	18-349

Embedded Real-Time Systems

Lab 3: Concurrency and Interrupts
Writing a Simple Game Using Concurrency
Table of Contents

11
Introduction

1.1
Schedule
1
1.2
TRON Lightcycles Game
1
2
Part 1 Requirements
2
2.1
Current Time Display
2
2.2
Serial Port operating in Polled Mode
2
3
Final Demo Requirements
3
3.1
Final Demo Signup and Handin
3
4
TRON Lightcycles Requirements
4
4.1
Funcionality to be provided
4
4.2
Player Controls
4
5
Timer Subsystem Requirements
5
5.1
Time Display Update
5
5.2
Sleep Function
5
6
I/O Subsystem Requirements
6
6.1
I/O Setup and Initialization
6
6.2
Output
6
6.3
Input
6
6.4
Interrupt Handler
8
7
Integration and Concurrency
9
7.1
Protecting the PrintStr Function
9
7.2
Screen Control Codes
9
7.3
Deadlocks
9
7.4
I/O Buffers
9
8
18-349 Project 3 Grading Sheet
11

1 Introduction
This lab will introduce you to programming in a concurrent environment. You will be given a terminal based version of the Tron Lightcycles game and will write the I/O and timer functions that support the application. The concurrency comes from executing multiple threads of execution. You will need to ensure that the shared data and resources accessed by the game, timer and serial device drivers are properly protected. Concurrency bugs are difficult to debug because, unlike the programs written in 15-211, many bugs are not repeatable - instead they occur only when certain conditions all exist at the same time. You will not want to leave this lab until the last minute.

1.1 Schedule

	Date
	Description
	What To Turn In

	Part 1

	Timer Displayed in corner,
Serial I/O in polled mode
	Submit your commented code in handin directories.

	Part 2

	TRON Game is working
	Bring hard-copies to demo,
Turn in commented code to handin dirs
A written report is required for this lab.

1.2 TRON Lightcycles Game
The goal for this lab is to successfully run a “TRON Lightcycles” game. This game is based on the old Video Game that goes by the same name. The object of the game is to drive your individual Light Cycle around without crashing into the walls, other Light Cycles, or the “trails” left by the other Light Cycles. To play the game, the ADI 80200 Evaluation Board will send and receive data through the Serial Port connected to your Windows PC. The PC will be running Hyperterminal, a terminal emulator, which will display the game as you are playing. It may appear as if the PC is actually running the game, but all it is doing is echoing characters it receives from the ARM 7500 Evaluation Board.

For this lab, you will be given source code for a working copy of the TRON Lightcycles Game and will only be required to implement the components (i.e. the timer and serial port) needed to make it work.

2 Part 1 Requirements
The components used in this lab will be more difficult to create then those used in Lab 2. This is because the different components in this lab cannot be isolated from each other as easily as those in Lab 2. Both the timer and serial port devices will be accessed using interrupt driven I/O. In addition, the timer will require the serial port for when it displays the current time. Because of this, your serial port code must be written knowing that a timer interrupt can occur at any time and you must take care to find and protect the critical sections in your code. To ensure you are heading down the right path, there will be an early submission requirement where you will submit a toned-down version of the components. At this intermediate deadline, your code should perform the following two tasks:

2.1 Current Time Display
Your code should be constantly displaying the current time since your program started in the lower right-hand corner. This time should be updated at 0.1 second intervals. In addition, your timer code should be running in interrupt driven mode for this lab. You may store the time internally in whatever fashion you wish but your output display should be in the form of <min>:<sec>.<tenths>.

2.2 Serial Port operating in Polled Mode
For the intermediate demo, you should have a polled version of the Serial Port driver working. The actual test code should be in a loop where the code is constantly checking for input and echoing any characters typed by the user back to the screen. In addition, when the user types a ‘b’ character, future text should be displayed in bold type. If the user types a ‘b’ character again, then future text should be displayed in normal type. When the user types a ‘q’ character, your program should quit.

