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Shared Memory 
Multiprocessors 

CS 418
      Lectures 12-14

Topics
• The Cache Coherence Problem
• Snoopy Coherence Protocols
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The Cache Coherence Problem
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A Coherent Memory System: Intuition

Reading a location should return latest value written (by 
any process)

Easy in uniprocessors
• Except for I/O: coherence between I/O devices and processors
• But infrequent so software solutions work

– uncacheable operations, flush pages, pass I/O data through caches 
Would like same to hold when processes run on different 
processors
• E.g. as if the processes were interleaved on a uniprocessor

The coherence problem is more pervasive and performance-
critical in multiprocessors
• has a much larger impact on hardware design
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Problems with the Intuition

Recall: 
• Value returned by read should be last value written 

But “last” is not well-defined!
Even in sequential case:

• “last” is defined in terms of program order, not time
– Order of operations in the machine language presented to processor
– “Subsequent” defined in analogous way, and well defined

In parallel case:
• program order defined within a process, but need to make sense of 

orders across processes
Must define a meaningful semantics

• the answer involves both “cache coherence” and an appropriate 
“memory consistency model” (to be discussed in a later lecture)
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Formal Definition of Coherence
Results of a program: values returned by its read operations
A memory system is coherent if the results of any execution 
of a program are such that for each location, it is possible 
to construct a hypothetical serial order of all operations to 
the location that is consistent with the results of the 
execution and in which:

1. operations issued by any particular process occur in the 
order issued by that process, and

2. the value returned by a read is the value written by the 
last write to that location in the serial order

Two necessary features:
• Write propagation: value written must become visible to others 
• Write serialization: writes to location seen in same order by all

– if I see w1 after w2, you should not see w2 before w1
– no need for analogous read serialization since reads not visible to others
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Cache Coherence Solutions
Software Based:

• often used in clusters of workstations or PCs (e.g., “Treadmarks”)
• extend virtual memory system to perform more work on page faults

– send messages to remote machines if necessary
Hardware Based:

• two most common variations:
– “snoopy” schemes

» rely on broadcast to observe all coherence traffic
» well suited for buses and small-scale systems
» example: SGI Challenge

– directory schemes
» uses centralized information to avoid broadcast
» scales well to large numbers of processors
» example: SGI Origin 2000
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Shared Caches
• Processors share a single cache, essentially punting the problem.  
• Useful for very small machines. 

• E.g., DPC in the Encore, Alliant FX/8.
• Problems are limited cache bandwidth and cache interference
• Benefits are fine-grain sharing and prefetch effects
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Snoopy Cache Coherence Schemes

Basic Idea:
• all coherence-related activity is broadcast to all processors

– e.g., on a global bus
• each processor (or its representative) monitors (aka “snoops”) these actions 

and reacts to any which are relevant to the current contents of its cache
– examples: 

» if another processor wishes to write to a line, you may need to “invalidate” 
(I.e. discard) the copy in your own cache

» if another processor wishes to read a line for which you have a dirty copy, 
you may need to supply

Most common approach in commercial multiprocessors.
Examples: 

• SGI Challenge, SUN Enterprise, multiprocessor PCs, etc.
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Implementing a Snoopy Protocol

Cache controller now receives inputs from both sides:
• Requests from processor, bus requests/responses from snooper

In either case, takes zero or more actions
• Updates state, responds with data, generates new bus 

transactions
Protocol is a distributed algorithm: cooperating state 
machines
• Set of states, state transition diagram, actions 

Granularity of coherence is typically a cache block
• Like that of allocation in cache and transfer to/from cache
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Coherence with Write-through Caches

• Key extensions to uniprocessor: snooping, invalidating/updating caches
– no new states or bus transactions in this case
– invalidation- versus update-based protocols

• Write propagation: even in inval case, later reads will see new value
– inval causes miss on later access, and memory up-to-date via write-through
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Write-through State Transition Diagram

• Two states per block in each cache, as in uniprocessor
– state of a block can be seen as p-vector

• Hardware state bits associated with only blocks that are in the cache
– other blocks can be seen as being in invalid (not-present) state in that cache

• Write will invalidate all other caches (no local change of state)
– can have multiple simultaneous readers of block,but write invalidates them
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Problem with Write-Through

High bandwidth requirements
• Every write from every processor goes to shared bus and memory
• Consider a 1GHz, 1CPI processor, where 15% of instructions are 

8-byte stores
• Each processor generates 150M stores or 1.2GB data per second
• 2GB/s bus can support only 1 processor without saturating
• Write-through especially unpopular for SMPs

Write-back caches absorb most writes as cache hits
• Write hits don’t go on bus
• But now how do we ensure write propagation and serialization?
• Need more sophisticated protocols: large design space
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Write-Back Snoopy Protocols

No need to change processor, main memory, cache …
• Extend cache controller and exploit bus (provides serialization)

Dirty state now also indicates exclusive ownership
• Exclusive: only cache with a valid copy (main memory may be too)
• Owner: responsible for supplying block upon a request for it

