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Abstract

Stereoscopic Liquid Crystal Displays (LCDs) in a tiled setup, so-called display walls, are rising as a replacement
for the classic projection-based systems for Virtual Reality (VR) applications. They have numerous benefits over
projectors, the only drawback being their maximum size, which is why VR applications usually resort to using tiled
display walls. Problems of display walls are the obvious bezels between single displays making up the wall and,
most importantly, the complicated pipeline to display synchronized content across all participating screens. This
becomes especially crucial when we are dealing with active-stereo content, where precisely timed display of the
left and right stereo channels across the entire display area is essential. Usually, these scenarios require a variety
of expensive, specialized hardware, which makes it difficult for such wall setups to spread more widely.
In this paper, we present our service-oriented architecture Display as a Service (DaaS), which uses a virtualization
approach to shift the problem of pixel distribution from specialized hardware to a generic software. DaaS provides
network-transparent virtual framebuffers (VFBs) for pixel-producing applications to write into and virtual dis-
plays (VDs), which potentially span multiple physical displays making up a display wall, to present generated
pixels on. Our architecture assumes network-enabled displays with integrated processing capabilities, such that
all communication for pixel transport and synchronization between VFBs and VDs can happen entirely over IP
networking using standard video streaming and Internet protocols. We show the feasibility of our approach in a
heterogeneous use case scenario, evaluate latency and synchronization accuracy, and give an outlook for more
potential applications in the field of VR.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/Network Graphics, I.3.4 [Computer Graphics]: Graphics Utilities—Virtual Device Interfaces

1. Introduction

Wall setups based on multiple tiled LC displays screens
are beginning to replace the classic approach of projection-
based installations when designing hardware setups for
VR applications. The reasons are manyfold: displays are
brighter, they have a wider color gamut, higher color sta-
bility, pixel density and lifespan, while being even more
energy-efficient and cheaper than projectors. Furthermore,
LCDs can be calibrated much more easily, and do not re-
quire setups to include additional space for the path of the
light projection but occupy hardly more than the room actu-
ally required for the area to display on. LCDs always have
the drawback, though, that they are limited in physical size
and that a wall- or room-sized VR installation will require
many displays to be tiled in order to form a larger display
area. Today, this automatically results in discontinuities on

the resulting display walls due to the bezels surrounding
each single display. Although bezels are becoming increas-
ingly slimmer, such that distances of 5 mm between pixels
of neighboring displays of a tiled wall are on the market,
this will remain an issue for the upcoming years until really
bezel-free displays might become available.

Besides bezels, the much larger problem of tiled display
installations is how to connect pixel sources to them. If we
take a four-sided CAVE installation as a simple example, we
could run the respective application driving it on a single ma-
chine that is powerful enough and that is equipped with two
GPUs with two heads each, outputting to four active-stereo
projectors (one for each wall). This theoretical case would
induce no need for synchronization of pixel generation as
everything is happening on the same machine. However,
for a CAVE consisting of multiple LCDs per wall expen-
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sive specialized hardware would be required, like worksta-
tion GPUs with dedicated sync mechanisms and cable con-
nections or hardware pixel processors replicating and scal-
ing input video signals to multiple output signals over ded-
icated video cables. Another way to feed pixels into a dis-
play wall installation is the so-called daisy chaining, where
single displays not only have video inputs, but outputs, too,
and each full video frame coming in is only displayed par-
tially and passed through to the successor display, and so on.
Here, resolutions are typically limited to 1080p for the entire
wall, thus wasting a lot of the potentially available resolu-
tion. In summary, all of these solutions are very expensive,
complicated to set up, and extremely inflexible. Making the
way pixel generators and consumers (displays) connect more
flexible is the main goal of the work presented here.

As a general approach, the concept of virtualization has
gained huge popularity in all areas of computing. Virtualiza-
tion removes the dependence on specific hardware by adding
an intermediate software layer emulating the hardware. The
software layer offers improved flexibility and new features
that would be hard or even impossible to offer on real hard-
ware. For example, this includes running multiple virtual
machines on the same hardware for improved efficiency or
moving virtual machines between hardware instances for
maintenance reasons with minimal or no downtime. The
virtualization of computing hardware is also known as In-
frastructure as a Service’ (IaaS) but can be extended also
to other hardware, e.g. Storage as a Service, as well as to
the virtualization of software layers in Software as a Service
(SaaS).

