
Page 1

Cache Coherence for
Large-Scale Machines

CS 418
 Lectures 15-16

Topics
• Hierarchies
• Directory Protocols

CS 418 S’04– 2 –

Hierarchical Cache Coherence

• Hierarchies arise in different ways:
(a) A processor with an on-chip and external cache

(single cache hierarchy)
(b) Large scale multiprocessor using a hierarchy of buses (multi-

cache hierarchy)

P

C1

C2

P

C1

P

C1

C2

(a) (b)

CS 418 S’04– 3 –

Single Cache Hierarchies

• Inclusion property: Everything in L1 cache is also
present in L2 cache.
• L2 must also be owner of block if L1 has the block dirty
• Snoop of L2 takes responsibility for recalling or invalidating data

due to remote requests
• It often helps if the block size in L1 is smaller or the same size

as that in L2 cache

P

C1

C2

CS 418 S’04– 4 –

Hierarchical Snoopy Cache Coherence
• Simplest way to build large-scale cache-coherent MPs is
to use a hierarchy of buses and use snoopy coherence at
each level.

• Two possible ways to build such a machine:
(a) All main memory at the global (B2) bus
(b) Main memory distributed among the clusters

(a) (b)

P P

L1 L1

L2
B1

P P

L1 L1

L2
B1

B2

Main Memory (Mp)

P P

L2

L1 L1

B1

Memory

P P

L1 L1

B1

L2
Memory

B2

Page 2

CS 418 S’04– 5 –

Hierarchies with Global Memory

• First-level caches:
• Highest performance SRAM caches.
• B1 follows standard snoopy protocol

• Second-level caches:
• Much larger than L1 caches (set assoc). Must maintain inclusion.
• L2 cache acts as filter for B1-bus and L1-caches.
• L2 cache can be DRAM based, since fewer references get to it.

P P

L1 L1

L2
B1

P P

L1 L1

L2
B1

B2

Main Memory (Mp)

CS 418 S’04– 6 –

Hierarchies w/ Global Mem (Cont)

Advantages:
• Misses to main memory just require single traversal to the root of

the hierarchy.
• Placement of shared data is not an issue.

Disadvantages:
• Misses to local data structures (e.g., stack) also have to traverse

the hierarchy, resulting in higher traffic and latency.
• Memory at the global bus must be highly interleaved. Otherwise

bandwidth to it will not scale.

CS 418 S’04– 7 –

Cluster Based Hierarchies

Key idea: Main memory is distributed among clusters.
• reduces global bus traffic (local data & suitably placed shared

data)
• reduces latency (less contention and local accesses are faster)
• example machine: Encore Gigamax

• L2 cache can be replaced by a tag-only router-
coherence switch.

P P

L2

L1 L1

B1

Memory

P P

L1 L1

B1

L2
Memory

B2

CS 418 S’04– 8 –

Encore Gigamax

P

C

P

C

UCC UIC

UIC

Fiber-optic link

UIC

P

C

P

C

UCC UIC

Global Nano Bus

Local
Nano Bus

Motorola 88K processors
8-way interleaved
memory

(64-bit data, 32-bit address,
split-transaction, 80ns cycles)

Tag RAM only
for remote data
cached locally

Tag RAM only
for local data
cached remotely

Tag and Data RAMS
for remote data
cached locally

(Bit serial,
4 bytes every 80ns)

(Two 16MB banks
4-way associative)

(64-bit data, 32-bit address,
split-transaction, 80ns cycles)

Page 3

CS 418 S’04– 9 –

Cache Coherence in Gigamax
• Write to local-bus is passed to global-bus if:

• data allocated in remote Mp
• allocated local but present in some remote cache

• Read to local-bus passed to global-bus if:
• allocated in remote Mp, and not in cluster cache
• allocated local but dirty in a remote cache

• Write on global-bus passed to local-bus if:
• allocated in to local Mp
• allocated remote, but dirty in local cache

• ...