3 Final Demo Requirements

This lab has three separate components that must be integrated for the final demo. The first part is the Tron Lightcycles game which is given to you; the second part is the timer subsystem and the third part is the I/O subsystem. At the Final Demo, the TAs will play the Tron Lightcycles game in order to observe how well you integrated the components. To fully prepare for the Final Demo, the TAs will go on a road-trip hunting for an old version of the Tron Lightcycles Arcade game to practice on.

3.1 Final Demo Signup and Handin
You can signup for demos using the web page. Make sure to bring hardcopies of your code with you and submit an electronic copy to in the handin directory:

/afs/ece/class/ee349/handin/<user-id>/project3

If you are late, then turn in your code to:

/afs/ece/class/ee349/handin/late/<user-id>/project3

and send e-mail to the Lead TA for Lab 3.

Make sure to submit fully commented code following the 349 style guide. A written report is required for this lab.
4 TRON Lightcycles Requirements
The TRON Lightcycles game code can be found in:

/afs/ece/class/ee349/projects/project3/code

The actual TRON game can be found in trongame.c. The code given to you will be almost fully functional.
4.1 Funcionality to be provided

The actual game code will work, however there are some functions which you will need to fill in. These functions are:

	void Sleep(int X)
	This function should wait for X tenths of a second and then return.

	void SetInputMode(int Mode)
	This function sets which buffers received characters are placed into. It is discussed in more detail later

	char GetChar(int Buf)
	This function will return the character at the head of input buffer Buf. If the buffer is empty, it will busy-wait until a character is available. Input buffers are also described later

	char GetCharNB(int Buf)
	This function will return the character at the head of input buffer Buf. If the buffer is empty, it will return 0.

	void PrintStr(char *Str)
	This function will buffer the string pointed to by Str for future printing. This function will copy the string into an output buffer and return immediately if there is enough space in the buffer. If there is not enough space, then the function will busy-wait until space is available and then return after the last character has been placed in the buffer.

4.2 Player Controls

Four players will be able to play at once. Table lists the keys used by each player when playing the game.

Player Key Assignments
	Player #
	Up
	Down
	Left
	Right

	1
	8
	2
	4
	6

	2
	W
	X
	A
	D

	3
	I
	M
	J
	K

	4
	T
	V
	F
	G

5 Timer Subsystem Requirements

5.1 Time Display Update
The Timer Subsystem performs two jobs. First, it maintains a running clock displayed in the bottom right-hand corner of the screen. This clock will be updated at least every tenth of a second. The time display should be done with an interrupt handler and not through polling.

5.2 Sleep Function
The second job is to provide the Sleep function. This function allows a task to delay itself an arbitrary amount of time. For this lab, the Sleep function will delay in increments of one tenth of a second and then return.
6 I/O Subsystem Requirements
6.1 I/O Setup and Initialization
This refers only to Serial Port 2. Serial Port 1 is for communication between the host computer IDE and the debug monitor (Angel). You should not alter the configuration of Serial Port 1. The following steps should be taken to initialize Serial Port 2 and its interrupt handler.

· Disable the Serial Port 2 interrupts
· Install the interrupt handler
· Setup the I/O Buffers
· Initialize Serial Port 2
· Enable Serial Port 2 interrupts
Disabling the Serial Port interrupt during initialization is important because it will prevent an interrupt from occurring when only half of the initialization has been completed. A detailed explanation of I/O Buffers can be found in the Appendix. For now, I/O Buffers are used to store output data waiting for the serial port and input data waiting for the user program.

The I/O Subsystem can be divided into three parts, Input, Output, and the Interrupt Handler. We will discuss Output first since it is the simpler of the two.

