
ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 1 of 12

 ECE/CS 4984: Wireless Networking and Mobile Systems
Laboratory 5 Pre-lab and In-class Exercise

Part I – Objectives and Lab Materials

Objective:

 Introduce the concept of service discovery and delivery

 Case study of Universal Plug and Play (UPnP)

Hardware to be used in this lab assignment:

 Dell notebook with 802.11b card (with a fully charged battery)

Software to be used in this lab assignment:

 Microsoft Visual Studio .NET 2003

 Intel UPnP SDK and tools

Overview:

Service discovery is the process of searching and advertising services on a network. A service may be an
information source, a control source offering some function or a number of other things that haven’t been
thought of yet. The purpose of service discovery is to make the process of finding and using services
simpler. For example, suppose you have your iPAQ and are wandering around the library trying to find a
book. If the library has a map service available, you could startup your service browser, find the map
service and figure out where you in and where the book is that you are trying to find. This is a trivial
example from the pervasive computing world. Services may be much more complex or much simpler
than this depending on the application.

This lab introduces service discovery and some of the service discovery protocols. As you read the
papers in the next section, think about how each would perform in different types of networks. Think
about which protocol would perform best in which type of network. Also, pay attention to the similarities
and differences between them. Service discovery is a single basic idea and each protocol provides a
slightly different approach to solving the problem.

Part II – Pre-lab Assignment

This portion of the assignment should be completed prior to the in-class lab session.

Reading Assignment:

 “A Comparison of Service Discovery Protocols and Implementation of the Service Location
Protocol”, C. Bettstetter, C. Renner, 2000. This is a fairly old paper on S.D., but it is one of the
staples on the subject. Reading section 4 is optional.

http://citeseer.nj.nec.com/334042.html

 “Protocols for Service Discovery in Dynamic and Mobile Networks”, C. Lee, S. Helal, 2002.
This paper is a little more recent and talks a bit about the Bluetooth SD protocol in addition to the

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 2 of 12

ones mentioned in the previous paper.
http://www.harris.cise.ufl.edu/projects/publications/servicediscovery.pdf

 Read the article by S. Helal, “Standards for service discovery and delivery”, IEEE Pervasive
Computing, 2002, pp. 95-100. Note that this article is available from IEEE Xplore which can be
accessed at the Virginia Tech library’s web site.

 “UPnP Device Architecture 1.0”, 2003. This paper is published by the UPnP Forum and
describes the architecture of UPnP. Read the introductions to each section.
http://www.upnp.org/resources/documents/CleanUPnPDA101-20031202s.pdf

Tasks:

 Download the 2 Intel UPnP packages from Blackboard. Create 2 directories in your lab 5
directory (‘tools’ and ‘auth tools’) and put each package in the corresponding directory. Each
package is a self-extracting file. Run them both and direct each to put its contents in the
directory.

 The rest of this lab will involving getting acquainted with the tools from Intel. These tools are
very useful in developing, testing and deploying UPnP devices and control points. Browse
through the files in the directories and get a feel for where things are.

Read the following files:

 ‘tools’ directory:

o Readme.htm

o ToolsHelp.chm (skim this one)

 ‘auth tools’ directory:

o Readme.htm

o IntelAuthoringToolsHelp.chm

Part III – In-class lab assignment

Part A: Working with UPnP Devices

The in-class section of this lab will involve using some of the more useful (for us) tools. Using these
tools should also give you a better understanding of how UPnP works.

For this lab you will use an example application from the Intel tools as an UPnP device. Using the sniffer
and universal control point applications, you will control the device and monitor the UPnP traffic. There
is no report required for this portion of the lab. The purpose is to make you familiar with the tools to do
the project.

Procedure:

 Insert the 802.11b card into the notebook, set it to ad hoc mode and assign it an address of
192.168.<group number + 100>.1 and a 24 bit netmask (255.255.255.0). The UPnP applications
need an address to work with, just like the Pocket PC emulator.

 In the ‘tools’ directory, start ‘Device Sniffer’ and ‘Device Spy’ applications. The ‘Device
Sniffer’ is basically an application that listens for traffic on the UPnP multicast address
(239.255.255.250). The ‘Device Spy’ is essentially a universal control point application and will
act as our control point for this lab.

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 3 of 12

 In the ‘tools\Micro Tools’ directory, start the ‘Micro Light (Windows)’ application. This is an
example UPnP device application written by Intel. It will act as our UPnP device. You may
control the dimmer and whether the ‘light’ is on or off from the application itself; see the ‘File’
menu.

