Beyond the Planar Transistor: Progress in Next Generation Switches

> Kelin J. Kuhn Intel Fellow Director of Advanced Device Technology



# MORE MOORE MORE THAN MOORE





## **TriGate**



## **TriGate**



Tri-Gate transistors can have multiple fins connected together to increase total drive strength for higher performance



#### April 25th 2011: Intel announces 22nm production TriGate process

#### 32 nm Planar Transistors

#### 22 nm Tri-Gate Transistors





Mark Bohr, Kaizad Mistry: Intel, April 25th, press release







Kelin Kuhn SEMATECH 8th Int'l Sym. on Adv. Gate Stack Tech. 2011

#### Hisamoto – IEDM 1989

## **MuGFET**



#### Chau – ISSDM 2002







#### Kavalieros - IEDM 2006



## **Electrostatics Benefits**



# **Electrostatics Benefits**



22nm extension → similar ID-VG shape

# **Electrostatics Benefits**



22 nm transistors provide improved performance at high voltage and an unprecedented performance gain at low voltage



# **Overlap Capacitance (Cov) vs Pitch**



# Taller fins and tighter pitches improve overlap capacitance

## **External Resistance Segmentation**



#### Rext = S/D resistance + Tip resistance Greater than channel resistance!

# **External Resistance (Rext) vs Pitch**



# Taller fins and tighter pitches degrade external resistance

# **External Resistance (Rext) vs Width**



### degrade external resistance

# **Xud Improvement with Tri-Gate**



Planar:

- Needs high doping to control SCE →
- Tip is depleted near the channel →
- ∴ Requires gate overlap to neutralize depletion

TG (or UTB):

- Has good SCE (if TSi is small enough) →
- Low or no doping to control SCE →
- Small or no tip depletion →
- :. Xud can be smaller

# **CV/leff vs Pitch**



#### Optimal performance is a trade-off between R and C and requires optimizing height, width and pitch

### **MORE THAN MOORE**





MOBILITY

# **TFET (Tunneling Field-Effect Transistor)**





Courtsey M. Luisier (Purdue) M. Luisier and G. Klimeck, EDL, 2009

Tunnel FETs operate by tunneling through the S/D barrier rather than diffusion over the barrier

Two required conditions:

- Thin enough barrier over a large enough area for effective (high current) tunneling.
- Sufficient density of states on both the transmission and receiving sides to provide energetic locations for the carriers.

## **TFET Sub-threshold Slope**

 Tunneling probability increases sharply at the onset of <u>Source Valence Band</u> and <u>Channel Conduction Band</u> overlap



#### Avci, Intel, VLSI 2011

### **HTFET Material Considerations**



Staggered and broken gap systems have higher tunneling probability.

Theresa Mayer and Suman Datta, Penn State, SRC review 2011

11

## **MOSFET Sub-threshold Slope = 60 mV/dec**

# MOSFET SS = 60 mV/dec, because the current increase is driven by <u>Fermi distribution tail over the barrier</u>.



#### N-TFET Sub-threshold Slope < 60 mV/dec In N-TFET, sub-threshold current is controlled by the change in tunneling probability at the onset of Valence band and Conduction band overlap.



J(E): Current density = f(E)\*T(E)

• f(E): Electron occupancy difference b/w S and D

•T(E): Transmission rate including # of modes

TECH 8th Int'l Sym. on Adv. Gate Stack Tech. 2011

N-TFET Sub-threshold Slope < 60 mV/dec In N-TFET, sub-threshold current is controlled by the <u>change in tunneling probability</u> at the onset of Valence band and Conduction band overlap.



J(E): Current density = f(E)\*T(E)

• f(E): Electron occupancy difference b/w S and D

T(E): Transmission rate including # of modes

#### P-TFET Sub-threshold Slope ~ 60 mV/dec In P-TFET, sub-threshold current is controlled by the <u>change in Fermi distribution difference</u> when EC(S)< EV(Channel) <EF(S).



#### P-TFET Sub-threshold Slope ~ 60 mV/dec In P-TFET, sub-threshold current is controlled by the <u>change in Fermi distribution difference</u> when EC(S)< EV(Channel) <EF(S).