• Many race conditions possible (e.g., write-back going out as
request coming in)

CS 418 S’04– 10 –

Hierarchies of Rings (e.g. KSR)

• Hierarchical ring network, not bus

• Snoop on requests passing by on ring

• Point-to-point structure of ring implies:
• potentially higher bandwidth than buses
• higher latency

CS 418 S’04– 11 –

Hierarchies: Summary

Advantages:
• Conceptually simple to build (apply snooping recursively)
• Can get merging and combining of requests in hardware

Disadvantages:
• Physical hierarchies do not provide enough bisection bandwidth

(the root becomes a bottleneck, e.g., 2-d, 3-d grid problems)
– patch solution: multiple buses/rings at higher levels

• Latencies often larger than in direct networks

Directory Based Cache Coherence

Page 4

CS 418 S’04– 13 –

Motivation for Directory Schemes

Snoopy schemes do not scale because they rely on
broadcast

Directory-based schemes allow scaling.
• they avoid broadcasts by keeping track of all PEs caching a

memory block, and then using point-to-point messages to maintain
coherence

• they allow the flexibility to use any scalable point-to-point
network

CS 418 S’04– 14 –

Basic Scheme (Censier & Feautrier)

• Assume "k" processors.
• With each cache-block in

memory: k presence-bits, and 1
dirty-bit

• With each cache-block in cache:
1valid bit, and 1 dirty (owner)
bit

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by PE-i:
– If dirty-bit is OFF then { read from main memory; turn p[i] ON; }
– if dirty-bit is ON then { recall line from dirty PE (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to PE-i; }

• Write to main memory:
– If dirty-bit OFF then { supply data to PE-i; send invalidations to all

PEs caching that block; turn dirty-bit ON; turn P[i] ON; ... }
– ...

CS 418 S’04– 15 –

Directory Protocol Examples

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack Inval. ack

3a. 3b.

4a. 4b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

Many alternative for organizing directory information

CS 418 S’04– 16 –

Scaling with Number of Processors

Scaling of memory and directory bandwidth provided
• Centralized directory is bandwidth bottleneck, just like centralized

memory
• How to maintain directory information in distributed way?

Scaling of performance characteristics
• traffic: # of network transactions each time protocol is invoked
• latency: # of network transactions in critical path each time

Scaling of directory storage requirements
• Number of presence bits needed grows as the number of processors

How directory is organized affects all these, performance at
a target scale, as well as coherence management issues

Page 5

CS 418 S’04– 17 –

Insights into Directories

Inherent program characteristics:
• determine whether directories provide big advantages over broadcast
• provide insights into how to organize and store directory information

Characteristics that matter
– frequency of write misses?
– how many sharers on a write miss
– how these scale

CS 418 S’04– 18 –

Cache Invalidation Patterns
LU Invalidation Patterns

8.75

91.22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22
0

10

20
30

40

50
60

70
80

90

100

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Ocean Invalidation Patterns

0

80.98

15.06

3.04 0.49 0.34 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.02
0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

CS 418 S’04– 19 –

Cache Invalidation Patterns
Barnes-Hut Invalidation Patterns

1.27

48.35

22.87

10.56

5.33
2.87 1.88 1.4 2.5 1.06 0.61 0.24 0.28 0.2 0.06 0.1 0.07 0 0 0 0 0.33

0
5

10

15
20

25
30
35

40
45

50

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Radiosity Invalidation Patterns

6.68

58.35

12.04

4.16 2.24 1.59 1.16 0.97
3.28 2.2 1.74 1.46 0.92 0.45 0.37 0.31 0.28 0.26 0.24 0.19 0.19 0.91

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations CS 418 S’04– 20 –

Sharing Patterns Summary
Generally, only a few sharers at a write, scales slowly with P

• Code and read-only objects (e.g, scene data in Raytrace)
– no problems as rarely written

• Migratory objects (e.g., cost array cells in LocusRoute)
– even as # of PEs scale, only 1-2 invalidations

• Mostly-read objects (e.g., root of tree in Barnes)
– invalidations are large but infrequent, so little impact on performance