1.1. Overview of the Approach

In this paper, we present Display as a Service (DaaS) target-
ing the virtualization of framebuffers (the hardware resource
applications write pixels to) and displays (the resource those
pixels are presented on). We expose both hardware resources
plus a Web Service control interface on the Internet allow-
ing for flexible remote management. We allow for combin-
ing individual virtual frame buffers and displays into new
compound devices and finally offer fully synchronized M:N
connections between them, such that frame buffer content
can be scaled and placed at arbitrary locations on any dis-
play.

Content in DaaS is transported over the network using
low-delay standard-compliant video encoding and stream-
ing. We even support content that needs strict synchroniza-
tion, such as active stereo content displayed across multi-
ple independent screens of a compound display. Thus, DaaS
goes well beyond just replacing the traditional 1:1 hardware
cable connections (e.g., DVI, or HDMI) as done by previous
work via Remote Framebuffer Protocol [RL11] or Wireless
Display (WiDi) [Int] technology.

Virtual displays in DaaS are registered with their absolute

location in 3D space. This opens up new application scenar-
ios for VR and beyond. We propose to integrate DaaS into
future display drivers as well as display hardware – which in-
creasingly has the necessary Internet connectivity and com-
puting capability already on board. As a result, DaaS allows
to easily connect computers to virtualized displays over stan-
dard networks offering the full flexibility of an intermediate
software layer.

The remainder of this paper is structured as follows: In
the upcoming Section, we discuss related work in the field of
display virtualization for VR. Section 3 and Section 4 then
describe the concepts and implementation of the DaaS sys-
tem, respectively. In Section 5, we show how we use DaaS
in multiple use cases discussing the achieved results. Sec-
tion 6 concludes the paper and shows directions opening up
for future work.

2. Related Work

When realizing a distributed VR application, there are sev-
eral stages of processing involved on the way from applica-
tion to display: controlling input and rendering at the appli-
cation (which is potentially distributed as well), distributing
and transporting rendered pixels across physical hosts, un-
til finally displaying them on a screen. In this process, the
responsibility of DaaS begins after the generation of pix-
els and is agnostic to the way those pixels are initially cre-
ated. As such, DaaS differs from frameworks for distributed
rendering like Chromium [HHN∗02] or Equalizer [EMP08],
which distribute the rendering process itself by, for example,
sending OpenGL commands and corresponding geometry to
several render servers. Also, all those frameworks include
capabilities for receiving and processing user input, for ex-
ample to move the virtual camera of a rendered scene. As
DaaS is renderer-agnostic, it does not assume certain stan-
dard interactions for applications built on top of it, but leaves
delivering and processing user input to the pixel-generating
application, working only on the resulting pixels. So DaaS
can not and does not want to fully replace those distributed
rendering systems, but could be combined with them and ex-
tend their functionality.

The SAGE framework [RRS∗04] employs several con-
cepts similar to DaaS, especially assuming raw pixel input
into the system, high-resolution streaming of image frames
via Internet protocols, which enables connecting even re-
mote locations, and a content management philosophy re-
sembling the window manager of a desktop computer. The
main difference of DaaS in contrast to SAGE is the strong
focus on synchronization, which allows the former to stream
and display even active-stereo content across a display wall.
Also, the concept of using the display refresh rate as a clock
source for pixel producers (reverse genlock, cf. Section 3.1),
allowing more precise motion reproduction, is not used in
SAGE. Finally, the usage of standardized video encoding
and protocols in DaaS, instead of proprietary ones in SAGE,
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enables receiving DaaS streams out-of-the-box on a vari-
ety of hardware-accelerated platforms. From an architectural
standpoint, SAGE operates on a centralized management en-
tity both pixel generators and consumers connect to, whereas
DaaS follows a service-oriented approach and makes both
resources available in the network allowing them to be inter-
connected by external service consumers without any global
knowledge of the application layout.

