
Page 1

Shared Memory
Multiprocessors

CS 418
 Lectures 12-14

Topics
• The Cache Coherence Problem
• Snoopy Coherence Protocols

CS 418 S’04– 2 –

The Cache Coherence Problem

I/O devices

Memory

P1

$ $ $

P2 P3

1
2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

CS 418 S’04– 3 –

A Coherent Memory System: Intuition

Reading a location should return latest value written (by
any process)

Easy in uniprocessors
• Except for I/O: coherence between I/O devices and processors
• But infrequent so software solutions work

– uncacheable operations, flush pages, pass I/O data through caches
Would like same to hold when processes run on different
processors
• E.g. as if the processes were interleaved on a uniprocessor

The coherence problem is more pervasive and performance-
critical in multiprocessors
• has a much larger impact on hardware design

CS 418 S’04– 4 –

Problems with the Intuition

Recall:
• Value returned by read should be last value written

But “last” is not well-defined!
Even in sequential case:

• “last” is defined in terms of program order, not time
– Order of operations in the machine language presented to processor
– “Subsequent” defined in analogous way, and well defined

In parallel case:
• program order defined within a process, but need to make sense of

orders across processes
Must define a meaningful semantics

• the answer involves both “cache coherence” and an appropriate
“memory consistency model” (to be discussed in a later lecture)

Page 2

CS 418 S’04– 5 –

Formal Definition of Coherence
Results of a program: values returned by its read operations
A memory system is coherent if the results of any execution
of a program are such that for each location, it is possible
to construct a hypothetical serial order of all operations to
the location that is consistent with the results of the
execution and in which:

1. operations issued by any particular process occur in the
order issued by that process, and

2. the value returned by a read is the value written by the
last write to that location in the serial order

Two necessary features:
• Write propagation: value written must become visible to others
• Write serialization: writes to location seen in same order by all

– if I see w1 after w2, you should not see w2 before w1
– no need for analogous read serialization since reads not visible to others

CS 418 S’04– 6 –

Cache Coherence Solutions
Software Based:

• often used in clusters of workstations or PCs (e.g., “Treadmarks”)
• extend virtual memory system to perform more work on page faults

– send messages to remote machines if necessary
Hardware Based:

• two most common variations:
– “snoopy” schemes

» rely on broadcast to observe all coherence traffic
» well suited for buses and small-scale systems
» example: SGI Challenge

– directory schemes
» uses centralized information to avoid broadcast
» scales well to large numbers of processors
» example: SGI Origin 2000

CS 418 S’04– 7 –

Shared Caches
• Processors share a single cache, essentially punting the problem.
• Useful for very small machines.

• E.g., DPC in the Encore, Alliant FX/8.
• Problems are limited cache bandwidth and cache interference
• Benefits are fine-grain sharing and prefetch effects

P P

Shd. Cache

Memory

P

Memory

P P

Crossbar

2-4 way interleaved cache

CS 418 S’04– 8 –

Snoopy Cache Coherence Schemes

Basic Idea:
• all coherence-related activity is broadcast to all processors

– e.g., on a global bus
• each processor (or its representative) monitors (aka “snoops”) these actions

and reacts to any which are relevant to the current contents of its cache
– examples:

» if another processor wishes to write to a line, you may need to “invalidate”
(I.e. discard) the copy in your own cache

» if another processor wishes to read a line for which you have a dirty copy,
you may need to supply

Most common approach in commercial multiprocessors.
Examples:

• SGI Challenge, SUN Enterprise, multiprocessor PCs, etc.

Page 3

CS 418 S’04– 9 –

Implementing a Snoopy Protocol

Cache controller now receives inputs from both sides:
• Requests from processor, bus requests/responses from snooper

In either case, takes zero or more actions
• Updates state, responds with data, generates new bus

transactions
Protocol is a distributed algorithm: cooperating state
machines
• Set of states, state transition diagram, actions

Granularity of coherence is typically a cache block
• Like that of allocation in cache and transfer to/from cache

CS 418 S’04– 10 –

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Coherence with Write-through Caches

• Key extensions to uniprocessor: snooping, invalidating/updating caches
– no new states or bus transactions in this case
– invalidation- versus update-based protocols

• Write propagation: even in inval case, later reads will see new value
– inval causes miss on later access, and memory up-to-date via write-through

CS 418 S’04– 11 –

Write-through State Transition Diagram

• Two states per block in each cache, as in uniprocessor
– state of a block can be seen as p-vector

