Lab 5

	[image: image1.jpg]
 18-349

Embedded Systems

Lab 5

Process Scheduling and Synchronization

Writing MyOS, a Simplified Operating System

Table of Contents

31
Introduction

31.1
Schedule

31.2
MyOS

52
Development Environment

63
Part 1 Requirements

63.1
Process Management

63.2
Semaphore Management

74
Part 2 Requirements

74.1
Real-time Process Management

74.2
Highest Locker Priority Protocol

85
Final Demo Requirements

85.1
Final Demo Signup and Handin

96
MyOS Overview

107
MyOS Global Data Structures and Variables

107.1
Process Priority

107.2
Process State

107.3
Process Queues

117.4
Event

117.5
Process Control Block (PCB)

127.6
Global Variables and Error Codes

137.7
Provided Functionality

148
Fixed-Priority Process Management Requirements

159
Fixed-Priority Semaphore Requirements

1610
Rate-Monotonic Process Requirements

1610.1
Rate-Monotonic Task Create API

1610.2
Rate-Monotonic UB Test

1610.3
Rate-Monotonic Scheduler

1711
Highest Locker Priority Protocol Requirements

1711.1
Highest Locker Priority Semaphore

1711.2
Rate-Monotonic UB Test with Blocking

1812
18-349 Project 5 Grading Sheet

1
Introduction

This lab will formally introduce you to program a simplified operating system MyOS which is a multitasking kernel that can manage up to 63 tasks and provide process synchronization. You will be given MyOS skeleton as a guideline to design and implement process scheduling and process synchronization.

This lab requires you to do four things

· implement a set of system calls for process management (create, suspend, resume, delay).

· implement two CPU scheduling policies that you have learned in the class, Fixed-Priority and Rate-Monotonic to support real-time applications.

· implement semaphores as a synchronization primitive.

· adapt semaphores using Highest Locker Priority protocol to solve the priority inversion problem in real-time systems.

In the first part of the lab, you are expected to implement MyOS to support Fixed-Priority scheduling and Fixed-Priority semaphores. In the second part of the lab, you are expected to extend MyOS to be a real-time operating system using Rate-Monotonic scheduling and Highest Locker Priority protocol.

The grading criteria of this lab is based on the completeness and correctness of your solution. Since an operating system is the heart of the system, we encourage you to make sure that MyOS is stable and can handle unexpected input.

As a result, we strongly encourage you to start early and spend tons of time testing your code.

1.1 Schedule

	Date
	Description
	What To Turn In

	Part 1

	A set of system calls for process management,

Fixed-Priority CPU scheduler and Fixed-Priority semaphore management
	Submit your commented code in handin directories.

	Part 2

	A real-time MyOS with Rate-Monotonic scheduler and Highest Locker Priority protocol.
	Bring hard-copies to demo,
Turn in commented code to handin directories.

1.2 MyOS

The goal for this lab is to successfully implement a simplified operating system which can support multitasking and process synchronization. MyOS is a simplified operating system which provides process management and synchronization. Due to the limited time of this lab, MyOS does not support storage management, virtual memory management, deadlock handling, etc. like general operating systems. However, this simplified operating system will give you some idea of how an operating system works. At the end of this lab, MyOS will be able to support up to 63 tasks. Tasks can be created, suspended, resumed and delayed. They will be scheduled based on MyOS’ scheduling policy which can be Fixed-Priority or Rate-Monotonic. The proper semaphore management will be used based on the scheduling policy, i.e. Highest Locker Priority protocol for Rate-Monotonic scheduler. For Rate-Monotonic Scheduler, MyOS will provide an API for real-time periodic processes to specify {C,T} where C is the process worst-case computation time and T is the process period. You will need to implement the UB Test and Highest Locker Priority protocol along with RM scheduler.

For this lab, you will be given MyOS skeleton which will help you implement an operating system easier. We will provide you some assembly context switch primitives, some system initialization and IRQ settings. Even though you do not have to write these functions by yourself, you need to understand them and should be able to explain them to us during the demo.

2 Development Environment

You will be using the ARM Developer Suite (ADS) version 1.2 for your development work. You may use the 1.1 or 1.2 evaluation versions on your personal machines but the final demo will be on ADS v1.2 in the HH1307 lab.
You will again be using the X-Board for this lab. Please handle the X-Boards with the utmost care and don’t move the boards around.