 When you start the Micro Light application your sniffer should collect a lot of traffic. The device
spy should also gain a new section.

 In the device spy, right click on the ‘Intel MicroLight’ and choose ‘Expand all devices’. Browse
the 2 services offered by the Micro Light. Clicking on the state variables will give you the
information at that current time. Clicking any of the service methods will give you information
about that method. Double-clicking a method will allow you to invoke that method. Right
clicking on the service name will give you the opportunity to subscribe to that service.

 Using the control point (the Device Spy) invoke some of the methods of the MicroLight service.
Toggle the power and change the dimmer from the control point. Watch the messages in the
sniffer as you manipulate the device. Clicking any individual message in the sniffer will give you
the full message in the lower part of the window. Observe the different message types and what
information is carried in them.

 Using the control point, subscribe to the events of both services. This will split the right part of
the window into 2 parts. The lower part contains information involving subscribed events. Using
the MicroLight application, change the power and dimmer settings. Pay attention to the event
subscription window.

Part B: Designing UPnP Devices

Now you will be working on creating UPnP device stacks. There are 3 steps. The first is to create the
service description file. The service description file contains all the information about a service,
including the actions and state variables available. Using the service description, you will be able to
create the UPnP stack for the device. The stack is essentially all the parts of UPnP that you really don’t
want to have to write. It handles registering the service, advertising the service, dealing with variable
subscriptions and doing the processing of the service requests. The final part is to implement the actions
of the service.

 Create a ‘tutorial_device’ directory in your lab 5 directory.

 Creating the service descriptions.

a. In the ‘tools’ directory, start the ‘Service Author’ application. Service author is another
application that makes your life easier. It generates the XML description of the services
you wish to offer.

b. You will be creating 3 actions for you UPnP device. Right clicking in either area will
give you the option to add actions or state variables. Add 4 state variables:

i. ‘line’: string, eventing: on;

ii. ‘x’, ‘y’, ‘sum’: integer 32; eventing off

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 4 of 12

c. Create 3 actions

i. ‘getLine’: 1 arg: {‘line’,‘line’} // {‘Name’, ‘Variable’}

ii. ‘setLine’: 1 arg {‘line’, ‘line’}

iii. ‘adder’: 3 args {‘x’, ‘x’} {‘y’, ‘y’} {‘sum’, ‘sum’}

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 5 of 12

Changing the direction of arguments: Right click on the green arrow to change the direction of the
arguments. Leave ‘x’ and ‘y’ as inputs, but change ‘sum’ to be an output state variable. This means
that ‘sum’ will not accept any input and a value can be assigned to it in the action. This value will be
sent back to the calling method. Likewise, change the direction of the ‘getLine’ to output.

Final ‘Service Author’ example

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 6 of 12

d. Save the file as ‘tutorial_device.xml’ in the ‘tutorial_device’ directory.

e. Open the file you just created in VS. Identify the different actions and state variables you
defined using the service author.

 Creating the device stack

a. In the ‘auth tools’ directory, start the ‘Device Builder’ application. Writing the service
descriptions by hand would be tedious, but not altogether _that_ painful. The service
author is a tool that helps make our life easier. Device builder, on the other hand makes it
possible to do this project. Given the service description, it generates the UPnP device
stack code. This is not a task to be taken lightly. The code that will not see for this lab is
mostly a generic UPnP device stack that has the proper registration and invocation calls
already done. This makes it much easier to write UPnP devices applications, because all
you have to worry about is the code that is _different_ from the other UPnP devices, the
services.

b. Right click on the area underneath ‘Root Device’ and choose ‘Add Service from File…’.
Select the service file you just created. Now, a few descriptions need to be changed.

c. Click on the ‘Root Device’ and in the right hand pane, change the ‘Friendly Name’ to
‘Tutorial Device’.

d. Click on the ‘ImportedService’ tag and change the following:

i. ‘Service Name’ to ‘TutorialService’

ii. ‘Service Type’ to ‘urn:schemas-upnp-org:service:tutorial:1’

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 7 of 12

e. The service type is very important because it is the parameter that will be searched for by
an UPnP control point. Make sure it matches the above, removing the single quotes of
course.

f. Save the file as ‘tutorial_device.upnpsg’. This will be used in creating an UPnP control
point that would use this service.

g. For the final step, we need to generate the device stack. Under the ‘File’ menu choose,
‘Export Device Stack…’; a real shocker there! In the ‘Device Generation’ window
choose:

i. ‘Target Platform’ to be ‘Intel .NET Framework Stack (C#)’

ii. ‘Output Path’ to be your tutorial_device directory

The rest can stay the same. Click the big button at the bottom and *poof* your
tutorial_device directory should contain a new C# project that is your device. You may
close Device Builder, its job is done.