• Hardware state bits associated with only blocks that are in the cache
– other blocks can be seen as being in invalid (not-present) state in that cache

• Write will invalidate all other caches (no local change of state)
– can have multiple simultaneous readers of block,but write invalidates them

I

V

PrRd/BusRd

PrRd/—

PrWr/BusWr

BusWr/—

Processor-initiated transactions

Bus-snooper-initiated transactions

PrWr/BusWr

CS 418 S’04– 12 –

Problem with Write-Through

High bandwidth requirements
• Every write from every processor goes to shared bus and memory
• Consider a 1GHz, 1CPI processor, where 15% of instructions are

8-byte stores
• Each processor generates 150M stores or 1.2GB data per second
• 2GB/s bus can support only 1 processor without saturating
• Write-through especially unpopular for SMPs

Write-back caches absorb most writes as cache hits
• Write hits don’t go on bus
• But now how do we ensure write propagation and serialization?
• Need more sophisticated protocols: large design space

Page 4

CS 418 S’04– 13 –

Write-Back Snoopy Protocols

No need to change processor, main memory, cache …
• Extend cache controller and exploit bus (provides serialization)

Dirty state now also indicates exclusive ownership
• Exclusive: only cache with a valid copy (main memory may be too)
• Owner: responsible for supplying block upon a request for it

Design space
• Invalidation versus Update-based protocols
• Set of states

CS 418 S’04– 14 –

Invalidation-Based Protocols
“Exclusive” state means can modify without notifying anyone else

• i.e. without bus transaction
• Must first get block in exclusive state before writing into it
• Even if already in valid state, need transaction, so called a write miss

Store to non-dirty data generates a read-exclusive bus transaction
• Tells others about impending write, obtains exclusive ownership

– makes the write visible, i.e. write is performed
– may be actually observed (by a read miss) only later
– write hit made visible (performed) when block updated in writer’s cache

• Only one RdX can succeed at a time for a block: serialized by bus
Read and Read-exclusive bus transactions drive coherence actions

• Writeback transactions also, but not caused by memory operation and
quite incidental to coherence protocol
– note: replaced block that is not in modified state can be dropped

CS 418 S’04– 15 –

Update-Based Protocols

A write operation updates values in other caches
• New, update bus transaction

Advantages
• Other processors don’t miss on next access: reduced latency

– In invalidation protocols, they would miss and cause more
transactions

• Single bus transaction to update several caches can save
bandwidth
– Also, only the word written is transferred, not whole block

Disadvantages
• Multiple writes by same processor cause multiple update

transactions
– In invalidation, first write gets exclusive ownership, others local

Detailed tradeoffs more complex

CS 418 S’04– 16 –

Invalidate versus Update

Basic question of program behavior
• Is a block written by one processor read by others before it is

rewritten?
Invalidation:

• Yes => readers will take a miss
• No => multiple writes without additional traffic

– and clears out copies that won’t be used again
Update:

• Yes => readers will not miss if they had a copy previously
– single bus transaction to update all copies

• No => multiple useless updates, even to dead copies
Need to look at program behavior and hardware complexity
Invalidation protocols much more popular

• Some systems provide both, or even hybrid

Page 5

CS 418 S’04– 17 –

Basic MSI Writeback Inval Protocol

States
• Invalid (I)
• Shared (S): one or more
• Dirty or Modified (M): one only

Processor Events:
• PrRd (read)
• PrWr (write)

Bus Transactions
• BusRd: asks for copy with no intent to modify
• BusRdX: asks for copy with intent to modify
• BusWB: updates memory

Actions
• Update state, perform bus transaction, flush value onto bus

CS 418 S’04– 18 –

State Transition Diagram

• Write to shared block:
– Already have latest data; can use upgrade (BusUpgr) instead of BusRdX

• Replacement changes state of two blocks: outgoing and incoming

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

CS 418 S’04– 19 –

Satisfying Coherence

Write propagation is clear
Write serialization?

• All writes that appear on the bus (BusRdX) ordered by the bus
– Write performed in writer’s cache before it handles other

transactions, so ordered in same way even w.r.t. writer
• Reads that appear on the bus ordered wrt these
• Writes that don’t appear on the bus:

– sequence of such writes between two bus xactions for the block must
come from same processor, say P

– in serialization, the sequence appears between these two bus xactions
– reads by P will seem them in this order w.r.t. other bus transactions
– reads by other processors separated from sequence by a bus xaction,

which places them in the serialized order w.r.t the writes
– so reads by all processors see writes in same order

CS 418 S’04– 20 –

Lower-Level Protocol Choices

BusRd observed in M state: what transition to make?