To perform output synchronization on composite display
walls, all mentioned frameworks typically use a centralized
approach with one master that all slave displays report to
upon receiving a frame. The master blocks until all slaves
have reported and sends a buffer swap signal back. This
approach is rather time-consuming and requires extensive
back-and-forth network communication that does not scale
well [NDV∗10]. In addition, to present active-stereo con-
tent, synchronizing OpenGL buffer swaps at the display side
is not sufficient, because the visual refresh of neighboring
displays in a wall setup might still be off up to a full dis-
play refresh interval. Thus, to achieve both synchronization
of buffer swaps (swaplock) and display refresh (framelock),
DaaS adopts and extends clock-based genlock techniques as
used in television broadcasting.

3. Concepts

Within DaaS there are two main types of entities involved,
representing the opposing views on a DaaS session: Virtual
Framebuffers (VFBs) and Virtual Displays (VDs). An arbi-
trary number of VFBs and VDs may be involved in a run-
ning session (m and n, respectively), only limited by avail-
able hardware resources. As autonomous service entities of
a Service-Oriented Architecture (SOA) [Erl05], VFBs and
VDs make themselves available on the network, allowing
independent service consumers to either use or interconnect
them freely, the latter being the most usual case. All control
and pixel information is transmitted between entities using
only standard IP networks and protocols, without the need
for any dedicated sync or pixel processing hardware. In the
following, the two types of entities and their role in the sys-
tem will be explained in more detail.

3.1. Virtual Display (VDs)

What we call a Virtual Display (VD) in DaaS is the software
entity assigned to a single, consecutive or non-consecutive
area of screen real estate that is supposed to be used as a
whole to present pixels on. Thus, a VD can consist of ei-
ther a single physical display (either stationary or mobile) or
a whole array of those displays (i.e., a display wall). Con-
ceptually, this VD consists of a screen, a network connec-
tion for receiving video streams, and a processor able to de-
code those video streams and present them on the screen.
This combination of features is usually present in current-
generation mobile devices and “smart” LCD televisions.

Nonetheless, the VD concept can be abstracted on a standard
computer connected to at least one “non-smart” display. VD
services provide detailed information about their capabilities
to the network, which outside entities can work with to con-
figure and route the flow of video data. Examples for these
capabilities are display size in pixels and millimeters, color
depth, 3D stereo features, and exact 3D location in the co-
ordinate system of the session. VDs are addressed by their
URL.

VDs that span multiple physical hosts in the network are
represented by a single VD entity as well. On a service level,
this one VD service represents the entire compound of child
displays towards the network. VD services in DaaS follow
the Composite pattern [GHJV94], in which each VD may
be composed of child VDs representing the combined prop-
erties of all its children towards the outside. While the ser-
vice communication with the outside happens only at the
root of the VD hierarchy (which represents the entirety of
VDs below), video streaming is done in a direct peer-to-peer
fashion between pixel generators and the VDs located at the
leaves of this hierarchy. In summary, VDs provide the inter-
face to communicate with one physical display in the very
same way as with multiple displays forming a consecutive
display wall

As an important aspect during display configuration, each
participating VD makes its physical size in pixels and mil-
limeters as well as its absolute 3D transformation available
to the outside within its service description. Any pixel rect-
angles that are mapped onto a VD are specified in the coor-
dinate system of the root VD, and may have an additional
z-coordinate in order to prioritize the stacking order of over-
lapping pixels required on the display. Within a composite
VD, pixel operations like bezel compensation cutting away
pixels "covered" by the framing of single displays can be
done automatically and completely transparent for a service
consumer. Figure 3 shows an example VD displaying one
full-screen video stream of an interactive scientific visual-
ization and a second overlay stream of a running video. As
we will see in Section 4.3, even heterogeneous walls with
different pixel densities on each participating screen can be
set up like this.

