
performance.

2. Instruction formats (10 points):

Suppose you revised the LC-2K3 instruction set architecture such there are 200 different opcode
encodings and 40 registers but instructions are still 32 bits. In order to accommodate this change,
the format for I-type instructions has changed to incorporate the new opcodes and registers. All
of the remaining bits are used for the signed offset field - there are no longer any unused bits.

If you have a beq instruction at address 10000 (base ten), what is the range of target addresses
you can jump to under this new format?

2

3. Floating point multiplication (10 points):

Consider multiplication on a processor that uses IEEE 754 standard single precision (32 bit)
floating point arithmetic. A floating point register on this processor contains the hexadecimal
value 0xbec00000. This value is to be multiplied by 36.0 (decimal).

(a) What is the floating point representation of 36.0 decimal? (You may state your answer in
either hexadecimal or binary.)

(b) The multiplication is performed, leaving the product in the floating point register. What is
the correct representation of this product? (Again, your choice of either hexadecimal or binary.)

(c) What is this product value in decimal?

3

4. MIPS pseudo-instructions (10 points):

Suppose you are creating a new MIPS pseudo-instruction called lwmi. Its functionality is similar
to that of a load word (lw) instruction, but lwmi uses memory indirect addressing. lwmi takes
two arguments: a destination register and a label that represents the address. For example:

lwmi $t1 umich

is equivalent to:

$t1 = Memory[Memory[umich]]

Using real MIPS instructions (no pseudo-instructions), write the assembly language expansion
for:

lwmi $t2 goblue

where goblue is at address 0x34A28143.

In MIPS, register $at is used for temporary values during the expansion of psuedo-instructions
and you can’t assume that $at is initially zero. Specify immediate values in hexadecimal. For
full credit, you must use as few instructions as possible.

4

5. Adder design (10 points):

A 3-bit adder has seven inputs: A2, A1, A0 (input bits for operand A), B2, B1, B0 (input bits for
operand B), and C0 (carry-in). The adder has five outputs: S2, S1, S0 (sum bits), P (propagate
bit), G (generate bit). The propagate and generate bits can be used to create a carry lookahead
adder such that C3 can be determined using P, G, and C0.

(a) Give an equation for determining C3 in terms of P, G, and C0.

(b) Give an equation for how the 3-bit adder determines P in terms of its seven inputs.

(c) Give an equation for how the 3-bit adder determines G in terms of its seven inputs.

5

6. Object files and linking (10 points):

In the following MIPS program, determine the instructions that will need relocation entries in the
resulting object file. All registers adhere to the MIPS register convention. The labels foo and bar
refer to the starting address of functions foo and bar, respectively.

lw $t3, 12($gp) # instruction 1

lw $t5, 4($sp) # instruction 2

L1: addi $t5, $t5, 3 # instruction 3

addi $t3, $t3, 1 # instruction 4

beq $t3, $t5, L1 # instruction 5

jal foo # instruction 6

add $t4, $t3, $t5 # instruction 7

la $t6, bar # instruction 8

jr $t6 # instruction 9

sw $v0, 0($gp) # instruction 10

sw $v1, 4($sp) # instruction 11

beq $v0, $v1, L2 # instruction 12

j L1 # instruction 13

L2: jr $ra # instruction 14

Write the instructions (using the numbers on the right) that need relocation entries:

6

7. Performance (10 points):

Determine the running time for the following LC-2K3 program. The clock period is 5 ns. The
number of cycles that each instruction takes is:

add, nand 3

beq 4

lw, sw 8

jalr 6

noop, halt 2

lw 0 1 one

lw 0 4 four

loop beq 3 4 next

sw 3 3 array

add 3 1 3

beq 0 0 loop

next beq 0 3 done

noop

lw 1 6 array

beq 6 1 done

lw 0 3 dAddr

jalr 3 5

done halt

dAddr .fill done

one .fill 1

four .fill 4

array .fill 0

7

8. Logic design (8 points):

Implement a 3-input majority gate. A 3-input majority gate is a logic component that takes three
inputs (A, B, and C), and returns output Z as a logic 0 if the majority of the inputs (two or
more) are logic 0, and returns a logic 1 if the majority of inputs are logic 1. Give your answer
as a gate-level circuit with the input(s) and output(s) labeled. You may use only NOT gates, 2
or 3 input AND gates, and 2 or 3 input OR gates in your implementation. Your implementation
should be efficient; keep the number of levels of logic to a minimum and avoid redundant or
unused logic.

