
Verilog Reference Guide for EECS 470

Purpose:
 This document is intended to provide a quick reference for writing Verilog code for
homework assignments and the final project in EECS 470. This is not a general purpose
reference on the Verilog language, and does not describe how Verilog works.

1) Verilog is "like" C

It is case sensitive, same comments (C++ style // and C style /*, please use //), and treats
whitespace in the same way.
A few more things are allowed in identifiers, and there are different reserved words, but
for the most part identifiers are the same
Many of the operators are the same as well, and many of the control structures look very
similar, and in some circumstances C code and verilog code mean pretty much the same
thing

2) Verilog is NOT "like" C
Verilog describes hardware, which is inherently parallel. Only in very limited
circumstances is the sequential nature of C preserved. Be aware that for the most part,
everything is happening in parallel and you are really describing hardware structures.
Verilog supports lots and lots of things, but that does not mean that the tools support
them or support them properly. Unlike C, Verilog is commonly compiled, synthesized,
and simulated. Each use entails very different functionality so being in the language
doesn’t mean a whole lot.

3) Modules

The basic organizing unit in verilog. Think of these as the "boxes." They have inputs and
outputs and internals that the outside world does not see.

 Declaration (defines what one of these boxes looks like):

 module my_simple_mux(select_in,a_in,b_in,muxed_out);

 // all inputs and outputs listed
 input select_in, a_in, b_in;
 output muxed_out; // defaults to wire but can ovverride

 assign muxed_out=select_in?b_in:a_in;

endmodule

Two instantiations with the same meaning (makes the boxes inside a bigger box):

my_simple_mux m1(.a_in(a),.b_in(b),.select_in(s),.muxed_out(m));
// note that the order of the operands does not matter

my_simple_mux m1(s,a,b,m); // note the order of s (which matters)

4) Variables

Two basic kinds of "variables," wires and regs. Wires can have no state. They are
always evaluated in terms of other values. They are highly restrictive and so are very
safe to use. Regs can have state and almost anything can be done with them so they
are more flexible and more dangerous. Any output can be redeclared as a reg (default is
wire). All variables have a size in bits. Default is one bit, size is given as a range from
one bit number to another. In a sense, many variables are like an array of bits. Either
endianness is possible, we suggest big-endian (as in these examples).

wire [7:0] an_8bit_wire, another_8bit_wire;
// an_8_bit_wire[0] is the rightmost bit, an_8_bit_wire[1:0] is
// the two rightmost bits
reg a_single_bit_register;

5) Operators

+, -, *, >, <, >=, <=, ==, !=, <<, >>, (), &, |, ~, ^, ?: are all like
C and can be used in expressions in both always blocks and in assign statements. A
short description of the ones less common in C:
& Bitwise and
| Bitwise or
~ Bitwise negation (can generally be combined with another operator so ~& is

bitwise nand
^ Bitwise xor
<< Left shift
>> Right shift
? : a?b:c yields b if a is true and c if a is false (note that just like in C, 0 is false

and 1 is true)
 Additionally there are the {} operators
 {a,b,c} concatenation puts a,b,and c after one another into a single value
 {n{m}} makes a single value that is n copies of m one after the other

6) Literals

Verilog allows many different bases to represent literals. A literal is a size in bits followed
by the ’ character (the "right" tick which should be on the same key as “) followed by a
base indicator (most common are b=binary, d=decimal, h=hex) followed by the value.
Some of these parts are optional, but it is good to get into the practice of including all of
the parts.

Examples:
8’b00001010 a byte with decimal value 10
32’d10 a 32-bit word with decimal value 10
8’ha a byte with decimal value 10
In general, the value is 0-extended to the left to fit the specified size.

To make matters more complicated, bits can be more than 0 and 1. x means unknown
and z means disconnected. In general, these are going to be bad values that you will
see as output when something is broken. However, it is perfectly possible to introduce x
values into your code on purpose to help the synthesis make faster circuits. When a
combinational circuit has an x value as output, the synthesis will pick whatever output it
thinks makes for a faster circuit. So, if some value is never possible as input, you might
set the outputs to x for that output. This is not recommended until you are comfortable
with Verilog however.

7) Macros

Like a #define in C, but all uses must use the ` character (the "left" tick, should be on the
same key as ~)

 Definition and use:

 ‘define MY_CONSTANT 3’b010
 a = b + ‘MY_CONSTANT; // really a = b + 3’b010;

8) Debugging with $display and $monitor

$display is like printf in C, even with very similar format strings (but no need for a trailing
\n, that is included). It displays something every time the statement is executed
$monitor sets up a background watcher on some signals and prints something every time
one of them changes.
These can be very useful methods of debugging because the GUI we have to look at
things is much slower than simply running your simulation from the command-line. They
should be ignored by the synthesis because they don’t really have anything to do with
actual hardware, just the simulation.

examples:

 $monitor ("At time %4.0f: r=%d, u_d=%d", $time, r, u_d);

$display ("Got to else part and the instruction is %h", inst)

Example State Machine Code

 A simple state machine that counts from 0 to 1 to 2 then back to 0 with an asynchronous
reset to 0.

‘define SD #1

module three_state_counter(clock, reset, enable, current_state);

 input clock, reset, enable;
 output [1:0]current_state;
 reg [1:0]current_state_reg;
 reg [1:0]next_state;

 assign current_state=current_state_reg;

 always @(current_state_reg or enable)
 begin
 if (enable)
 begin
 case(current_state_reg)
 2’b00: next_state=2’b01;
 2’b01: next_state=2’b10;
 2’b10: next_state=2’b00;
 2’b11: next_state=2’b11; // Should never happen after reset
 endcase
 end
 else
 next_state=current_state_reg;
 end

 always @(posedge clock or posedge reset)
 if(reset)
 current_state_reg <= ‘SD 2’b00;
 else
 current_state_reg <= ‘SD next_state;

endmodule