The available transformational data of the physical dis-
plays can also be used by VR applications to calculate
location-dependent data like view frustums on-the fly, and
adapt their pixel generation to it. Even scenarios with tracked
mobile displays like tablets that update their transformation
in real-time are feasible and could be used, for example, to
generate magnifying glass or X-ray effects for the areas of a
display wall the mobile device currently covers.

To display streaming content in perfect spatial and tem-
poral alignment across a composite VD, we employ multi-
ple layers of synchronization at the VD end. As an impor-
tant maxim for DaaS, all necessary inter-host communica-
tion uses only the IP network as a medium, not any spe-
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cialized hardware sync cables. Taking a bottom-up approach
to synchronization, the first thing to be synchronized to en-
able displaying active-stereo content as intended is the re-
fresh frequency and phase of the physical displays. This en-
sures that all displays of a multi-display wall switch in sync
with the active-stereo glasses of a spectator, without which
stereo display would not be possible. We use the internal
clock of the display master and propagate it across the net-
work to all other participating displays of the display wall;
in accordance with hardware-based locking mechanisms for
synchronization, we call this technique software framelock.

Assuming perfectly synchronized display refreshs and
employing vertical synchronization (vsync) in the graphics
driver within each display we would achieve what is com-
monly called swaplock, that is synchronized framebuffer
swaps across multiple hosts. In general, we can not assume
the framebuffer swaps to reach the display refresh frequency
due to longer application processing times, so an indepen-
dent swaplock is used to ensure all VDs still swap simulta-
neously.

Finally, the redraw of the video stream needs to be syn-
chronized, such that the same frame of the video is shown on
all of the participating displays. This is achieved in DaaS by
taking into account presentation timestamps inserted into all
video streams and sorting frames into the correct time slot
between framebuffer swaps at the VD.

As a final, but optional kind of synchronization we make
the swaplock signal of a VD available to pixel-producing
applications in order to optionally synchronize their pixel
generation to the framebuffer refresh rate of the receiving
displays. In the optimum case of fast enough display hard-
ware, this signal corresponds to the framelock signal as well.
As this inverts the concept of generator locking (genlock),
where a sink locks to the clock of its source, we call this
technique reverse genlock.

3.2. Virtual Framebuffer (VFB)

A Virtual Framebuffer (VFB) is requested by a pixel-
generating application as a resource to write its pixels into.
As such, they are the points where new pixel data enters a
DaaS session to be displayed anywhere. For any application,
this is done by providing a global identifier and format infor-
mation (e.g., resolution or color depth) and the DaaS runtime
assigns the application a memory region to write its pixels
to. If a VFB should be shared among several processes or
even network locations, applications can attach to a previ-
ously created VFB, and just specify the region within the
whole buffer they want to be responsible for. Afterwards, an
application simply writes pixels into the VFB and signal it
whenever it has finished writing a frame (end-of-frame sig-
nal). Behind the scenes, if at least one service consumer is
connected, DaaS performs pixel operations on those frames
(e.g., scaling or color conversion) as well as – most impor-

tantly – real-time video encoding and streaming (cf. Sec-
tion 4.1.2).

If a VD is connected to a VFB its internal hierarchy of
potential sub-VDs becomes available and is used to stream
the video directly to each of the leaves. In doing so, the VFB
performs the necessary splitting and scaling of input pixel
frames, performing bezel compensation along the way ac-
cording to the configuration of the connected VD. Saving
network bandwidth is a top priority, which is why DaaS per-
forms only downscaling of the input pixels at the VFB end,
but scales up at the VD location.

Regarding the resolution to write into a VFB, applica-
tions are not limited. They may request and fill as many pix-
els as they like, being limited only by the performance and
memory properties of the host both the application and the
(partial) VFB are running on are the limiting factors. Appli-
cations are encouraged to provide custom timestamps with
their frames, which then can be used directly to insert them
in all video streams originating from the same frame of pix-
els, and to synchronize their playback at the VD end. In do-
ing so, any given timestamps are transposed to the system
time on the fly. As mentioned before, as an advanced func-
tionality, VFBs can adapt their pixel generation to the clock
available at the display end: Typical usage scenarios are, for
example, limiting the frame rate of produced frames to the
one the display operates in, or locking the frame generation
to a 120 Hz active stereo frame rate (cf. Section 4.2.1).