8

9. Finite state machines (10 points):

Show the ROM encoding for the finite state machine diagram on the next page. For the ROM,
show the address and contents for each entry. The state bits of the FSM are labeled S1 and
S2. Assign FSM state encodings that correspond to the state diagram labels (e.g., State 2 uses
encoding binary S1=1, S2=0). The inputs are labeled A and B. Input A transistions occur when
the input is logic 1, they are shown as a solid line on the FSM diagram. Input B transistions
occur when the input is logic 1, they are shown as a dashed line on the FSM diagram. If both
inputs A and B are asserted, input A is ignored. The FSM has no outputs.

S1 S2 A B S1 S2

9

 10

(state diagram for problem 9)

State 0
(S1=0,
S2=0)

State 1
(S1=0,
S2=1)

State 3
(S1=1,
S2=1)

State 2
(S1=1,
S2=0)

Input A

Input B

 11

10. Datapath control (10 points):

Imagine you are on the design team for a processor that implements a new instruction set
called the E370. There are eight instructions:

Instruction Semantics Description
add r1, r2, r3 r1 = r2 + r3 Places the sum of r2 and r3 into r1.
addi r1, r2, imm r1 = r2 + imm Places the sum of r2 and the immediate

value into r1. The immediate value should
be treated as a signed two’s complement
number.

sub r1, r2, r3 r1 = r2 – r3 Places the difference r2 – r3 into r1.
and r1, r2, r3 r1 = r2 & r3 Places the result of the bitwise and of r2

and r3.
andiu r1, r2, imm r1 = r2 & imm Places the result of the bitwise and of r2

and the immediate value. The immediate
value should be treated as an unsigned
value.

lw r1, r2(imm) r1 = M[r2 + imm] Loads the value at memory address r2 +
imm into r1.

sw r1, r2(imm) M[r2 + imm] = r1 Stores the value of r1 at memory address
r2 + imm.

bltz r1, imm if (r1 < 0)
PC = PC + 1 + imm

If the value of r1 is less than zero, branch
to PC + 1 + imm (PC-relative branch).

Some useful information about the E370:

• The E370 is a 32-bit machine and is word addressable.
• The displacement field for addi, andiu, lw, sw, and bltz is 16 bits.
• For the “andiu” instruction, the immediate should be treated as an unsigned value.

For all other instructions, the immediate field should be treated as a signed two’s
complement number.

• The ALU has two modes of operation determined by the control line ALUOp:
0 is add, 1 is bitwise-and. If bitwise-and is selected, the CarryIn line is ignored.

On the following page is a diagram of the single-cycle datapath for the E370. For clarity,
the decoding of the instruction and the register file output lines are not shown. Your job
is to determine the value of each control signal for each instruction. Indicate don’ t care
conditions using the letter ‘X’ .

 12

Instruction OpASelect
(1 bit)

OpBSelect
(2 bits)

ALUOp
(1 bit)

CarryIn
(1 bit)

MemWrite
(1 bit)

ResSelect
(1 bit)

PCSelect
(1 bit)

RegWrite
(1 bit)

Add
Addi
Sub
And
Andiu
Lw
Sw
Bltz

P
C

Instruction
memory

Register
file

Data
memory

+

A
L
U

 1

0

M
U
X 1

0

M
U
X

 3
2
1
0

M
U
X

sign extend imm
zero extend imm

1

r2 data

r1 data

 1

0

M
U
X

ALUOp

CarryIn

OpBSelect

OpASelect

RegWrite

MemWrite

ResSelect

 PCSelect

Sign bit
from r1

r3 data

