
Page 1

Synchronization
CS 418

 Lecture 23

Topics
• Locks
• Barriers
• Hardware primitives

CS 418 S’04– 2 –

Types of Synchronization

Mutual Exclusion
• Locks

Event Synchronization
• Global or group-based (barriers)
• Point-to-point

CS 418 S’04– 3 –

Busy Waiting vs. Blocking

Busy-waiting is preferable when:
• scheduling overhead is larger than expected wait time
• processor resources are not needed for other tasks
• schedule-based blocking is inappropriate (e.g., in OS

kernel)

CS 418 S’04– 4 –

A Simple Lock
lock: ld register, location

cmp register, #0
bnz lock
st location, #1
ret

unlock: st location, #0
ret

Page 2

CS 418 S’04– 5 –

Need Atomic Primitive!

Test&Set
Swap
Fetch&Op

• Fetch&Incr, Fetch&Decr

Compare&Swap

CS 418 S’04– 6 –

Test&Set based lock
lock: t&s register, location

bnz lock
ret

unlock: st location, #0
ret

CS 418 S’04– 7 –

T&S Lock Performance
Code: lock; delay(c); unlock;
Same total no. of lock calls as p increases; measure time per transfer

Number of processors

Ti
m

e
(µ

s)

11 13 15
0

2

4

6

8

10

12

14

16

18

20
Test&set, c = 0
Test&set, exponential backoff, c = 3.64
Test&set, exponential backoff, c = 0
Ideal

9753

CS 418 S’04– 8 –

Test and Test and Set

A: while (lock != free);
if (test&set(lock) == free) {

critical section;
}
else goto A;

(+) spinning happens in cache
(-) can still generate a lot of traffic when
many processors go to do test&set

Page 3

CS 418 S’04– 9 –

Test and Set with Backoff

Upon failure, delay for a while before retrying
• either constant delay or exponential backoff

Tradeoffs:
(+) much less network traffic
(-) exponential backoff can cause starvation for high-

contention locks
– new requestors back off for shorter times

But exponential found to work best in practice

CS 418 S’04– 10 –

Test and Set with Update

Test and Set sends updates to processors
that cache the lock

Tradeoffs:
(+) good for bus-based machines
(-) still lots of traffic on distributed networks

Main problem with test&set-based schemes is
that a lock release causes all waiters to try
to get the lock, using a test&set to try to
get it.

CS 418 S’04– 11 –

Ticket Lock (fetch&incr based)

Two counters:
• next_ticket (number of requestors)
• now_serving (number of releases that have
happened)

Algorithm:
• First do a fetch&incr on next_ticket (not
test&set)

• When release happens, poll the value of
now_serving
–if my_ticket, then I win

Use delay; but how much?

CS 418 S’04– 12 –

Ticket Lock Tradeoffs

(+) guaranteed FIFO order; no starvation
possible

(+) latency can be low if fetch&incr is
cacheable

(+) traffic can be quite low
(-) but traffic is not guaranteed to be O(1)
per lock acquire

Page 4

CS 418 S’04– 13 –

Array-Based Queueing Locks

Every process spins on a unique location,
rather than on a single now_serving counter

fetch&incr gives a process the address on
which to spin

Tradeoffs:
(+) guarantees FIFO order (like ticket lock)
(+) O(1) traffic with coherence caches (unlike ticket lock)
(-) requires space per lock proportional to P

CS 418 S’04– 14 –

List-Base Queueing Locks (MCS)

All other good things + O(1) traffic even
without coherent caches (spin locally)

Uses compare&swap to build linked lists in
software

Locally-allocated flag per list node to spin on
Can work with fetch&store, but loses FIFO
guarantee

Tradeoffs:
(+) less storage than array-based locks
(+) O(1) traffic even without coherent caches
(-) compare&swap not easy to implement

CS 418 S’04– 15 –

Implementing Fetch&Op

Load Linked/Store Conditional
lock: ll reg1, location /* LL location to reg1 */

bnz reg1, lock /* check if location locked*/
sc location, reg2 /* SC reg2 into location*/
beqz reg2, lock /* if failed, start again */
ret

unlock:

st location, #0 /* write 0 to location */
ret

CS 418 S’04– 16 –

Barriers

We will discuss five barriers:
• centralized
• software combining tree
• dissemination barrier
• tournament barrier
• MCS tree-based barrier

Page 5

CS 418 S’04– 17 –

Centralized Barrier

Basic idea:
• notify a single shared counter when you arrive
• poll that shared location until all have arrived

Simple implementation require polling/spinning
twice:
• first to ensure that all procs have left previous barrier
• second to ensure that all procs have arrived at current

barrier

Solution to get one spin: sense reversal

CS 418 S’04– 18 –

Software Combining Tree Barrier

Writes into one tree for barrier arrival
Reads from another tree to allow procs to
continue

Sense reversal to distinguish consecutive
barriers

Flat Tree structured

Contention Little contention

CS 418 S’04– 19 –

Dissemination Barrier

log P rounds of synchronization
In round k, proc i synchronizes with
proc (i+2k) mod P

Advantage:
• Can statically allocate flags to avoid remote
spinning

CS 418 S’04– 20 –

Tournament Barrier

Binary combining tree
Representative processor at a node is
statically chosen
• no fetch&op needed

In round k, proc i=2k sets a flag for
proc j=i-2k

• i then drops out of tournament and j proceeds in
next round

• i waits for global flag signalling completion of
barrier to be set
–could use combining wakeup tree

Page 6

CS 418 S’04– 21 –

MCS Software Barrier

Modifies tournament barrier to allow
static allocation in wakeup tree, and to
use sense reversal

Every processor is a node in two P-node
trees:
• has pointers to its parent building a fanin-4
arrival tree

• has pointers to its children to build a fanout-2
wakeup tree

CS 418 S’04– 22 –

Barrier Recommendations

Criteria:
• length of critical path
• number of network transactions
• space requirements
• atomic operation requirements

CS 418 S’04– 23 –

Space Requirements

Centralized:
• constant

MCS, combining tree:
• O(P)

Dissemination, Tournament:
• O(PlogP)

CS 418 S’04– 24 –

Network Transactions

Centralized, combining tree:
• O(P) if broadcast and coherent caches;
• unbounded otherwise

Dissemination:
• O(PlogP)

Tournament, MCS:
• O(P)

Page 7

CS 418 S’04– 25 –

Critical Path Length

If independent parallel network paths
available:
• all are O(logP) except centralized, which is O(P)

Otherwise (e.g., shared bus):
• linear factors dominate

CS 418 S’04– 26 –

Primitives Needed

Centralized and combining tree:
• atomic increment
• atomic decrement

Others:
• atomic read
• atomic write

CS 418 S’04– 27 –

Barrier Recommendations

Without broadcast on distributed memory:
• Dissemination

– MCS is good, only critical path length is about 1.5X longer
– MCS has somewhat better network load and space

requirements

Cache coherence with broadcast (e.g., a bus):
• MCS with flag wakeup

– centralized is best for modest numbers of processors

Big advantage of centralized barrier:
• adapts to changing number of processors across barrier calls