VFBs are not limited to just one array of pixels to receive
from the application and send out to VDs per frame, but can
work on many of them simultaneously in what we call sepa-
rate channels of the VFB. Each channel represents one view
of a multi-view setup, for example one eye of a two-channel
stereo VFB, or one view of a multi-channel VFB to display
for example on an autostereoscopic VD later. In a VFB with
more than one channel, the end-of-frame signal from the ap-
plication (and the potentially given timestamp for this frame)
indicates the finalization and initiates the internal processing
for all channels of that VFB. So frames for the left and right
eye of a stereo VFB, for example, all end up with the exact
same timestamp at each simulation instant.

The separate channels, although matching in size and po-
sition, are provided as separate streams at the VFB, such that
VDs can operate in whichever way they like on the available
channels and, for example, show only the rendering for the
left eye of a stereo VFB on a control monitor but use both
channels on a stereo-capable VD. A VD implementation can
then fuse the two separate streams again into a format that is
suitable for stereo output on the respective device hosting it.
It might, for instance, show the unmodified streams on two
differently polarized projectors, perform spatial interleaving
for line-by-line passive stereo or compose packed frames for
outputting to a TV capable of HDMI 1.4(a) side-by-side or
top-bottom formats. All this can be done using the times-
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tamps within the video streams uniquely identifying the cor-
relating frames within the streams of each channel.

Figure 1 summarizes the concepts of VFBs and VDs
within our DaaS framework again in an example scenario
showing a scientific visualization rendered in two distributed
VFBs for different output VDs.

Figure 1: Four render servers writing into two VFBs. Two
VDs connecting over (wired or wireless) IP networking us-
ing one of these VFBs each in their visualization.

4. Implementation

DaaS is implemented in C++ on Linux and Windows, using
the Internet Communications Engine (Ice) [Hen04] as mes-
saging framework between its entities, but also in its service
API towards the outside. VFBs and VDs define their inter-
faces in the specification language for Ice (Slice), which is
precompiled to C++ and used at compile time in the service
implementation. Ice is available for several more platforms
and languages, such that we can assume good connectivity
for any future developments or ports of DaaS.

The DaaS implementation covers the two views on the
overall system as introduced in the previous Section: the
VFB view, where pixels are generated and fed into the sys-
tem for streaming them to the network; and the VD view,
where video streams are received and displayed on output
devices. Furthermore, an implementation of a web-based
management interface acts as an example service consumer,
which provides simple means to map available VFBs to
available VDs.

4.1. VFB Service

An application that wants to push pixels into the DaaS sys-
tem requests a VFB entity through the DaaS API by spec-
ifying format parameters (e.g., pixel ordering, number of
channels) and may start pushing arrays of pixels to it, which
are immediately available in the network. Overall, the tasks
covered by the application are signaling the VFB to start
streaming, to send the next full frame after it finished writ-
ing, and, ultimately, to stop streaming again. This happens

in three simple method calls, signalStart(), signa-
lEOF(), and signalEnd(), respectively. If the applica-
tion wants to operate on its own timeline, it may provide
a custom timestamp with each end-of-frame call, otherwise
the internal timer is used to generate a live timestamp.

Furthermore, the application may register for callbacks
from the VFB to receive function calls in case certain exter-
nal events occur (e.g., resizing or moving of the pixel rect-
angle at the display end). The application then may react on
those events; for instance, it might produce less pixels if the
current VFB size is not needed for any connected VD any-
more, and thus decrease its workload.

For each channel, the VFB provides a memory area to
write into. The VFB method getBuffer(i) returns a
pointer to the memory location corresponding to the i-th
channel, where the application then writes pixels to as raw
bytes. Whenever an end-of-frame signal is received from the
application, the current content of all buffers in all channels
is passed to the buffer distributor. All of the following en-
tities are hidden from the application, which just communi-
cates with the VFB entity.