Please read the CMU Blackboard course website regularly for any updates. All the announcements relating to the lab will be posted there. You are strongly urged to make use of the discussion forums on the Blackboard.

Before starting out with the lab, please download the lab5zip archive (Lab5ode.zip) from the course web page. The zip archive contains:

· Various header files

· MyOS skeleton

· Test files

3 Part 1 Requirements

For the first part of this lab, you are expected to implement MyOS to support Fixed-Priority scheduling and Fixed-Priority semaphores. We will give you the header and description of all functions. You then need to implement the body of those skeleton functions. This includes the body of system calls for process management which involves creating, suspending, resuming and delaying process. Your code should also provide semaphores as a synchronization tool to deliver mutual exclusion of shared data and resources among processes. In detail, your code should perform the following two tasks:

3.1 Process Management
Your code should provide system calls to create, suspend, resume, delay and query a process.

Your code should be able to create multiple tasks with different priorities which will be executed properly based on Fixed-Priority scheduling policy. Tasks can be suspended and resumed its execution. In addition, tasks can be delayed for execution for a given CPU ticks and resumed automatically when the timeout occurs. The user can query a copy of PCB of a given process.

3.2 Semaphore Management
For the semaphore management, you will need to implement system calls to create, wait, signal and query a semaphore. Your code then should be able to create mutliple tasks sharing some data and use semaphores to synchronize them.

4 Part 2 Requirements

For the second part of this lab, you are expected to extend MyOS to be a real-time operating system using Rate-Monotonic scheduling and Highest Locker Priority semaphores. Instead of giving a skeleton of all functions like in the first part, this time you can program in whatever fashion as long as you can provide a system call to create a task with specified {C,T}. In detail, your code should perform the following two tasks:

4.1 Real-time Process Management
Your code should provide system calls to create a task with {C,T} real-time specification where C is the task worst-case computation and T is the task period. Since Rate-Monotonic is also a Fixed-Priority preemptive scheduling, you can use your code from part 1 to do all process management needed in this part. All you need to do is mapping the priority of each task based on its period.

In order to make sure that your system is not overloaded, your code should also provide the admission control using UB Test you have learned in the class. For simplicity, you will not need to do RT Test for this assignment. Your code should return an error when the new task you are creating will make a task set unschedulable.

4.2 Highest Locker Priority Protocol

Fixed-Priority semaphore management may cause an unbounded priority inversion in real-time system. Consequently, tasks can miss their deadlines. To prevent unbounded priority inversion, your code should modify the Fixed-Priority semaphore management to use Highest Locker Priority protocol. The Highest Locker Priority protocol does not eliminate the priority inversion problem but bound its effect. Therefore, your code needs to include the priority inversion effect as a blocking term in your admission control.

5 Final Demo Requirements

This lab has two parts. The first part is MyOS with Fixed-Priority scheduling and Fixed-Priority semaphores; the second part is MyOS with Rate-Monotonic Scheduling and Highest Locker Priority semaphores. At the Final Demo, the TAs will create a set of tasks to test all functionalities expected in MyOS. To test the stability of your operating system, the TAs may try to input malicious input to crash your system.

6 MyOS Overview

The code given to you includes:

· Header files: includes.h, os.c, os.h, os_cfg.h, os_cpu.h

· OS_CPU files: os_cpu_a.s, os_cpu_c.c

· Skeleton files: os_core.c, os_sem.c, os_task.c, os_time.c

· Sample test files
As a guildline, we will give you data structures for MyOS global variables and function prototypes which are defined and declared in header files.

Some useful functions given in OS_CPU files include the assembly code to perform actual context switching, some hardware initialization, IRQ setting and some simple APIs. This will let you focus on the process management and process synchronization and do not worry about implementing all APIs. However, even though you do not to write those functions by yourself, you are supposed to understand them and should be able to explain about them during the demo.

In skeleton files there are some functions which you will need to fill in its body to satisfy the function description we define.

7 MyOS Global Data Structures and Variables

Most of MyOS data structures and variables are declared in os.h. In the following, we list and explain some data structures that you need for your assignment.

7.1 Process Priority

MyOS supports 64 priority levels, 0 to 63 where 0 is the highest priority and 63 is the lowest priority, which is reserved for the idle task. Each task must have different priority. In other word, two tasks cannot have the same priority. With this assumption, MyOS can use task priority as the internal task index.

