
EECS 470 Verilog Programming Assignment #1

“An Introduction to Verilog: Adders & Counters”

Assigned: January 7th
Due: January 16th at 11:59pm. (20% penalty if late until noon on the 17th. After that you will get a zero.)
Points: 2% of class grade
Goal: Provide an introduction to the Verilog language as well as providing an opportunity to learn
hierarchical design in Verilog.

In this project you will design three successive Verilog modules, each using the previous as a component.
The first is 1-bit bit-sliced ALU. The second is a 4-bit bit-sliced ALU, while the last is a 4-bit counter/shift
register. You are to follow the design rules provided on the course website. These will also be covered in
discussion on the 9th. Even if you already know Verilog it is strongly suggested you look over our tutorials
and general Verilog directions.

The website also includes directions for the electronic hand-in of this assignment in as well as a testbench
or the one-bit ALU.

One-bit ALU

You are to write a module using the following declaration. You must use this declaration exactly as
written:

module alu1(func, opa, opb, cin, result, cout);
 input func; // function code
 input opa; // operand A
 input opb; // operand B
 input cin; // carry in
 output result; // result output
 output cout; // carry out

This module takes three inputs (opa, opb, and cin) and generates two outputs (result and cout) depending
upon the value of func as follows:

func’s value result cout
0 LSB of opa+opb+cin MSB of opa+opb+cin
1 cin opa

On the website you will find a Verilog “testbench” for this one-bit ALU. Use it to insure that your code
works correctly. You may only use AND(&), OR(|), NOT(~), and XOR(^) operations to write your ALU.

Four-bit ALU
You are to write a module using the following declaration. You must use this declaration exactly as
written:

module alu4(func, opa, opb, cin, result, cout);
 input func; // function code
 input [3:0] opa; // operand A
 input [3:0] opb; // operand B
 input cin; // carry in
 output [3:0] result; // result output
 output cout; // carry out
Using your one-bit ALU you are to implement a 4-bit ALU that performs the following functions:

func Operation
0 Add opa+opb+cin, having the 4 LSBs of the result appear in result while the MSB is cout.
1 left-shift: result[0]=cin, result[3:1]=opa[2:0], cout=opa[3].

You must use your 1-bit ALU to implement this 4-bit ALU! You also will need to write a testbench,
modeled on the one provided for the 1-bit ALU, which tests your code. You will be graded on how well
your testbench actually tests.

Four-bit counter/shift-register
You are to write a module using the following declaration. You must use this declaration exactly as
written:

module csr4(func, ld, in, clock, enable, result, out);
 input [1:0] func; // function code
 input [3:0]ld; // register load
 input in; // 1-bit input
 input clock;
 input enable;
 output [3:0] result; // result output
 output out; // output

On every rising clock edge when enable is asserted result and out are updated as follows:

func[1:0] Operation
00 result=result +1. If this goes from 1111 � 0000 out=1, else out=0
01 result=result -1. If this goes from 0000 � 1111 out=1, else out=0
10 left shift Result[3:1]=Result[2:0],Result[0]=in, out=Result[3]
11 load: Result=ld. out=0
(Out is being used to indicate overflow of the counter or the bit that was shifted out of the register.)

You must use your 4-bit ALU to implement this (at least for func=00, 01 and 10). You also will need to
write a testbench, modeled on the one provided for the 1-bit ALU, which tests your code. You will be
graded on how well your testbench actually tests. Notice that this device has state, so testing this could be
quite different.

You may assume the clock period will be at least 10 time units.