6.2 Output

From the user end, Output will be accomplished by calling the PrintStr function. The PrintStr function copies a string into the output buffer and enables the Serial Port 2 Transmitter Empty Interrupt (if needed). If the output buffer is full, then the function will busy-wait until the whole string has been copied into the buffer. Once the string has been completely copied into the buffer, the PrintStr function will return. The Serial Port Transmitter Empty Interrupt should be enabled if the output buffer was empty because the Transmitter Empty Interrupt is disabled when there is nothing to print. If the Transmitter Empty Interrupt is not disabled when there is nothing to print, then the Serial Port will constantly generate interrupts indicating that the Transmitter is empty.

In addition, the PrintStr function must be atomic. This means that when a function calls PrintStr, it knows that the string it is asking to print will be printed in its entirety without any other characters intermixed with it from other strings. This is because there can be two calls to PrintStr at any time. The first call will come from the user level code; the second call will come from within the Timer Interrupt Handler as it prints out the time. If PrintStr is not atomic, then the two calls together will create garbled output.

To better control your output, the terminal you are using accepts a mixture of ANSI and VT100 control codes. Additionally, two provided files, term.h and term.c include many screen control primitives that you can use. All of the functions in term.c call PrintStr to buffer the control codes for output. Because the control codes are multiple characters in length, the PrintStr function must be atomic. If an extra character is placed within a control code sequence it will ruin the desired effect.

6.3 Input

Through the magic of Interrupt Driven I/O, any characters pressed by the user will be placed into buffers until the program is ready for them. While the game is running, it will expect two different buffer configurations to be used. In the first configuration, all characters received by the serial port will be placed into a single, global buffer, Input Buffer 0. This is Input Mode 0. While in Input Mode 0, all characters received should be placed into the global input buffer.

In the second configuration, Input Mode 1, there will be four different input buffers, Input Buffers 1-4. Received characters will be decoded and translated before being placed into one of the four different input buffers. The character placed into the buffer will always be a ‘2’, ‘4’, ‘6’, or ‘8’, corresponding to Down, Left, Right and Up. The actual character pressed will determine which input buffer the character should be placed into. When this is accomplished, there will be four input buffers, one for each of the four players. When one of the players presses their Up key, the Serial Port Interrupt Handler should place a ‘8’ in the corresponding player’s input buffer. For example, when the ‘W’ character is received, the ‘8’ character should be added to Input Buffer 2. The Table below lists the Original Characters, Translated Characters, Input Buffers and the corresponding direction for all of the keys which can be pressed. When in Input Mode 1, if any characters not listed in the Table are received they may be dropped.

Table: Character Translations

	Player / Input Buffer
	Original Character
	Translated Character
	Direction

	1
	‘2’
	‘2’
	DOWN

	1
	‘4’
	‘4’
	LEFT

	1
	‘6’
	‘6’
	RIGHT

	1
	‘8’
	‘8’
	UP

	2
	‘X’
	‘2’
	DOWN

	2
	‘A’
	‘4’
	LEFT

	2
	‘D’
	‘6’
	RIGHT

	2
	‘W’
	‘8’
	UP

	3
	‘M’
	‘2’
	DOWN

	3
	‘J’
	‘4’
	LEFT

	3
	‘K’
	‘6’
	RIGHT

	3
	‘I’
	‘8’
	UP

	4
	‘V’
	‘2’
	DOWN

	4
	‘F’
	‘4’
	LEFT

	4
	‘G’
	‘6’
	RIGHT

	4
	‘T’
	‘8’
	UP

The division of buffers is used to speed up and simplify the buffers. When the Tron game determines if a player’s cycle should change direction or not, it needs to determine if that player has pressed any keys. If all of the received keys are stored in a single buffer, then the Tron game must scan the entire buffer. Additionally, if a character is found, it must be removed from the buffer. Removing a character from the middle of a circular buffer is NOT a trivial matter. By creating separate buffers for each player, it is simple to check if a player has pressed any keys.

The SetInputMode function is used to switch between Input Modes 0 and 1. On initialization, the Serial Port 2 Interrupt Handler should be in Input Mode 0.