#### P-TFET Sub-threshold Slope ~ 60 mV/dec In P-TFET, sub-threshold current is controlled by the <u>change in Fermi distribution difference</u> when EC(S)< EV(Channel) <EF(S).



### **TFET vs. MOSFET**

#### At low switching energy, InAs TFET is theoretically capable of providing more than 8x performance advantage over MOSFET



# Best demonstrated TFETs still have poor drive current



|                                   | Ref.<br>[2] | Ref.<br>[3] | Ref.<br>[4] | This<br>Work |
|-----------------------------------|-------------|-------------|-------------|--------------|
| SS<br>(mV/dec)                    | 52.8        | 42          | ~300        | 46           |
| I <sub>ON</sub><br>(μΑ/μm)        | 12.1        | 0.01        | 1E-4        | 1.2          |
| I <sub>ON</sub> /I <sub>OFF</sub> | 1E4         | 1E4         | 1E2         | 7E7          |

**Table. I.** Comparison to reported silicon TFETs.  $(V_{DS}=V_{GS}-V_{BTBT}=1.0V)$ 

S. Mookerjea et al., IEDM '09 D. Mohata, Appl. Phys, Jan '11 [1] K. Jeon, et al., VLSI (11.4.1.-1) 2010

[2] W. Choi et al., IEEE-EDL vol.28, no.8, p.743 (2007)

[3] F. Mayer et al., IEDM Tech Dig., p.163 (2008)

[4] T. Krishnamohan et al., IEDM Tech Dig., p.947 (2008)

37

# **TFET (Tunneling Field-Effect Transistor)**



#### **Benefits**

- Steep sub-threshold slope (< 60 mV/dec)</li>
- Large lon/loff ratio
- Geometry scales well
- Some designs are compatible with conventional SiGe/Si CMOS processes

#### Challenges

- Poor experimental drive currents
- Ambipolar conduction (high DB leakage for bulk devices)
- No comparable PTFET
- Asymmetric device behavior (issues with SRAM / passgates)
- Most attractive at very low operating voltages (where product frequencies may be disinteresting)



MOBILITY

#### **ELECTROSTATIC CONFINEMENT**

# **CMOS** switch vs Relay switch



The attraction is infinite sub-threshold slope and zero loff

### **Pseudo-CMOS: 4-Terminal relay**





\_V<sub>G</sub>=1.1V<sub>PI</sub> \_\_V<sub>G</sub>=1.2V<sub>PI</sub>

•V<sub>G</sub>=1.8V<sub>PI</sub> ---V<sub>G</sub>=2V<sub>PI</sub>

V\_=1.4V\_ **—**V\_=1.6V\_

saturation

-0.1

-0.15

-0.2

-0.25

 $V_{D}(V)$ 

Liu IEDM 2010 / Nathanael IEDM 2009

### 4 -Terminal Relay vs See-saw Relay



### **Simple See-saw Relay**



#### **Device-like See-saw Relay**

![](_page_42_Picture_1.jpeg)

### **Circuit Design Trade-offs**

CMOS:

![](_page_43_Figure_2.jpeg)

#### 4 gate delays: More smaller devices

![](_page_43_Figure_4.jpeg)

1 mechanical delay: Fewer larger devices

Chen et al. ICCAD 2008

## **Relay Scaling Laws**

![](_page_44_Figure_1.jpeg)

## Relay (Liu/Chen – IEDM/ISSCC 2010)

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)

Figure 7.9.2: Schematic and measured VTC/transient waveforms for a MEMswitch based inverter and carry-generation circuit.