7.2 Process State

There are five process states supported in MyOS:

· OS_STAT_RDY: when task is ready to run
· OS_STAT_SEM: when task is pending on semaphore
· OS_STAT_MBOX: when task is pending on mailbox. We do not use this state for this assignment.
· OS_STAT_Q: when task is pending on queue. We do not use this state for this assignment.
· OS_STAT_SUSUPEND: when task is suspended.
7.3 Process Queues
Ready Queue

OSRdyGrp and OSRdyTbl represent the ready queue in MyOS. Instead of using the regular link list to represent the queue, MyOS uses bit mask lookup table. A queue will have two bit mask tables: the group-level table and the task-level table. MyOS divides 64 priority levels into 8 groups. The group index is determined by priority>>3. When a task is put into the ready queue, the bit corresponds to its group index and its priority index will be set in OSRdyGrp and OSRdyTbl respectively. This bit mask look up table technique is very efficient for Fixed-Priority scheme if the number of tasks supported in the operating system is not very high. You can determine the highest priority task in the queue by using the bitmap pattern OSMapTbl and OSUnMapTbl as following:

 y = OSUnMapTbl[OSRdyGrp];

 bity = OSMapTbl[y];

 x = OSUnMapTbl[OSRdyTbl[y]];

 bitx = OSMapTbl[x];

 prio = (INT8U)((y << 3) + x);

Wait Queue

MyOS will create a separate wait queue for each semaphore associated with pevent->OSEventGrp and pevent->OSEventTbl where pevent is the event control block. Wait queues use the same bit mask lookup table technique as the ready queue.

7.4 Event

There are three events defined in MyOS: OS_EVENT_TYPE_SEM, OS_EVENT_TYPE_MBOX, OS_EVENT_TYPE_Q.

For this assignment, you will use only OS_EVENT_TYPE_SEM to implement semaphores.

Event Control Block data structure, OS_EVENT:

	void *OSEventPtr
	The pointer to event. This is used by OSEventFreeList to point to the next free event control block.

	INT8U OSEventTbl []
	The task-level lookup table for the wait queue of this event. The list of tasks waiting for this event to occur.

	INT8U OSEventGrp
	The group-level lookup table for the wait queue of this event.

	INT16U OSEventCnt
	The semaphore count

	INT8U OSEventType
	The type of the event.

7.5 Process Control Block (PCB)

Each task in MyOS is represented by a process control block (PCB) – also called a task control block (TCB). TCB contains many pieces of information associated with a specific process includes process state, program counter, CPU registers, process priority, process stack, etc. The following is the data structure of TCB used in myOS, OS_TCB:

	OS_STK *OSTCBStkPtr
	Pointer to current top of stack of the process

	OS_TCB *OSTCBNext
	Pointer to next TCB in the TCB list

	OS_TCB *OSTCBPrev
	Pointer to previous TCB in the TCB list

	OS_Event *OSTCBEventPtr
	Pointer to event control block this task is waiting

	INT16U OSTCBDly
	Number of ticks left to delay this task.

	INT8U OSTCBStat
	The process state

	INT8U OSTCBPrio
	The process priority

	INT8U OSTCBX
	Bit position for task-level lookup table at the corresponding group entry (0 to 7)

	INT8U OSTCBY
	Bit position for group-level lookup table (0 to 7)

	INT8U OSTCBBitX
	Bit mask to access bit position in task-level lookup table at the at the corresponding group entry

	INT8U OSTCBBitY
	Bit mask to access bit position in group-level lookup table

7.6 Global Variables and Error Codes

You must properly use the global variables and error codes declared in os.h in order to integrate all components together. We provide the description of each error code and variable in os.h. The following is more descriptions to help you clearly understand some global variables.

	OS_Event *OSEventFreeList
	Pointer to the head of free event control blocks list

	OS_Event OSEventTbl []
	Table of event control blocks. Initially, the event control boxes in this table will be formed a free link list to be used as a global pool of event control blocks.

	INT32U *OSIntNesting
	The interrupt nesting level. This number is increased every time there is a nesting interrupt generated and decreased when the interrupt service is done. You will need to use this variable to ensure that MyOS performs context switch only at the last nested ISR.

	INT32U *OSLockNesting
	The lock nesting level to prevent rescheduling to take place. This value is set by OSSchedLock() and OSSchedUnlock(). You will need to use this variable to ensure that there is no context switch when OSLockNesting > 0.

	INT8U OSPrioCur
	The priority of the current process. Basically, this is the index of the running process.