To retrieve characters from the Input Buffers, two functions are used; GetChar and GetCharNB. Both functions take one argument, an integer between 0 and 4 which specifies which buffer they should read from. If that buffer has any characters in it then the function will return that character and remove it from the buffer. If the buffer is empty then GetChar will busy-wait until a character is received in that buffer while GetCharNB will return a 0, indicating that there are no characters left in the buffer. For your sanity, you should check the argument for both functions to make sure that it is between 0 and 4.

6.4 Interrupt Handler

The serial port interrupt handler code must carefully protect the data structures. Because the PrintStr function and the interrupt handler both modify the output buffer and the GetChar functions and the interrupt handler both modify the input buffers, the buffers must be protected. The simplest way to do this is to disable the serial port interrupt when any buffer is being modified. However, be careful in the PrintStr function; if you busy-wait with the serial interrupt disabled, the output buffer will never empty!

7 Integration and Concurrency

7.1 Protecting the PrintStr Function
The major concurrency issue you are going to have from integrating the three systems together is from printing the time every tenth of a second. In this case, both the Tron game and the timer will be attempting to use the serial port and terminal. There are two issues here. First, problems will occur if the timer handler calls PrintStr while the application is in PrintStr. Both the timer interrupt handler and the application code will be attempting to copy a string into the output buffer and this will cause undesirable results. This can be avoided by having the PrintStr function disable timer interrupts. However, if you busy-wait too long in the PrintStr function your timer will lose accuracy.

7.2 Screen Control Codes

The second conflict between the Tron game and the Timer Subsystem deals with the screen control codes. If the Tron game changes the screen colors, then when the timer handler prints the time it will be in the same color. In addition, if the Tron game positions the cursor in one place, the timer will reposition the cursor when it prints the time. While there are control codes which will save and restore the cursor position, they will not save and restore the cursor color. A solution to this problem is to combine all of the control codes and data into one string and then print that atomically through PrintStr (The Tron Game did just this; it packed all control codes and the associated data into a single string which is then passed to PrintStr). This means that instead of making three calls to PrintStr, one to change the color, one to print the text and one to change the color back, sprintf is used to combine the three previous strings into one. Then, that string is printed in a single call to PrintStr. This ensures that the timer does not print in the middle of the string because PrintStr, if programmed correctly, is atomic.

7.3 Deadlocks

One last problem is deadlocking within the interrupt handler. When either the timer or serial port interrupt handler is entered, ALL IRQs are disabled. If the timer interrupt handler calls PrintStr (or a timer-specific variant) and the output buffer is full, the output buffer will never empty through serial port interrupts. This is because IRQs are disabled, preventing the serial port interrupt from being handled. As a result, functions called from the IRQ handlers should be thoroughly checked to make sure that they do not wait on tasks accomplished by other interrupt handlers.

As an example, one implementation of a FlushOutput function will busy-wait until the output buffer is empty. When interrupts are enabled, all this function needs to do is to compare the head and tail pointers of the output buffer and return when they are equal. However, if the FlushOutput function is called with interrupts disabled it will not work. This is because the serial port interrupt is not being handled and the buffer will not empty on its own. As a result, the FlushOutput function, which works fine with interrupts enabled, will now deadlock the system. To solve this problem, a special version of the FlushOutput function can be written which will manually empty the output buffer if interrupts are disabled.

7.4 I/O Buffers
In order to fully utilize the strength of interrupt driven I/O, buffers must be used to hold data ready for transmit and data recently received. To keep the interrupt handler code as short as possible, the interrupt handler will only place incoming data into buffers, doing little processing. Likewise, the interrupt handler will move outgoing data from a buffer which was already prepared outside of the interrupt handler. The buffers are implemented differently on different systems; some systems dynamically allocate a new buffer for each request, others allocate buffers from a pool, and some will continuously use only a static set of buffers.