Design space
• Invalidation versus Update-based protocols
• Set of states
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Invalidation-Based Protocols
“Exclusive” state means can modify without notifying anyone else

• i.e. without bus transaction
• Must first get block in exclusive state before writing into it
• Even if already in valid state, need transaction, so called a write miss

Store to non-dirty data generates a read-exclusive bus transaction
• Tells others about impending write, obtains exclusive ownership

– makes the write visible, i.e. write is performed
– may be actually observed (by a read miss) only later
– write hit made visible (performed) when block updated in writer’s cache

• Only one RdX can succeed at a time for a block: serialized by bus
Read and Read-exclusive bus transactions drive coherence actions

• Writeback transactions also, but not caused by memory operation and 
quite incidental to coherence protocol
– note: replaced block that is not in modified state can be dropped 
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Update-Based Protocols

A write operation updates values in other caches
• New, update bus transaction

Advantages
• Other processors don’t miss on next access: reduced latency

– In invalidation protocols, they would miss and cause more 
transactions

• Single bus transaction to update several caches can save 
bandwidth
– Also, only the word written is transferred, not whole block

Disadvantages
• Multiple writes by same processor cause multiple update 

transactions
– In invalidation, first write gets exclusive ownership, others local

Detailed tradeoffs more complex
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Invalidate versus Update

Basic question of program behavior
• Is a block written by one processor read by others before it is 

rewritten?
Invalidation:

• Yes =>  readers will take a miss
• No =>  multiple writes without additional traffic

– and clears out copies that won’t be used again
Update:

• Yes =>  readers will not miss if they had a copy previously
– single bus transaction to update all copies

• No =>  multiple useless updates, even to dead copies
Need to look at program behavior and hardware complexity
Invalidation protocols much more popular

• Some systems provide both, or even hybrid
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Basic MSI Writeback Inval Protocol

States
• Invalid (I)
• Shared (S): one or more
• Dirty or Modified (M): one only

Processor Events:
• PrRd (read)
• PrWr (write)

Bus Transactions
• BusRd: asks for copy with no intent to modify
• BusRdX: asks for copy with intent to modify
• BusWB: updates memory

Actions
• Update state, perform bus transaction, flush value onto bus
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State Transition Diagram

• Write to shared block:
– Already have latest data; can use upgrade (BusUpgr) instead of BusRdX

• Replacement changes state of two blocks: outgoing and incoming
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Satisfying Coherence

Write propagation is clear
Write serialization?

• All writes that appear on the bus (BusRdX) ordered by the bus
– Write performed in writer’s cache before it handles other 

transactions, so ordered in same way even w.r.t. writer
• Reads that appear on the bus ordered wrt these
• Writes that don’t appear on the bus:

– sequence of such writes between two bus xactions for the block must 
come from same processor, say P

– in serialization, the sequence appears between these two bus xactions
– reads by P will seem them in this order w.r.t. other bus transactions
– reads by other processors separated from sequence by a bus xaction, 

which places them in the serialized order w.r.t the writes
– so reads by all processors see writes in same order
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Lower-Level Protocol Choices

BusRd observed in M state: what transition to make?

Depends on expectations of access patterns
• S: assumption that I’ll read again soon, rather than other will 

write
– good for mostly read data
– what about “migratory” data

» I read and write, then you read and write, then X reads and 
writes...

» better to go to I state, so I don’t have to be invalidated on your 
write

• Synapse transitioned to I state
• Sequent Symmetry and MIT Alewife use adaptive protocols

Choices can affect performance of memory system
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MESI (4-state) Invalidation Protocol
Problem with MSI protocol

• Reading and modifying data is 2 bus transactions, even if no sharing
– e.g. even in sequential program
– BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

Add exclusive state: write locally without transaction, but not 
modified
• Main memory is up to date, so cache not necessarily owner
• States

– invalid
– exclusive or exclusive-clean (only this cache has copy, but not modified)
– shared (two or more caches may have copies)
– modified (dirty)

• I -> E on PrRd if no other processor has a copy
– needs “shared” signal on bus: wired-or line asserted in response to 

BusRd
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MESI State Transition Diagram

• BusRd(S) means shared line asserted on BusRd transaction
• Flush’: if cache-to-cache sharing (see next), only one cache flushes data
• MOESI protocol: Owned state: exclusive but memory not valid
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Lower-level Protocol Choices

Who supplies data on miss when not in M state: memory or cache?
Original, lllinois MESI: cache, since assumed faster than memory

• Cache-to-cache sharing
Not true in modern systems

• Intervening in another cache more expensive than getting from 
memory

Cache-to-cache sharing also adds complexity
• How does memory know it should supply data (must wait for caches)
• Selection algorithm if multiple caches have valid data

But valuable for cache-coherent machines with distributed memory
• May be cheaper to obtain from nearby cache than distant memory
• Especially when constructed out of SMP nodes (Stanford DASH)
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Dragon Write-Back Update Protocol

4 states
• Exclusive-clean or exclusive (E): I and memory have it
• Shared clean (Sc):  I, others, and maybe memory, but I’m not owner
• Shared modified (Sm): I and others but not memory, and I’m the owner