• Frequently read/written objects (e.g., task queues)
– invalidations usually remain small, though frequent

• Synchronization objects
– low-contention locks result in small invalidations
– high-contention locks need special support (SW trees, queueing locks)

Implies directories very useful in containing traffic
• if organized properly, traffic and latency shouldn’t scale too badly

Suggests techniques to reduce storage overhead

Page 6

CS 418 S’04– 21 –

Organizing Directories

Let’s see how they work and their scaling characteristics with P

Centralized Distributed

HierarchicalFlat

Memory-based Cache-based

Directory Schemes

How to find source of
directory information

How to locate copies

CS 418 S’04– 22 –

How to Find Directory Information

centralized memory and directory - easy: go to it
• but not scalable

distributed memory and directory
• flat schemes

– directory distributed with memory: at the home
– location based on address (hashing): network xaction sent directly to

home
• hierarchical schemes

– directory organized as a hierarchical data structure
– leaves are processing nodes, internal nodes have only directory state
– node’s directory entry for a block says whether each subtree caches the

block
– to find directory info, send “search” message up to parent

» routes itself through directory lookups
– like hiearchical snooping, but point-to-point messages between children

and parents

CS 418 S’04– 23 –

How Hierarchical Directories Work

Directory is a hierarchical data structure
• leaves are processing nodes, internal nodes just directory
• logical hierarchy, not necessarily phyiscal (can be embedded in general

network)

processing nodes

level-1 directory

level-2 directory

(Tracks which of its children
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)

CS 418 S’04– 24 –

How Is Location of Copies Stored?
Hierarchical Schemes

• through the hierarchy
• each directory has presence bits for its children (subtrees), and dirty

bit

Flat Schemes
• varies a lot
• different storage overheads and performance characteristics

• Memory-based schemes
– info about copies stored all at the home with the memory block
– Dash, Alewife , SGI Origin, Flash

• Cache-based schemes
– info about copies distributed among copies themselves

» each copy points to next
– Scalable Coherent Interface (SCI: IEEE standard)

Page 7

CS 418 S’04– 25 –

Flat, Memory-based Schemes
All info about copies colocated with the block itself at the

home
• works just like centralized scheme, except physically distributed

Scaling of performance characteristics
• traffic on a write: proportional to number of sharers
• latency of a write: can issue invalidations to sharers in parallel

CS 418 S’04– 26 –

How Does Storage Overhead Scale?

Simplest representation: full bit vector
• i.e. one presence bit per node

Directory storage overhead:
P = # of processors (or nodes)
M = # of blocks in memory
• overhead is proportional to P*M

Does not scale well with P:
• 64-byte line implies:

– 64 nodes: 12.7% ovhd.
– 256 nodes: 50% ovhd.
– 1024 nodes: 200% ovhd.

P

M

CS 418 S’04– 27 –

Reducing Storage Overhead

• Full Bit Vector Schemes Revisited

• Limited Pointer Schemes
• reduce “width” of directory (I.e. the “P” term)

• Sparse Directories
• reduce “height” of directory (I.e. the “M” term)

CS 418 S’04– 28 –

The Full Bit Vector Scheme
Invalidation traffic is best

• because sharing information is accurate
Optimizations for full bit vector schemes:

• increase cache block size:
– reduces storage overhead proportionally
– problems with this approach?

• use multiprocessor nodes:
– bit per multiprocessor node, not per processor
– still scales as P*M, but not a problem for all but very large machines

» e.g., 256-procs, 4 per cluster, 128B line: 6.25% ovhd.

Page 8

CS 418 S’04– 29 –

Limited Pointer Schemes

Observation:
• Since data is expected to be in only a few caches at any one

time, a limited # of pointers per directory entry should suffice

Overflow Strategy:
• What to do when # of sharers exceeds # of pointers?

Many different schemes based on differing overflow
strategies

CS 418 S’04– 30 –

(a) No overflow

Overflow Schemes for Limited Pointers

Broadcast (DiriB)
• broadcast bit turned on upon overflow
• when is this bad?