Depends on expectations of access patterns
• S: assumption that I’ll read again soon, rather than other will

write
– good for mostly read data
– what about “migratory” data

» I read and write, then you read and write, then X reads and
writes...

» better to go to I state, so I don’t have to be invalidated on your
write

• Synapse transitioned to I state
• Sequent Symmetry and MIT Alewife use adaptive protocols

Choices can affect performance of memory system

Page 6

CS 418 S’04– 21 –

MESI (4-state) Invalidation Protocol
Problem with MSI protocol

• Reading and modifying data is 2 bus transactions, even if no sharing
– e.g. even in sequential program
– BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

Add exclusive state: write locally without transaction, but not
modified
• Main memory is up to date, so cache not necessarily owner
• States

– invalid
– exclusive or exclusive-clean (only this cache has copy, but not modified)
– shared (two or more caches may have copies)
– modified (dirty)

• I -> E on PrRd if no other processor has a copy
– needs “shared” signal on bus: wired-or line asserted in response to

BusRd

CS 418 S’04– 22 –

MESI State Transition Diagram

• BusRd(S) means shared line asserted on BusRd transaction
• Flush’: if cache-to-cache sharing (see next), only one cache flushes data
• MOESI protocol: Owned state: exclusive but memory not valid

PrWr/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrWr/BusRdX

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush′

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush′

BusRdX/Flush

BusRd/
Flush

PrWr/BusRdX

PrRd/
BusRd (S)

CS 418 S’04– 23 –

Lower-level Protocol Choices

Who supplies data on miss when not in M state: memory or cache?
Original, lllinois MESI: cache, since assumed faster than memory

• Cache-to-cache sharing
Not true in modern systems

• Intervening in another cache more expensive than getting from
memory

Cache-to-cache sharing also adds complexity
• How does memory know it should supply data (must wait for caches)
• Selection algorithm if multiple caches have valid data

But valuable for cache-coherent machines with distributed memory
• May be cheaper to obtain from nearby cache than distant memory
• Especially when constructed out of SMP nodes (Stanford DASH)

CS 418 S’04– 24 –

Dragon Write-Back Update Protocol

4 states
• Exclusive-clean or exclusive (E): I and memory have it
• Shared clean (Sc): I, others, and maybe memory, but I’m not owner
• Shared modified (Sm): I and others but not memory, and I’m the owner

– Sm and Sc can coexist in different caches, with only one Sm
• Modified or dirty (D): I and nobody else

No invalid state
• If in cache, cannot be invalid
• If not present in cache, can view as being in not-present or invalid

state
New processor events: PrRdMiss, PrWrMiss

• Introduced to specify actions when block not present in cache
New bus transaction: BusUpd

• Broadcasts single word written on bus; updates other relevant caches

Page 7

CS 418 S’04– 25 –

Dragon State Transition Diagram

E Sc

Sm M

PrWr/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S)PrRdMiss/BusRd(S)

PrWr/—

PrWrMiss/(BusRd(S); BusUpd) PrWrMiss/BusRd(S)

PrWr/BusUpd(S)

PrWr/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrWr/BusUpd(S)

PrWr/BusUpd(S)

CS 418 S’04– 26 –

Lower-level Protocol Choices

Can shared-modified state be eliminated?
• If update memory as well on BusUpd transactions (DEC Firefly)
• Dragon protocol doesn’t (assumes DRAM memory slow to update)

Should replacement of an Sc block be broadcast?
• Would allow last copy to go to E state and not generate updates
• Replacement bus xaction is not in critical path, later update may be

Shouldn’t update local copy on write hit before controller gets bus
• Can mess up serialization

Coherence, consistency considerations much like write-through case

In general, many subtle race conditions in protocols
But first, let’s illustrate quantitative assessment at logical level

CS 418 S’04– 27 –

Assessing Protocol Tradeoffs

Tradeoffs affected by performance and organization characteristics
Decisions affect pressure placed on these
Part art and part science

• Art: experience, intuition and aesthetics of designers
• Science: Workload-driven evaluation for cost-performance

– want a balanced system: no expensive resource heavily underutilized
Methodology:

• Use simulator; choose parameters per earlier methodology (default
1MB, 4-way cache, 64-byte block, 16 processors; 64K cache for some)

• Focus on frequencies, not end performance for now
– transcends architectural details, but not what we’re really after

• Use idealized memory performance model to avoid changes of reference
interleaving across processors with machine parameters
– Cheap simulation: no need to model contention