– Sm and Sc can coexist in different caches, with only one Sm
• Modified or dirty (D): I and nobody else

No invalid state
• If in cache, cannot be invalid
• If not present in cache, can view as being in not-present or invalid 

state
New processor events: PrRdMiss, PrWrMiss

• Introduced to specify actions when block not present in cache
New bus transaction: BusUpd

• Broadcasts single word written on bus; updates other relevant caches
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Dragon State Transition Diagram
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Lower-level Protocol Choices

Can shared-modified state be eliminated?
• If update memory as well on BusUpd transactions (DEC Firefly)
• Dragon protocol doesn’t (assumes DRAM memory slow to update)

Should replacement of an Sc block be broadcast?
• Would allow last copy to go to E state and not generate updates
• Replacement bus xaction is not in critical path, later update may be

Shouldn’t update local copy on write hit before controller gets bus
• Can mess up serialization

Coherence, consistency considerations much like write-through case

In general, many subtle race conditions in protocols
But first, let’s illustrate quantitative assessment at logical level

CS 418 S’04– 27 –

Assessing Protocol Tradeoffs

Tradeoffs affected by performance and organization characteristics
Decisions affect pressure placed on these
Part art and part science

• Art: experience, intuition and aesthetics of designers
• Science: Workload-driven evaluation for cost-performance

– want a balanced system: no expensive resource heavily underutilized
Methodology:

• Use simulator; choose parameters per earlier methodology (default 
1MB, 4-way cache, 64-byte block, 16 processors; 64K cache for some)

• Focus on frequencies, not end performance for now
– transcends architectural details, but not what we’re really after

• Use idealized memory performance model to avoid changes of reference 
interleaving across processors with machine parameters
– Cheap simulation: no need to model contention
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Impact of Protocol Optimizations

• MSI versus MESI doesn’t seem to matter for bw for these workloads
• Upgrades instead of read-exclusive helps
• Same story when working sets don’t fit for Ocean, Radix, Raytrace

(Computing traffic from state transitions discussed in book)
Effect of E state, and of BusUpgr instead of BusRdX
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Impact of Cache Block Size
Multiprocessors add new kind of miss to cold, capacity, conflict

• Coherence misses: true sharing and false sharing
– latter due to granularity of coherence being larger than a word

• Both miss rate and traffic matter
Reducing misses architecturally in invalidation protocol

• Capacity: enlarge cache; increase block size (if spatial locality)
• Conflict: increase associativity
• Cold and Coherence: only block size

Increasing block size has advantages and disadvantages
• Can reduce misses if spatial locality is good
• Can hurt too

– increase misses due to false sharing if spatial locality not good
– increase misses due to conflicts in fixed-size cache
– increase traffic due to fetching unnecessary data and due to false 

sharing
– can increase miss penalty and perhaps hit cost
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Impact of Block Size on Miss Rate
Results shown only for default problem size: varied behavior

• Need to examine impact of problem size and p as well (see text)

•Working set doesn’t fit: impact on capacity misses much more critical
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Impact of Block Size on Traffic

• Results different than for miss rate: traffic almost always increases
• When working sets fits, overall traffic still small, except for Radix
• Fixed overhead is significant component

– So total traffic often minimized at 16-32 byte block, not smaller
• Working set doesn’t fit: even 128-byte good for Ocean due to capacity

Traffic affects performance indirectly through contention
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Making Large Blocks More Effective

Software
• Improve spatial locality by better data structuring
• Compiler techniques

Hardware
• Retain granularity of transfer but reduce granularity of coherence

– use subblocks: same tag but different state bits
– one subblock may be valid but another invalid or dirty

• Reduce both granularities, but prefetch more blocks on a miss
• Proposals for adjustable cache size
• More subtle: delay propagation of invalidations and perform all at 

once
– But can change consistency model: discuss later in course

• Use update instead of invalidate protocols to reduce false sharing 
effect
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Update versus Invalidate

Much debate over the years: tradeoff depends on sharing patterns
Intuition:

• If those that used continue to use, and writes between use are few, 
update should do better
– e.g. producer-consumer pattern

• If those that use unlikely to use again, or many writes between 
reads, updates not good
– “pack rat” phenomenon particularly bad under process migration
– useless updates where only last one will be used

Can construct scenarios where one or other is much better
Can combine them in hybrid schemes (see text)

• E.g. competitive: observe patterns at runtime and change protocol
Let’s look at real workloads
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Update vs Invalidate: Miss Rates

• Lots of coherence misses: updates help
• Lots of capacity misses: updates hurt (keep data in cache uselessly)
• Updates seem to help, but this ignores upgrade and update traffic
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Upgrade and Update Rates (Traffic)

• Update traffic is substantial
• Main cause is multiple writes by a 

processor before a read by other
– many bus transactions versus one in 

invalidation case
– could delay updates or use merging 

• Overall, trend is away from update 
based protocols as default
– bandwidth, complexity, large blocks 

trend, pack rat for process migration
• Will see later that updates have 

greater problems for scalable systems
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