#### **Benefits**

- Abrupt / full-rail switching behavior (<< 60 mV/dec)</li>
- Zero loff
- Low energy switching
- Compatible with conventional CMOS processes

#### Challenges

- Slower than CMOS
- Reliability and stiction issues
- Hysteresis
- Mechanical delay >> electrical delay, requires change in circuit design (parallel/clocked)

![](_page_46_Figure_0.jpeg)

**ELECTROSTATIC CONFINEMENT** 

MOBILITY

![](_page_47_Figure_0.jpeg)

Kuhn, Intel, IEDM SC 2008

### Implant goal: ever smaller X<sub>J</sub> with improved R<sub>acc</sub>

![](_page_48_Figure_1.jpeg)

Modeling (Aoki, IWJT 2010)

# Molecular implants for simultaneous X<sub>J</sub> and R<sub>acc</sub> reduction

#### Anneal goal: activate and freeze implants in place

![](_page_49_Figure_1.jpeg)

# Submelt anneal freezes atoms in place for simultaneous X<sub>J</sub> and R<sub>acc</sub> reduction

Kuhn – IWJT 2010

#### Anneal goal: Superactivation by Solid-phase epitaxial regrowth (SPER)

![](_page_50_Figure_1.jpeg)

#### Laser melt anneal vs RTA, showing increased abruptness and non-equilibrium enhanced activation (superactivation) Kuhn – IWJT 2010

# **Properties of the Elements**

![](_page_51_Figure_1.jpeg)

# Schottky theory vs. experimental SBHs for metals on nSi

![](_page_52_Figure_1.jpeg)

Fermi level pinned to mid-gap for most metals on Si

# **Challenges of PVD**

![](_page_53_Figure_1.jpeg)

From J. Clarke, Intel

![](_page_54_Figure_0.jpeg)

#### Scalability below 30 nm is challenging

#### **Crafting Films with Atomic Layer Deposition**

![](_page_55_Picture_1.jpeg)

![](_page_55_Picture_2.jpeg)

Step 2

Self-limiting coverage = thickness precision Potential for high selectivity

![](_page_55_Figure_5.jpeg)

Wide variety of potential co-reactants Build desired chemical structure in place

![](_page_55_Picture_7.jpeg)

Step 4

**Robust films at much lower thermal budget** 

## **PVD versus ALD**

![](_page_56_Picture_1.jpeg)

![](_page_56_Picture_2.jpeg)

#### PVD Seed Overhang

#### ALD Seed Conformal

From J. Clarke, Intel

![](_page_57_Picture_0.jpeg)

MOBILITY

#### **ELECTROSTATIC CONFINEMENT**

# **Planar Capacitive Elements**

![](_page_58_Figure_1.jpeg)

# Low-k driven by porosity

![](_page_59_Figure_1.jpeg)

## **Percolation Threshold: 2D Grid Example**

![](_page_60_Figure_1.jpeg)

Calculations for 3D (4 Coord): Percolation Threshold at 57% Porosity

#### **Theoretical Limit Exists For Random Co-Mixing**

From J. Clarke, Intel

![](_page_61_Picture_0.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_61_Figure_2.jpeg)

# Structural Control is Critical

Kim et. al., Chem. Rev. 2010, 110, 146-177

From J. Clarke, Intel

<u>2D</u>

# **Pore Sealing**

# Like trying to deposit a gas onto the surface (but not into the bulk) of a sponge.

#### ALD Liner Dep on a Porous ILD: No Pore Sealing

![](_page_62_Picture_3.jpeg)

ALD Precursor fully penetrates the ILD and decorates the pore structure. With Pore Sealing

![](_page_62_Picture_6.jpeg)

No Penetration into the ILD

#### Continual struggle of thin ALD with films of increasing porosity. Strive for no degradation in capacitance or reliability.

From J. Clarke, Intel

# Limit to visibility remains ~ decade

#### **TECHNOLOGY GENERATION**

| 45nm<br>2007  | 32nm<br>2009 | 22nm<br>2011 | 14nm<br>2013 | 10nm<br>2015              | 7nm<br>2017             | Beyond<br>2020                    |   |
|---------------|--------------|--------------|--------------|---------------------------|-------------------------|-----------------------------------|---|
| MANUFACTURING | DEVE         | LOPMENT      | RESEA        | RCH                       |                         |                                   |   |
|               |              |              |              | QW III-V DO               | ~1<br>evice             | Carbon<br>Nanotube<br>nm diameter |   |
|               |              | Not to scale |              | Nanov<br>10 ato<br>across | 5nm<br>wire<br>oms<br>s | Graphene<br>1 atom thic           | × |
|               |              |              |              |                           |                         |                                   |   |

![](_page_64_Picture_0.jpeg)