CS 418 S’04– 28 –

Impact of Protocol Optimizations

• MSI versus MESI doesn’t seem to matter for bw for these workloads
• Upgrades instead of read-exclusive helps
• Same story when working sets don’t fit for Ocean, Radix, Raytrace

(Computing traffic from state transitions discussed in book)
Effect of E state, and of BusUpgr instead of BusRdX

T
r

a
f

f
i

c
(

M
B/

s
)

T
r

a
f

f
i

c
(

M
B

/
s

)

x d

l

t x

I
l

l

t E
x

0

20

40

60

80

100

120

140

160

180

200

Data bus

Address bus

E E0

10

20

30

40

50

60

70

80

Data bus

Address bus

B
ar

ne
s/

III
B

ar
ne

s/
3S

t
B

ar
ne

s/
3S

t-R
dE

x

LU
/II

I

R
ad

ix
/3

S
t-R

dE
x

LU
/3

S
t

LU
/3

S
t-R

dE
x

R
ad

ix
/3

S
t

O
ce

an
/II

I
O

ce
an

/3
S

R
ad

io
si

ty
/3

S
t-R

dE
x

O
ce

an
/3

S
t-R

dE
x

R
ad

ix
/II

I

R
ad

io
si

ty
/II

I

R
ad

io
si

ty
/3

S
t

R
ay

tra
ce

/II
I

R
ay

tra
ce

/3
S

t
R

ay
tra

ce
/3

S
t-R

dE
x

A
pp

l-C
od

e/
III

A
pp

l-C
od

e/
3S

t

A
pp

l-C
od

e/
3S

t-R
dE

x

A
pp

l-D
at

a/
III

A
pp

l-D
at

a/
3S

t
A

pp
l-D

at
a/

3S
t-R

dE
x

O
S

-C
od

e/
III

O
S

-C
od

e/
3S

t

O
S

-D
at

a/
3S

t
O

S
-D

at
a/

III

O
S

-C
od

e/
3S

t-R
dE

x

O
S

-D
at

a/
3S

t-R
dE

x

Page 8

CS 418 S’04– 29 –

Impact of Cache Block Size
Multiprocessors add new kind of miss to cold, capacity, conflict

• Coherence misses: true sharing and false sharing
– latter due to granularity of coherence being larger than a word

• Both miss rate and traffic matter
Reducing misses architecturally in invalidation protocol

• Capacity: enlarge cache; increase block size (if spatial locality)
• Conflict: increase associativity
• Cold and Coherence: only block size

Increasing block size has advantages and disadvantages
• Can reduce misses if spatial locality is good
• Can hurt too

– increase misses due to false sharing if spatial locality not good
– increase misses due to conflicts in fixed-size cache
– increase traffic due to fetching unnecessary data and due to false

sharing
– can increase miss penalty and perhaps hit cost

CS 418 S’04– 30 –

Impact of Block Size on Miss Rate
Results shown only for default problem size: varied behavior

• Need to examine impact of problem size and p as well (see text)

•Working set doesn’t fit: impact on capacity misses much more critical

Cold

Capacity

True sharing

False sharing

Upgrade

8

0

0.1

0.2

0.3

0.4

0.5

0.6

Cold

Capacity

True sharing

False sharing

Upgrade

8 6 2 4 8 6 80

2

4

6

8

10

12

M
is

s
ra

te
 (%

)

B
ar

ne
s/

8

B
ar

ne
s/

16
B

ar
ne

s/
32

B
ar

ne
s/

64
B

ar
ne

s/
12

8

B
ar

ne
s/

25
6

Lu
/8

Lu
/1

6
Lu

/3
2

Lu
/6

4
Lu

/1
28

Lu
/2

56

R
ad

io
si

ty
/8

R
ad

io
si

ty
/1

6
R

ad
io

si
ty

/3
2

R
ad

io
si

ty
/6

4

R
ad

io
si

ty
/1

28
R

ad
io

si
ty

/2
56

M
is

s
ra

te
 (%

)

O
ce

an
/8

O
ce

an
/1

6

O
ce

an
/3

2
O

ce
an

/6
4

O
ce

an
/1

28

O
ce

an
/2

56

R
ad

ix
/8

R
ad

ix
/1

6

R
ad

ix
/3

2
R

ad
ix

/6
4

R
ad

ix
/1

28

R
ad

ix
/2

56

R
ay

tra
ce

/8
R

ay
tra

ce
/1

6

R
ay

tra
ce

/3
2

R
ay

tra
ce

/6
4

R
ay

tra
ce

/1
28

R
ay

tra
ce

/2
56

CS 418 S’04– 31 –

Impact of Block Size on Traffic

• Results different than for miss rate: traffic almost always increases
• When working sets fits, overall traffic still small, except for Radix
• Fixed overhead is significant component