No-broadcast (DiriNB)
• on overflow, new sharer replaces one of the old

ones (invalidated)
• when is this bad?

Coarse vector (DiriCV)
• change representation to a coarse vector, 1 bit

per k nodes
• on a write, invalidate all nodes that a bit

corresponds to
P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

1

Overflow bit 8-bit coarse vector

(a) Overflow

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

0

Overflow bit 2 Pointers

CS 418 S’04– 31 –

Overflow Schemes (contd.)
Software (DiriSW)

• trap to software, use any number of pointers (no precision loss)
– MIT Alewife: 5 ptrs, plus one bit for local node

• but extra cost of interrupt processing on software
– processor overhead and occupancy
– latency

» 40 to 425 cycles for remote read in Alewife
» 84 cycles for 5 inval, 707 for 6.

Dynamic pointers (DiriDP)
• use pointers from a hardware free list in portion of memory
• manipulation done by hw assist, not sw
• e.g. Stanford FLASH

CS 418 S’04– 32 –

Some Data

• 64 procs, 4 pointers, normalized to full-bit-vector
• Coarse vector quite robust

General conclusions:
• full bit vector simple and good for moderate-scale
• several schemes should be fine for large-scale, no clear winner yet

0

100

200

300

400

500

600

700

800

LocusRoute Cholesky Barnes-Hut

N
or

m
al
iz
ed

 I
nv

al
id

at
io
ns

B
NB
CV

Page 9

CS 418 S’04– 33 –

Reducing Height: Sparse Directories
Reduce M term in P*M
Observation: total number of cache entries << total amount
of memory.
• most directory entries are idle most of the time
• 1MB cache and 64MB per node => 98.5% of entries are idle

Organize directory as a cache
• but no need for backup store

– send invalidations to all sharers when entry replaced
• one entry per “line”; no spatial locality
• different access patterns (from many procs, but filtered)
• allows use of SRAM, can be in critical path
• needs high associativity, and should be large enough

Can trade off width and height

CS 418 S’04– 34 –

Flat, Cache-based Schemes
• How they work:

• home only holds pointer to rest of directory info
• distributed linked list of copies, weaves through caches

• cache tag has pointer, points to next cache with a copy
• on read, add yourself to head of the list (comm. needed)
• on write, propagate chain of invals down the list

P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

• Scalable Coherent Interface (SCI) IEEE Standard
• doubly linked list

CS 418 S’04– 35 –

Scaling Properties (Cache-based)
Traffic on write: proportional to number of sharers
Latency on write: proportional to number of sharers!

• don’t know identity of next sharer until reach current one
• also assist processing at each node along the way
• (even reads involve more than one other assist: home and first sharer

on list)
Storage overhead: quite good scaling along both axes

• Only one head ptr per memory block
– rest is all prop to cache size

Other properties:
• good: mature, IEEE Standard, fairness
• bad: complex

CS 418 S’04– 36 –

Summary of Directory Organizations
Flat Schemes:
Issue (a): finding source of directory data

• go to home, based on address
Issue (b): finding out where the copies are

• memory-based: all info is in directory at home
• cache-based: home has pointer to first element of distributed linked list

Issue (c): communicating with those copies
• memory-based: point-to-point messages (perhaps coarser on overflow)

– can be multicast or overlapped
• cache-based: part of point-to-point linked list traversal to find them

– serialized

Hierarchical Schemes:
• all three issues through sending messages up and down tree
• no single explict list of sharers
• only direct communication is between parents and children

Page 10

CS 418 S’04– 37 –

Summary of Directory Approaches

Directories offer scalable coherence on general networks
• no need for broadcast media

Many possibilities for organizing directory and managing
protocols

Hierarchical directories not used much
• high latency, many network transactions, and bandwidth bottleneck at

root
Both memory-based and cache-based flat schemes are alive

• for memory-based, full bit vector suffices for moderate scale
– measured in nodes visible to directory protocol, not processors

