
EECS 470 Homework 5 1

 Due Monday April 4th@6pm – 50% credit if turned in on Tuesday April 5th
between 3:30-4:30pm in 2220 EECS

Name: __________________________ unique name: ______________ Disc. section start time: _______

You are to turn in this sheet as a cover page for your assignment. The rest of the assignment should be stapled to
this page. See the website for details about where to turn in your assignment. This is an individual assignment, all
of the work should be your own. Assignments that are unstapled, lack a cover sheet, or are difficult to read will lose
at least 50% of the possible points and we may not grade them at all. If you use references other than the text and
class notes, be sure to cite them!

This assignment is worth a bit less than 2% of your grade in the class and is graded out of 30 points. Remember you
may drop one homework assignment or quiz score.

1. In class we discussed the following code fragment:

r1=MEM[r2+0] //A
r1=r1*2 //B
MEM[r2+0]=r1 //C
r2=r2+4 //D
bne r2 r3 Loop //E

We showed that using software pipelining it could be converted to:
r4=MEM[r2+0] //A1

 r1=r4*2 //B1
 r4=MEM[r2+4] //A2

Loop: MEM[r2+0]=r1 //C(n)
 r1=r4*2 //B(n+1)
 r4=MEM[r2+8] //A(n+2)
 r2=r2+4 //D(n)
 bne r2 r3 Loop //E(n)

a) As discussed in class, the above loop will execute the load two extra times, and multiplication one

extra time. Rewrite the loop so that software pipelining is still in use, but each of the instructions
are executed the correct number of times. [3]

b) Another problem with the above code is that currently the pipelined code fragment cannot execute
an iteration of D and one of E in the same loop body. Unroll your solution to a) once to fix this
problem. [5]

2. Rewrite using the following code fragment using CMOV so that it has the same exception behavior but

does not branch. Use as few additional registers as possible. You may not perform any more loads or
stores than required. You may assume that loading from address 11000 will not cause any exceptions. [4]

if(R2>10000)
 R3=MEM[R2+R1]
else
 R3=100

3. 4.21 [4]

4. Consider the example that starts on page 317. The caption of figure 4.5 claims that it requires the use of at

least 8 floating point registers.
a) Is that correct? Explain your answer. [2]
b) In that example the loop was unrolled 7 times, took 9 cycles to execute 23 instructions, uses 15

floating-point registers and requires some number of floating-point registers (from part a). How
would those numbers change if it were unrolled 9 times? [4]

5. Define the following terms and why they are important to compilers. [3]
a) Live value
b) Register spill
c) Register preasure
d) Caller/callee save registers

6. Consider the following C code:

for (i = 0; i < MAX; i++) {
 a[i] = a[i] + b[i];
 } //end for

That C code is translated into the following x86-like assembly language:
(note: the ++ indicates the “autoincrement” addressing mode. See page 98 if needed.)
You can probably find the answer to this by doing a web search. At least try to do it yourself first…

 mov r1, addr(a) -- address of a[0] into r1
 mov r2, addr(b) -- address of b[0] into r2
 mov rx, MAX -- Number of iterations into rx
l1:
 ld r3, (r1) -- load indirect into r3 through r1
 ld r4, (r2)++ -- what r2 points to loaded in r4
 fadd r5, r3, r4 -- r5 holds sum of two elements
 st r5, (r1)++ -- store result and post-increment
 loop l1 -- does an autodecrement (by 1) of rx
 -- if rx isn’t zero branches to l1

And then that assembly code is software pipelined.

-- Initialization:

mov r0, addr(a) -- r0 is pointer to a[0]
mov r1, r0 -- copy address of a[0] into r1

 mov r2, addr(b) -- r2 is pointer to b[0]
 ___blank A______
 ___blank B______
 ___blank C______

fadd r5, r3, r4
ld r3, (r1)++
ld r4, (r2)++

l2: st r5, (r0)++
 fadd r5, r3, r4
 ld r3, (r1)++
 ld r4, (r2)++

loop l2 -- decrement rx, if != 0 jump to l2
 ___blank D______
 fadd r5, r3, r4
 st r5, (r0)

a) Supply the missing code for each blank [1 point each]
b) If, in the original C code, MAX is less than ________ the software-pipelined loop will behave incorrectly.

[1]

