18-349 Project #4

Analysis of

Embedded Real-Time Systems
Total: 100 points

NOT a Group Project, but an individual project

Deadline: The final lab report for this project is due by midnight on in two weeks
The objective of this project is to broaden your understanding of building embedded real-time systems. In particular, you will familiarize yourself with

· the use of a commercial tool available in this domain to automate and facilitate the design, analysis and verification of real-time systems, and

· deepen your knowledge of real-time schedulability analysis (particularly rate-monotonic analysis), the dominant technology used in the analysis of embedded real-time systems.

This project consists of the following several parts.

1. Understanding the worst-case scenarios of rate-monotonic scheduling (RMS).

2. Understanding the good behavior scenarios of rate-monotonic scheduling (RMS).

3. Comparison of real-time synchronization protocols used to control priority inversion.

4. Analysis of the Controller Area Network bus (CANbus).

5. Multi-processor environments.

6. Customizing your project.

Each part is aimed at increasing your understanding of rate-monotonic analysis and how it can be used. While the project may seem long, once you familiarize yourself with the tool and understand what is to be done for each part, you can literally breeze through each part rather quickly. This is because the tedious calculations that you performed in Quiz #5 are taken care of by the tool (instantaneously). Such instant calculations are precisely why computers are powerful and why computer-aided design has turned out to be very useful in practice.

1. Introduction

1.1 The Software Tool to be used

In this project, you will use TimeWiz, a commercial product which is used for the design and analysis of embedded real-time systems. The tool was developed by TimeSys Corporation, and is used by several companies in industry segments including telecommunications, automotive manufacturing, defense, aerospace, medical electronics and networking.

1.2 Software Installation

CD-ROMs containing TimeWiz will be available in the 18-349 laboratory. Please install the software on a Windows NT desktop that you have access to, and return the CD-ROM to the lab. The use of Windows 95/98 is not recommended. When you install the software, you must enter a “key” that will allow you to save TimeWiz project files. If you do not enter the “key” when you install the software, you will only get a demo version of the tool. The demo version disables many features including saving your work in files to be read later.

We strongly recommend that you not even try to install the software on Windows 95, Windows 98 or Windows ME. Please work only with Windows 2000 or Windows XP.
1.3 TimeWiz Documentation

Documentation on TimeWiz consists of a bound manual, a separate document discussing its uni-processor analysis capabilities, online help and tutorial examples. You may want to familiarize yourself with the tool before proceeding with the rest of the project.

1.4 Software Demo

A demonstration of the TimeWiz software will be given the week of Oct 30. Please plan on attending this presentation since it will help you significantly with the project.

1.5 Lab Coordinator and Recitation

18-349 Teaching Assistant will be the lead-coordinator for this project. He will conduct an evening recitation where he will walk you through use of the TimeWiz tool. Please watch for an announcement on blackboard.

1.6 Warning

Software (even commercial products) can crash - just look at Windows (Save your work frequently. A strong recommendation is to make pretty regular copies of the current project file that you are working with. In addition, we recommend that each part separately on different files. (This is primarily because the version that we have is relatively old, and the latest version is pretty expensive for academic usage).

2. Project Deliverables

This project is not a group effort, but must be done individually.
2.1 Report

You will not be doing a demo of this project. Instead, you must deliver a detailed written report; add plots, diagrams (hardware and/or software architecture diagrams from TimeWiz as appropriate + spreadsheet data) as you see appropriate. Such outputs from TimeWiz can be attached as separate sheets in your final output. But your write-up should summarize the results for each part clearly and concisely. The write-up therefore will document your results and your understanding of each part. The attached diagrams, as you see fit, will detail the path you took to reach the conclusions in the write-up.

2.2 Deadline

The project must be completed and the final project report is due on Nov 10.