For this lab, a static set of six buffers should be used. One of these buffers will be used for output and the remaining five buffers will be used for input. The easiest way to implement the buffers is to create the six buffers as circular buffers. A circular buffer will have at least a head and tail pointer. Optionally, they can have flags indicating if the buffer is empty or full, and an integer storing the number of characters waiting in the buffer.

For one implementation of a circular buffer, the head pointer indicates the next open entry in the buffer; this is where the next data element will be placed. The tail pointer indicates the oldest entry in the buffer; this is the data element which should be the first removed from the buffer. When the head and tail pointers are equal then the buffer is empty and when the head pointer points to the element before the tail pointer the buffer is full. The downside of this simple implementation is that the buffer will always have one wasted space. This is because if the last space is filled in, then the head pointer will advance and point to the same location as the tail pointer. Unfortunately, this is the same situation as when the buffer is empty. Keeping the last space empty prevents this condition from occurring. Alternatively, flags can be added to the buffer structure which will indicate the status of the buffer instead of relying on the relative positions of the head and tail pointers.

The best way to manage buffers is to create a buffer structure which contains the state variables (head, tail and other variables) and an array. The array type will be the type of the data element stored in the buffer. For this lab, the buffers will be storing the characters sent to and received from the terminal and so the array should be of type char. Once the buffer structure is created, then support functions should be written for the buffers. These functions will be used to initialize, insert characters to, remove characters from, and flush the buffers. By creating the buffer structure and support functions, the code will be easier to understand and easier to reuse in future labs. Additionally, they will hide the actual implementation details of the buffers from the code, making future changes easier.

Finally, the size of the buffers needs to be determined. Although the ADI 80200 Evaluation Board has a large memory space, simply creating huge buffers is not always the best approach. Each type of buffer, input and output, has its own trade-offs involved in determining the proper size of the buffer.

For the output buffers, a larger buffer allows more data to be stored in it before the processor must block. However, as the buffer size increases, the more the screen output will fall out of sync with the program. This is because the program will print the data and continue executing, EVEN THOUGH THE DATA IS NOT YET DISPLAYED! For applications where synchronization is not very important, this does not matter. However, in an interactive program, such as Tron, it is very important. The user reacts to what is displayed on the screen and expects that the display on the screen represents the state of the game at that point. If the output buffer is large enough to hold three screens worth of data, then the image displayed on the screen can be outdated. A smaller image buffer will limit how far ahead of the display the processor can be. Additionally, if there is a large output buffer then any changes made to the screen will take a long time to appear if the buffer is filled with other data. It is very aggravating for a user to hit a key and see no immediate change. On the other hand, a small input buffer will cause the processor to constantly busy-wait trying to place data into the buffer. For this lab, you should experiment with different sizes of the output buffer to determine which size works best.

With input buffers, the buffer size depends on the application. Older DOS computers had a very small input buffer for use from the DOS shell. As a result, only a few characters could be typed while the DOS shell was running another program (such as DIR) and this was very inconvenient. Unix systems typically have large input buffers for their shells, allowing the user to type out larger commands while waiting for the previous command to complete. In this case, a large buffer is preferred. However, for other applications, large buffers can be painful. Everyone has been frustrated when a key may be held down for a short period of time only to find out that twice as many keystrokes were buffered. Anyone using emacs over a slow network has probably had the backspace key continues to delete characters long after it was released. A smaller input buffer would have prevented this problem. For this lab, as all of the input will be character-based and involve single keystrokes only, small input buffers (4-8 characters) should suffice.

8 18-349 Project 3 Grading Sheet

	Name
	

	Date
	

	Part 1
	/15

	Game Entry
	/10

	Interrupt Handler
	/15

	Buffer Management
	/10

	Game Working
	/30

	Game Exit
	/10

	Coding Style
	/10

	TOTAL
	/100

	Improvements (Extra Credit)
	/5

	Total
	/105

	Comments:

	

	

	

	

Subscriber

AWAY

AWAY

CANCELXFER