4.1.1. Buffer Distributor

The buffer distributor exists once per channel of a VFB and
is the first component that receives a buffer from the outside
(i.e., the pixel-generating application). It furthermore has the
knowledge of all connected VDs, their physical properties,
spatial layout and channel processing capacities. Using that
knowledge, the buffer distributor takes the incoming pixel
frames, splits them up, and pushes the resulting sub-buffers
into transport pipelines, which are generated according to
the layout of a VD whenever it connects to the VFB.

4.1.2. Transport Pipeline

Core components of any channel entity are the transport
pipelines. Whenever a VD is connected to a VFB, at least
one transport pipeline is created (when streaming the entire
VFB frame to a single-host VD). There can be many more
pipelines when dealing with a multi-display VD, a multi-
channel VFB, or a combination of both, all of which result-
ing in streaming only parts of the VFB pixels to distinct leaf
VD entities.

Each transport pipeline consists of single processing ele-
ments called pipeline stages. Stages are daisy-chained inside
the pipeline, such that each stage receives the result of its
predecessor stage, with the first stage directly receiving pix-
els from the buffer distributor and the last stage releasing its
output data to the network. Stages implemented so far target
the basic application scenario of streaming the pixel content
of an application to the network: a scaling stage, a color con-
version stage to perform RGB-YUV conversion, an encod-
ing stage performing video encoding according to the H.264
standard [ITU12], and a streaming stage providing the en-
coded video as a stream to the network. The implementation
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allows for freely replacing stages as long as input and out-
put data formats remain identical, such that we can exchange
parts of the processing pipeline with different implementa-
tions later.

4.2. VD Service

The implementation of the Virtual Display service roughly
inverts the VFB implementation, which is why we can keep
its description here rather short. VDs receive video streams
iff they do not have further VD children (i.e., they are leaves
in their VD hierarchy). To do this, VDs make use of trans-
port pipelines again (cf. Section 4.1.2), within which they
use new stages for receiving buffers and performing H.264
decoding, but are able to reuse the exact scale and color con-
version stages from the VFB end. Transport pipelines at the
VD end of a DaaS session are created only on a direct trig-
ger from the outside, which initiates the mapping of external
video streams to the VD in question. This trigger originates
either at an external service consumer directly, or from the
direct VD parent in the hierarchy. The final state of buffers
passing any pipeline here are raw pixels again. Normally,
one pipeline ends up being mapped to one canvas to displays
those pixels, but for streams coming from a multi-channel
VFB, multiple streams may be composited into a single can-
vas. The exact technique depends on the capabilities of the
output device (e.g., line-interleaved for a passive stereo dis-
play).

A single VD service may hold one ore more screens. Al-
though the usual mapping is just one screen per VD, the ad-
ditional screen abstraction allows to integrate legacy setups
with, for instance, four displays connected to one computer.
The screen component does the actual drawing of pixels onto
the display. It holds multiple canvases, each of which repre-
senting the rectangular portion of one incoming video stream
(or several composited ones) displayed on its screen. A dis-
play wall VD consisting of four displays and displaying a
full-screen stream across the entire screen space, for exam-
ple, would have overall four screen instances and one canvas
per screen, each displaying a quarter of the video stream.
Canvases in addition have a z-coordinate, so they can be cor-
rectly sorted in overlapping cases like the example in Fig-
ure 3 shows. The screen and canvas concepts in DaaS are
abstract interfaces and can be implemented in many ways;
we did implement them using OpenSceneGraph [BO04]. At
this, each screen is realized as a full-screen OpenGL render
window with each canvas being a screen-aligned quad show-
ing a video texture of the pixel content.

4.2.1. Synchronization

The synchronization architecture of DaaS includes swaplock
and framelock portions (cf. Section 3.1): the OpenGL buffer
swap is locked to the swap interval of the display master of
the VD, the presentation timestamps (PTS) within incoming
video streams are used to either drop the current frame (PTS

in the past) or wait until the presentation time is closest to the
next buffer swap (PTS in the future). At the source VFB, the
PTS is set with a certain offset to the current time, starting
at 100 ms and being dynamically adapted during runtime.
Here, the VD evaluates the time difference between a buffer
being ready for presentation at a canvas and the actual PTS
for that buffer. Those values are smoothed across multiple
frames and reported back to the VFB as an adjustment hint
for its offset calculation. For a standard LAN setup, offset
adjustment to balance frame loss and low latency ceases after
a few dozen seconds and then remains in a stable range as
long as no new workload is added either at the VFB or VD
ends.