2.3 Instructions

If two tasks have the same period, under rate-monotonic scheduling, they essentially can be treated as the same task. Hence, in any of the cases below, if you are asked to construct n different tasks, they are supposed to be tasks with n tasks with n distinct periods. If any two of those tasks have the same period, they will considered to be a single task. As a result, you will violate the requirement of having n different tasks, and you will lose significant number of points.
Also, please read the instructions for each part carefully. If you mis-understand the instructions and end up providing the wrong answers, you will again lose significant number of points.
3. Part A - The Worst-Case Scenarios for RMS

The objective of this part is to obtain an understanding of the “bad” cases under rate-monotonic scheduling (RMS).

You know by now that the utilization bound (UB) test for rate-monotonic scheduling is n(21/n –1) where n is the number of tasks being scheduled. But in practice, it is rather hard to reach this utilization bound (which is called the “least upper bound of utilization” under RMS).

Your assignment is to design 4 different task sets with n = 3, 5, 7 and 9 respectively. The total utilization of the task set must be as close as possible to n(21/n –1), but increasing the Ci of any task will cause a deadline of some task to be missed. Assume that context-switching costs are zero.

In TimeWiz, you do not represent tasks explicitly and assign Ci values to them. You create “events” that represent periodic (or aperiodic) triggers, and you create a chain of “actions” (together called the “response”) that get invoked when an event happens. For Part A and Part B, you assign period Ti values to each event, and then assign Ci values to one action that you trigger from each periodic event.

Hint: Look at your recitation notes. If you do not have any recitation notes, beg, borrow or steal! Else, just simply play with n = 2, get a feel, then play with 3 tasks and so on. Adjust periods Ti first, but then quickly jump to adjusting Ci values.

4. Part B – The Good Scenarios for RMS

The objective of this part is to obtain an understanding of the more common (good) scenarios under rate-monotonic scheduling.
A task set is said to be harmonic if every task period in the task set is an integral multiple (or sub-multiple) of every other task period in the task set. Thus, task periods 10, 20 and 40 are harmonic. But, periods 20, 40 and 60 are not harmonic.

(a) Design 3 task sets with n = 6, 12 and 18 respectively whose total utilization is 100% but the task set is schedulable under RMS. Generalize the properties of your task set. Hint: Use cut-and-paste to create more tasks – you can change parameters later. Recall the earlier warning that two or more tasks cannot have the same period.
(b) Design 2 task sets with n = 4 and 8 respectively. The task sets must not be harmonic in nature. However, the total utilization of each task set must be 100% but is schedulable under RMS. You are not allowed to use Ci values of zero. Compare your characterization in (a) above with the result here. Hint: Check out the quiz on real-time systems.

(c) Change the parameters of the task set in (b) above and show that deadlines can be missed at a utilization of less than 100%.

5. Part C - Comparison of Real-Time Synchronization Protocols

The objective of this part is to compare and contrast three real-time synchronization protocols used to bound and minimize priority inversion.

1. The (basic) priority inheritance protocol

2. The priority ceiling protocol (or use the “highest locker priority” protocol, a.k.a. “priority ceiling protocol emulation”)

3. The non-preemption protocol (a.k.a. the “kernel priority protocol”).

Design a task set with n = 7 and a total of 4 mutexes (binary semaphores). Each of the mutexes guard a logical resource (where logical resources are numbered from 1 to 4). In TimeWiz, you do not represent mutexes explicitly. To have a mutex, you introduce a “logical resource” and require that a particular software “action” use both the CPU and the logical resource. You pick the appropriate real-time synchronization protocol as the data-sharing policy of the CPU – this policy is then applied to all the logical resources used by this CPU. Each time you introduce a “critical section” within a “response”, you must add two new actions, one to capture the simultaneous use of the CPU and a logical resource and another to represent the use of the CPU after the critical section.

In your task set, task 1 accesses logical resource 1, 2, and 4. Task 2 accesses logical resources 3. Task 3 accesses logical resource 1. Tasks 4 and 5 access logical resources 2 and 4. Task 6 and 7 access logical resource 3. When a task is said to access multiple logical resources, it does not do so in nested fashion but in serial fashion (i.e. it locks logical resource A, unlocks it, and then later, locks another logical resource B, etc.)
(a) Design the task set such that it is schedulable under all 3 synchronization protocols. You are not allowed to use critical-section durations of zero. Discuss briefly why the task set is schedulable under all these real-time synchronization protocols.