	INT8U OSPrioHighRdy
	The priority of the next ready task to be executed. This should be the highest priority of tasks in the ready queue when the context switch is performed.

	OS_TCB *OSTCBCur
	Pointer to the current process’s TCB.

	OS_TCB *OSTCBHighRdy
	Pointer to the highest priority ready task’s TCB.

	OS_TCB *OSTCBFreeList
	Pointer to list of free TCB

	OS_TCB *OSTCBList
	Pointer to doubly linked list of used TCB. This is useful when you have to check the timeout event of all processes in OSTimeTick().

	OS_TCB *OSTCBPrioTbl[]
	The table of pointers to PCB indexed by the task priority

7.7 Provided Functionality

In file os_cpu_a.s we provide some useful assembly functions which are:

	void IRQContextSwap(void)
	This function performs the context switch when IRQ handling is done if necessary.

	void ARMDisableInt(void)
	This function disables IRQ and FIQ preserving current CPU mode.

	void ARMEnableInt(void)
	This function enables IRQ and FIQ preserving current CPU mode.

	void OS_TASK_SWAP(void)
	This function performs context switching of the current process and the given highest priority ready process. OS_TASK_SW will save the context of the old process OSPrioCur and load the saved context for the new process OSPrioHighRdy. This context, which is stored in a process control block (PCB), contains many pieces of information associated with a specific process, such as process state, program counter, CPU registers, CPU scheduling information (i.e. priority) and stack.

	void OSStartHighRdy(void)
	This function starts executing the OSPrioHighRdy process. This function should be invoked when you first start the OS.

In file os_cpu_c.c we provide some useful C functions, which are:

	void *OSTaskStkInit
	This function should be called by OSTaskCreate() to initialize the stack frame for the task being created. It saves the pointer of the task code and the data argument from OSTaskCreate() to the stack, which will be loaded to the program counter by OS_TASK_SW when this task is switched to execute.

	void ARMTargetInit(void)
	This function initializes the hardware, IRQ and the timer. The function sets up the IrqStart and IrqFinish at the beginning and ending of each Irq service to be able to keep track of nesting interrupts.

	void ARMTargetStart (void)
	This function starts the XScale board after ARMTargetInit is done. It installs the timer handler and starts the timer. This should be called when you are about to start MyOS.

8 Fixed-Priority Process Management Requirements

For this part, you will implement functions listed in os_core.c and os_task.c to be able to create, suspend, resume, query a task and schedule tasks based on the Fixed-Priority scheduling policy.

In file os_task.c:

INT8U OSTaskCreate(void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U prio);

This function will initialize the PCB for a new task and put the task into the ready queue.

INT8U OSTaskResume(INT8U prio);

This function will resume the suspended task and put the task into the ready queue.

INT8U OSTaskSuspend(INT8U prio);

This function will suspend the process state and remove it from the ready queue.

INT8U OSTaskQuery(INT8U prio, OS_TCB *pdata);

This function will copy the given task’s TCB to buffer pointed by pdata.

In file os_core.c:

void OSInit(void);

This function will initialize all global variables and create an idle task. The body of the idle task is given by function OSTaskIdle().

void OSIntExit (void);

This function is used to notify the operating system that an ISR has been completed. It should update OSIntNesting and perform a context switch if there is a new high priority task ready to run and there is no nesting interrupts pending.

void OSSched (void);

This function will check whether a new high priority task has been made ready to run. It will update OSPrioHighRdy and OSTCBHighRdy to correspond to this new task and perform a context switch. You can use function OS_TASK_SW to perform a context switch in a register level.

void OSStart (void);

This function will start the highest priority to execute. If there is no task created by the user, the idle task should be executed. It will update OSPrioHighRdy and OSTCBHighRdy to correspond to the task about to be executed. You can use function OSStartHighRdy to start that task.

INT8U OSTCBInit (INT8U prio, OS_STK *ptos, OS_STK *pbos, INT16U id, INT16U stk_size, void *pext, INT16U opt);

This function will initialize the TCB for the given task.

Note:

· Like in the previous labs, an interrupt can occur at any time and you must take care to find and protect the critical sections in your code.

· We encourage you to carefully read the description of each function written in skeleton files and implement the function based on that description.

9 Fixed-Priority Semaphore Requirements

For this part, you will implement functions listed in os_core.c, os_sem.c and os_time.c to be able to create, wait, signal, and query a Fixed-Priority semaphore and delay the task execution for a given ticks.