Framelock is taking place outside the VD implementation
as a separate system process. At this, we lock the refresh rate
of all physical displays to the one at the display master by us-
ing small UDP packets containing a display clock reference
(DCR) timestamp. All slaves that receive the DCR assume
it to be spaced equidistantly on the time axis of the master
display and adapt their own frequency and phase to the one
of the master. The absolute master clock is deduced at all
receivers from the DCR in the packet and a roundtrip time
estimate. The local clock is deduced from the timestamps
of the local vertical blanking interrupts. The local display
clock is actually modified by modulating the voltage con-
trolled crystal oscillator (VCXO) of the local system. At the
time of writing, the Intel CE4100 digital set-top box is the
only hardware where we managed to modulate the VCXO
via software, but we are looking for further ways how to
modify display refresh rates via software interfaces. Miroll
et al. [MLM∗12] provide a full treatment of the synchroniza-
tion architecture used in DaaS.

4.3. Service Consumers

Using the service interfaces provided by VFBs and VDs, ser-
vice consumers can create mappings from pixels generated
somewhere in the network to displays displaying those pix-
els. We created an example web application, which makes
use of those interfaces and visualizes available VFBs and
VDs available in the network. Mappings are created in the
browser by dragging VFB representations onto VD repre-
sentations, allowing VFB resizing and repositioning. The re-
sult is shown immediately on the respective output devices
that are part of the VD. Figure 5 shows a screenshot of a
scenario consisting of three VFBs mapped onto a 21-screen
VD both in the browser configuration interface and on the
resulting real-world display wall.

4.4. Software Architecture

The DaaS software architecture is summarized in Figure 2
and is strongly based on dynamic composition of entities.
At the pixel-producing end of the depicted scenario, the VFB
service is created by the application. It contains one or more
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channels, which in turn contain a buffer distributor distribut-
ing incoming buffers in transport pipelines. Pipelines are
generated for each connected pixel receiver and contains a
number of processing stages up to the streaming stage re-
leasing the stream in the network.

At the opposite end, this stream is then received by a VD
service, or, to be more precise, the respective stage inside
the transport pipeline responsible for this stream. Passing the
pipeline, the finally available raw pixel data is mapped to a
canvas, which is a defined pixel rectangle on a physical dis-
play device. In case multiple screens are part of one VD, a
VD may contain multiple Screen entities, but the usual map-
ping is one screen per (leaf) VD. VDs can again be compos-
ited into larger VDs (cf. Section 3.1, not shown in Figure 2).
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Figure 2: System architecture of DaaS. Depicted is an pixel-
producing application providing a VFB service and a dea-
mon application providing a VD service. They are intercon-
nected by a service consumer through the network. Note that
the transport pipelines of one VFB and one VD usually do
not directly map, but one VFB streams to many VDs.

5. Results

We implemented the following two use cases in DaaS for
performance evaluation. In terms of user interaction both
scenarios assume direct user input at the VFB host, that is,
the location where the pixels are generated. We allow this
simplification, because a full treatment including distributed
input was out of scope for this research.

5.1. Heterogeneous Monoscopic VD

The use case “Heterogeneous Monoscopic VD” is the one
shown in Figure 5. All three VFBs available and mapped to
the screen originate from an Intel Core i7 quad-core laptop
connected to the rest of the system via Wi-Fi: two VFBs (res-
olutions 1080p and 2130x1130) are created by two instances
of an application that reads a video file, decodes it and writes
the decoded frames to the VFB, the third VFB (resolution
4x1080p = 4320x1920) is created by a volume visualiza-
tion application rendering the “Visible Human” dataset into
a VFB. The VD used in this setup consists of a 5x4-screen

display wall (overall resolution: 12800x6400) and an adja-
cent WQXGA projection screen. The use case aims at testing
VFB placement across bezels and heterogeneous VDs, syn-
chronization of monoscopic content across hosts, the frame
drop situation over the Wi-Fi connection, and the overall
systematic latency in using the interactive rendering appli-
cation.