(b) Change the parameters of the task set in (a) – you are not allowed to change Ti values – such that the task set is schedulable under the (basic) priority inheritance protocol and the priority ceiling protocol, but not under the non-preemption protocol (the kernel priority protocol). Discuss briefly why this happens.

(c) Change the parameters of the task set in (b) – again, you are not allowed to change Ti values - such that the task set is schedulable under the priority ceiling protocol (or “the highest locker priority” protocol) but not under the other two protocols. Discuss briefly why this happens.

6. Part D – Analysis of the Controller Area Network bus (CANbus)

In this section, you will learn how RMA can be used to analyze a resource other than the CPU. In particular, we shall apply RMA to a serial-bus network that is used in automotives and manufacturing plants called the Controller Area Network bus (or CANbus in short). Each message in CANbus has a header, a message size (data field), a source, a destination, and a priority (represented in the message ID). No message can exceed a maximum size. In any given bus arbitration cycle, the message with the highest priority “wins” the arbitration and gets to use the bus. Once a message starts transmission, it must complete transmission before the next arbitration begins. If messages from nodes connected to the CANbus (called “stations”) are sent periodically, all the CANbus messages can be analyzed and one can check whether all messages will be delivered to their destinations on time.

Hint: TimeWiz contains a project file in its examples directory showing how TimeWiz can analyze a CANbus-based system using an automotive benchmark from SAE (The Society of Automotive Engineers). Play with it!

You must answer in your report the following questions:

(a) Design a task set with communication through CANbus that show the effect of the non-preemptive aspect of the message transmission, i.e., if they were preemptive it would be schedulable.

(b) The CANbus is available in different speeds. Slower the bus, cheaper it is. Concoct a task set based on the example task set in TimeWiz, which is not schedulable using the slow CANbuses available (at 0.25Mbps and 0.5 Mbps) but is schedulable using its fastest version (1Mbps). Suppose that this were the task set that you would like to deploy on the high-end BMW or Mercedes car (both of which currently use CANbus!) for whose electronics you are currently responsible. Remember that the average cost of electronics per car in cars manufactured today is about $3000! Which version of CANbus would you use for this task set and why?

7. Part E – Analyzing Multi-Processor Environments

RMA can be used to analyze multi-processor environments as well where more than one processor is deployed. Task sets typically consist of tasks that cannot fit within a single processor. Hence, one must decide which task must be “assigned” to what processor. Once a task is “assigned” to a processor, the task always runs on that processor – it preempts lower priority tasks on that processor and is also preempted only by tasks on that processor. This enables analysis to be done on each processor independent of the activities on the other processors. If each processor is schedulable by itself, and every task has a processor, all tasks are schedulable! (This assignment policy is not optimal; but the optimal assignment is known to be an NP-hard problem – that is, an optimal policy would require an exponential # of steps in the number of processors and/or tasks).

Two techniques are often used to make this assignment. One packs each used processor as tightly as possible – this is called “bin-packing”. The other technique spreads the load across all the available processors so that no processor is heavily loaded – this is called the “load-balancing” approach.

(a) Design a 4 processor system with 25 tasks, where no single task utilization exceeds 10%. Each task must have a different period. The task periods also range from 10 ms to a few seconds. Use both the bin-packing and load-balancing techniques supported by TimeWiz to assign tasks to processors. What is the utilization on each processor? Your total utilization must be between 175% and 200%.
(b) Repeat (a) for a total utilization of the complete task set to be between 225 and 250%.

(c) What are the pros and cons of using bin-packing and load-balancing? Hint: Think of trying to stuff as much as possible into a few suitcases as opposed to multiple suitcases when trying to travel. At the same time, assume that you are traveling on a plane for a critical event that you want to have stuff at, but your favorite (or only) airline that you can fly on has a tendency to lose and/or mis-route baggage. In other words, node failures can happen.

18-349 Embedded Systems
Project #4
Page 1