In file os_time.c:

void OSTimeDly (INT16U ticks);

This function will delay the execution of the current task for a given clock ticks.

INT8U OSTimeDlyResume (INT8U prio);

This function will cancel the delay of a given task.

In file os_core.c:

void OSEventTaskRdy(OS_EVENT *pevent, void *msg, INT8U msk);

This function will make ready the highest priority task that is waiting for the given event, remove it from the wait queue and put it into the ready queue.

void OSEventTaskWait(OS_EVENT *pevent);

This function will remove the current task from the ready queue and put it into the corresponding wait queue for a given event.

void OSEventWaitListInit (OS_EVENT *pevent)

This function will initialize the wait queue in a given event data block.

void OSTimeTick (void);

This is MyOS timer handler, which will update the OS ticks (OSTime) and wake up tasks that have been delayed as specified in OSTimeDly() by putting them into the ready queue.

In file os_sim.c:

OS_EVENT *OSSemCreate (INT16U cnt);

This function will create a semaphore where cnt is the initial value of the semaphore.

void OSSemPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);

This function will let the current task waiting for a semaphore. The task is blocked if the resource is not available.

INT8U OSSemPost (OS_EVENT *pevent);

This function will signal the given semaphore.

INT8U OSSemQuery (OS_EVENT *pevent, OS_SEM_DATA *pdata);

This function will copy the information about the semaphore to OS_SEM_DATA pointed by pdata.

Note:

· Like in the previous labs, an interrupt can occur at any time and you must take care to find and protect the critical sections in your code.

· We suggest you to create your own test files to test your code. In the demo, we will use our own test program. It is your responsibility to test your code carefully.

· We encourage you to carefully read the description of each function written in skeleton files and implement the function based on that description.

10 Rate-Monotonic Process Requirements

10.1 Rate-Monotonic Task Create API

In this part you will extend MyOS to be a RTOS using Rate-Monotonic Scheduling policy. You will implement a system call, OSRTTaskCreate (), which creates a real-time periodic process with a {C,T} specification where C is the task worst-case computation within its period T.

INT8U OSRTTaskCreate (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U C, INT8U T);

where

· task is a pointer to the task's code

· pdata is a pointer to an optional data area which can be used to pass parameters to the task when the task first executes.

· ptos is a pointer to the task's top of stack.

· C is the task’s worst-case computation time in ticks.

· T is the task’s period in ticks.

This function should return error when the new task will make the task set fails UB Test.

10.2 Rate-Monotonic UB Test

To prevent CPU overload, you will need to include UB Test that you have learned in the class to do the admission control test whenever a new task is created. MyOS should not allow the new task to create if UB Test fails. You are allowed to create any additional data structures and functions to support this UB Test. Please aware that XScale does not support floating point.

10.3 Rate-Monotonic Scheduler

Since Rate-Monotonic scheduling policy is also a fixed-priority preemptive scheduling, there is no need for you to change the internal process management from Part 1. MyOS can just determine the priority of tasks based on their periods every time a new task is created. You will need to fill in this functionality.

11 Highest Locker Priority Protocol Requirements

11.1 Highest Locker Priority Semaphore

In this part, you will modify your semaphore to emulate Priority Ceiling protocol using Highest Locker Priority technique. In addition to making the highest priority task waiting for a semaphore ready when the semaphore is signaled, the Highest Locker Priority protocol will execute the task in a critical section at the highest priority among tasks who access the critical section. However, in a simplified version, you can just execute that task with the highest priority in the system (priority 0), which will be reserved for only tasks that access the critical section.

11.2 Rate-Monotonic UB Test with Blocking

You will include UB Test that you have learned in the class to do the admission control test with the blocking term. The blocking term is the maximum time in ticks that a process will spend in a critical section. In other word, it is the bound time of priority inversion. You will need to implement an API to let the user to set the blocking term using the following prototype.

void OSSetMaxBlocking (INT8U B);

where

· B is the maximum block time in ticks.

12 18-349 Project 5 Grading Sheet

	Name(s)
	

	Date
	

	Operations of Tasks
	/15

	Fixed-Priority Scheduling
	/15

	Fixed-Priority Semaphore
	/15

	Rate-Monotonic Scheduling
	/20

	Highest Locker Priority Protocol
	/25

	Coding Style
	/10

	TOTAL
	/100

	Improvements (Extra Credit)
	/10

	Total
	/110

	Comments:

	

	

	

	

�

18-349 Embedded Systems
18