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 8 of 12

 The Coding: Now that the device stack has been built, the code for the actions needs to be
implemented. Open the tutorial_device project (the .csproj file). You will be questioned if you
want to convert the project to the new format, click ‘Yes’. Device Builder builds projects for the
VS .NET 2002 platform and apparently there is some difference between VS.NET 2002 and 2003
projects.

 Modifying SampleDevice.cs: Open ‘SampleDevice.cs’ and scroll down to the middle of the file
to the ‘SampleDevice’ constructor. There are 3 lines that look something like this:

TutorialService.External_adder = new

Intel.DeviceBuilder.TutorialService.Delegate_adder(TutorialService_adder);
TutorialService.External_getLine = new

Intel.DeviceBuilder.TutorialService.Delegate_getLine(TutorialService_getLine);
TutorialService.External_setLine = new

Intel.DeviceBuilder.TutorialService.Delegate_setLine(TutorialService_setLine);

Change them to this:

TutorialService.External_adder = new

Intel.DeviceBuilder.TutorialService.Delegate_adder(TutorialService.adder);
TutorialService.External_getLine = new

Intel.DeviceBuilder.TutorialService.Delegate_getLine(TutorialService.getLine);
TutorialService.External_setLine = new

Intel.DeviceBuilder.TutorialService.Delegate_setLine(TutorialService.setLine);

(The change was in the parameter passed. The ‘_’ was changed to ‘.’.)

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 9 of 12

 Reason: The code that is generated is generated in such as way so that you can add your action
implementations into the SampleDevice.cs file. If you scroll down you’ll see the method calls
that match the first 3 lines. The problem is that you can not reference anything inside the
TutorialService object from here. This means you do not have access to your state variables. I do
not understand why Intel did it this way. If you change it to the 2nd set of lines, you write the
action method code in the action method declarations which are _inside_ of the TutorialService
class. It would make sense to me that you would want to have the actions, which are part of the
service, defined _inside_ the service. If anyone has a better understanding or a reason they did
this, please let me or the TAs know. Anyway, the changes will work.

 Open the TutorialService.cs file. Take a look at what is exposed in this file. The actions method
definitions are there, but, notice, the state variables are not there. The state variables are defined
in a region that is ‘hidden’ using the #region directive. Scroll to the top and click the ‘+’ on the
left beside the line ‘Autogenerated code’… Scroll down through this code. Close it back up after
you have taken a look at it.

 Add the needed code to the action methods. The ‘out’ identifier means that variable is passed by
reference and any changes to it will change to the object itself, therefore the calling method’s
value will change as well. Also, comment out the ‘throw’ line; that exception is no longer
needed. Your methods should look like this:

public void adder(System.Int32 x, System.Int32 y, out System.Int32 sum)
{
 sum = x + y ;

//ToDo: Add Your implementation here, and remove exception
}
/// <summary>
/// Action: getLine
/// </summary>
/// <param name="line">Associated State Variable: line</param>

public void getLine(out System.String line)
{
 line = this.Evented_line ;

//ToDo: Add Your implementation here, and remove exception
}
/// <summary>
/// Action: setLine
/// </summary>
/// <param name="line">Associated State Variable: line</param>

public void setLine(System.String line)
{
 this.Evented_line = line ;

//ToDo: Add Your implementation here, and remove exception
}

Why is the incoming string assigned to ‘Evented_line’ when we defined our state variable to be
simply, ‘line’. There isn’t a simple way to watch a variable and tell when it changes, which is
needed since control points can subscribe to the variables event. In order to watch a variable the
stack uses the C# ‘properties’ ability. Properties allow an almost wrapper like functionality. The
Evented_line property takes care of the eventing part of UPnP. ‘sum’, ‘x’, and ‘y’ can not be
subscribed to, so we do not need to worry about eventing and can address them directly (sort of).

 Build and run the project. Use the ‘Device Spy’ from earlier to make sure the actions work
correctly.

On the ‘Device Spy’, you should see your device.

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 10 of 12

Subscribe to events of your service.

Set the string value using ‘setLine’ method and verify it with ‘getLine’ method, and check if ‘adder’
method works as well.

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 11 of 12

ECE/CS 4984 Pre-lab and In-class Exercise 5 Page 12 of 12