– So total traffic often minimized at 16-32 byte block, not smaller
• Working set doesn’t fit: even 128-byte good for Ocean due to capacity

Traffic affects performance indirectly through contention

Tr
af

fic
 (b

yt
es

/in
st

ru
ct

io
n)

Tr
af

fic
 (b

yt
es

/F
LO

P
)

Data bus
Address bus

Data bus
Address bus

R
ad

ix
/8

R
ad

ix
/1

6

R
ad

ix
/3

2

R
ad

ix
/6

4

R
ad

ix
/1

28

R
ad

ix
/2

56

0

1

2

3

4

5

6

7

8

9

10

LU
/8

LU
/1

6

LU
/3

2

LU
/6

4

LU
/1

28

LU
/2

56

O
ce

an
/8

O
ce

an
/1

6

O
ce

an
/3

2

O
ce

an
/6

4

O
ce

an
/1

28

O
ce

an
/2

56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 280

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Data bus

Address bus

B
ar

ne
s/

16

Tr
af

fic
 (b

yt
es

/in
st

ru
ct

io
ns

)

B
ar

ne
s/

8

B
ar

ne
s/

32

B
ar

ne
s/

64
B

ar
ne

s/
12

8

B
ar

ne
s/

25
6

R
ad

io
si

ty
/8

R
ad

io
si

ty
/1

6
R

ad
io

si
ty

/3
2

R
ad

io
si

ty
/6

4
R

ad
io

si
ty

/1
28

R
ad

io
si

ty
/2

56

R
ay

tra
ce

/8

R
ay

tra
ce

/1
6

R
ay

tra
ce

/3
2

R
ay

tra
ce

/6
4

R
ay

tra
ce

/1
28

R
ay

tra
ce

/2
56

CS 418 S’04– 32 –

Making Large Blocks More Effective

Software
• Improve spatial locality by better data structuring
• Compiler techniques

Hardware
• Retain granularity of transfer but reduce granularity of coherence

– use subblocks: same tag but different state bits
– one subblock may be valid but another invalid or dirty

• Reduce both granularities, but prefetch more blocks on a miss
• Proposals for adjustable cache size
• More subtle: delay propagation of invalidations and perform all at

once
– But can change consistency model: discuss later in course

• Use update instead of invalidate protocols to reduce false sharing
effect

Page 9

CS 418 S’04– 33 –

Update versus Invalidate

Much debate over the years: tradeoff depends on sharing patterns
Intuition:

• If those that used continue to use, and writes between use are few,
update should do better
– e.g. producer-consumer pattern

• If those that use unlikely to use again, or many writes between
reads, updates not good
– “pack rat” phenomenon particularly bad under process migration
– useless updates where only last one will be used

Can construct scenarios where one or other is much better
Can combine them in hybrid schemes (see text)

• E.g. competitive: observe patterns at runtime and change protocol
Let’s look at real workloads

CS 418 S’04– 34 –

M
is

s
ra

te
 (%

)

M
is

s
ra

te
 (%

)

LU
/in

v

LU
/u

pd

O
ce

an
/in

v

O
ce

an
/m

ix

O
ce

an
/u

pd

R
ay

tra
ce

/in
v

R
ay

tra
ce

/u
pd

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
ad

ix
/in

v

R
ad

ix
/m

ix

R
ad

ix
/u

pd

0.00

0.50

1.00

1.50

2.00

2.50

Update vs Invalidate: Miss Rates

• Lots of coherence misses: updates help
• Lots of capacity misses: updates hurt (keep data in cache uselessly)
• Updates seem to help, but this ignores upgrade and update traffic

CS 418 S’04– 35 –

Upgrade and Update Rates (Traffic)

• Update traffic is substantial
• Main cause is multiple writes by a

processor before a read by other
– many bus transactions versus one in

invalidation case
– could delay updates or use merging

• Overall, trend is away from update
based protocols as default
– bandwidth, complexity, large blocks

trend, pack rat for process migration
• Will see later that updates have

greater problems for scalable systems

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/mix

Ocean/upd

Raytrace/inv

Raytrace/upd

0.00

0.50

1.00

1.50

2.00

2.50

Radix/inv

Radix/mix

Radix/upd

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