VFB placement works as expected with bezels and gaps
around the installations as well as the different pixel densi-
ties of display wall and projection being correctly compen-
sated just by evaluating the absolute transformational prop-
erties of each participating VD. This setup only synchro-
nizes up to the point of swaplock, because all participating
VDs are not running on the set-top box hardware capable of
our software framelock (cf. Section 4.2.1). The wireless con-
nection leads to occasional frame drops in the video stream,
which are correctly handled by the synchronization (it con-
tinues to show the previous frame). We want to further im-
prove performance in the future by employing wireless error
correction schemes on top of the UDP transmission protocol
in use.

The offset configured in each VFB, that is the overall la-
tency from VFB to screen, influences the ratio of dropped
frames due to frame loss on the network or belated arrival
at the display. Configuring a lower offset from the times-
tamp at frame generation until its presentation at the display
means a lower latency, but also more frames that cannot
reach this deadline and are dropped at the VD. The auto-
matic adjustment of this presentation offset starts at 100 ms
and reaches an average of 47 ms transport latency across the
described three-VFB setup after stabilization. We plan to use
hardware-supported pixel operations (e.g., encoding) in fu-
ture pipeline stage implementations and expect to lower the
time spent in the transport pipeline even more significantly
in comparison to this first software implementation.

5.2. Stereoscopic VD

The use case “Stereoscopic VD” aims solely at testing the
synchronization in a stereoscopic VFB and VD setting. It
consists of a simple, three-screen setup using commercial
off-the-shelf stereo TV sets in 1080p resolution each, where
we removed the outer rim, resulting in a very thin bezel of
only 8 mm between pixels of neighboring screens. Attached
to those screens are three instances of the Intel CE set-top
box, one for each screen. Stereoscopic channel separation
happens using active 120 Hz stereo. The content is written
on a separate machine into a two-channel VFB with a 1080p
resolution per eye. The stream is then mapped full-screen
onto the three-screen VD, doing an upscaling at the VD. Fig-
ure 4 shows the bezels and the resulting channel separation
of this setup in a closeup picture.

In this setup, we reach a residual phase error of the dis-
play refresh measured in software of around ±100µs and
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long term frequency identity. The absolute phase offset due
to round-trip time estimation error is assumed negligible in a
LAN. Given phase error corresponds to ±1.2% of the120 Hz
refresh rate, which we deem sufficient for good stereo sepa-
ration. Current drawback of the implementation is the com-
paratively long time needed until initial synchronicity is es-
tablished, which is about 3 minutes because the VCXO pull
range is limited and the resulting adaptation of the clock is
slow. We hope to mitigate these issues with different hard-
ware platforms in the future.

6. Conclusion and Future Work

In this work, we have shown DaaS, a software framework to
flexibly manage pixel transport using only IP connectivity.
DaaS includes the concepts of Virtual Framebuffers (VFBs)
and Virtual Displays (VDs) representing resources for pixel
generation and presentation, potentially distributed all over
the network. VFBs may contain multiple channels for stereo
or other multi-view content, which can be presented on out-
put devices using arbitrary channel separation techniques.
VDs in the system are registered with their exact physical
location, such that for example automatic bezel correction
or application-specific view-dependent rendering are easily
possible, even for live updates of display transformations.

Besides the issues mentioned in Section 5 we most promi-
nently want to push the DaaS framework further towards
immersive VR scenarios. We realize that the current de-
lay introduced by our first software implementation of the
transport pipeline might be too high for some use cases in-
volving tracked users, but we know that real-time video en-
coding and network transport can be sped up tremendously,
even over the Internet as cloud gaming platforms like On-
Live [OnL] show. We furthermore want to work on the qual-
ity of the video encoding, which already is very nice, but
there might be applications (e.g., visualizations with very
fine wireframe meshes) that want to fine-tune the encoding
even more.
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