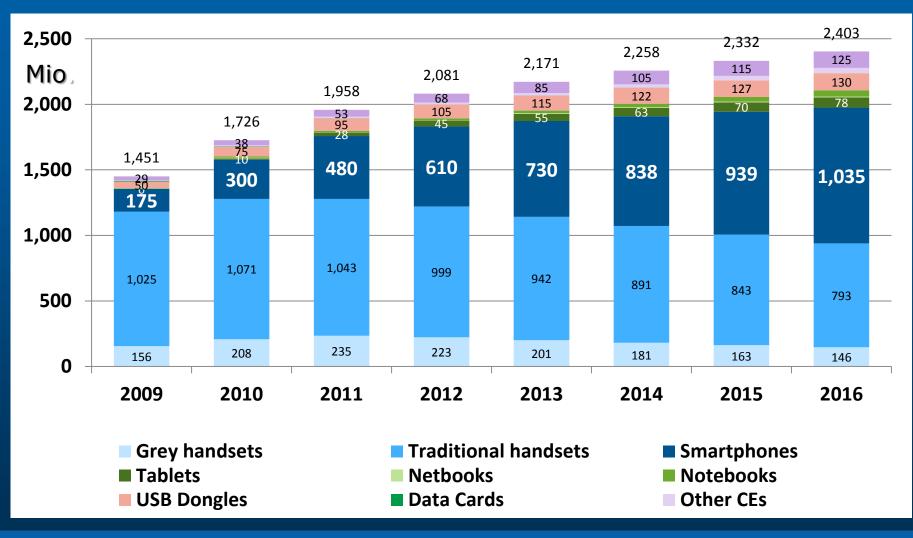
The Future View from RF Perspective

Zdravko Boos Intel European Research & Innovation Conference 23rd October 2013



Outline:

- RF Challenges
- 2G/3G/4G Solutions
- 5G requirements
- Future View

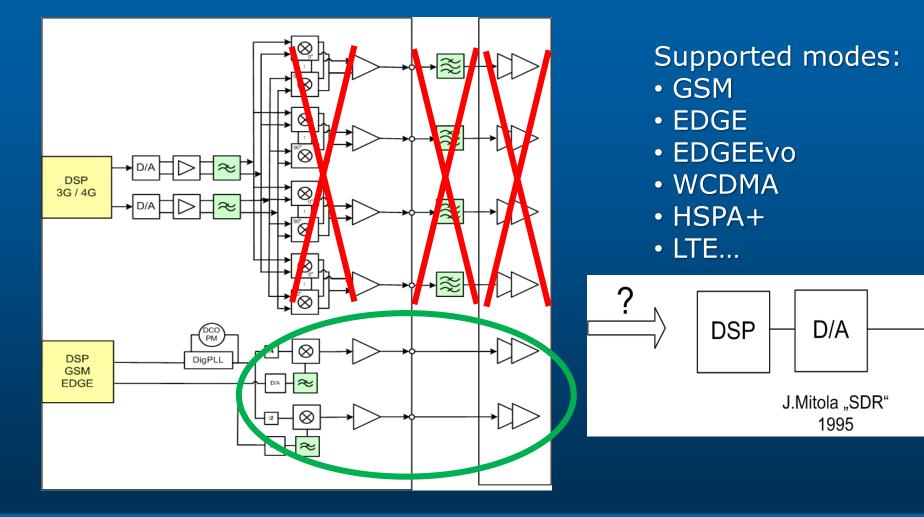
Total Cellular Device Market by Application

RF Challenges

- Multiple RATs (2G, 3G, 4G, BT, GNSS, WiFi...)
- Frequency bands (4 in 2G, -> 40 in 4G, ? 5G)
- Carrier aggregation (DL, UL, inter/intra,)
- MIMO (2x2 -> 8x8)
- Power consumption (< 40 mA in UMTS 0 dBm)
- Chip area (cost)
- PCB area (cost)
- Component height
- Number of antennas

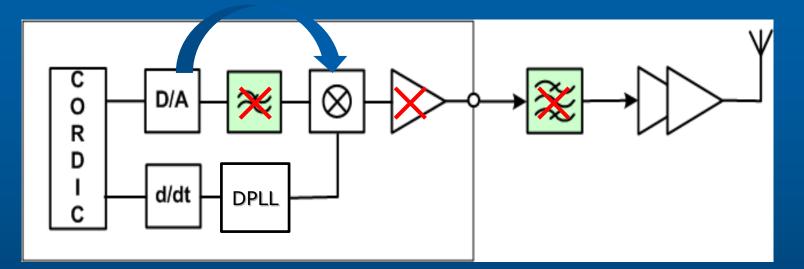
RF Transceiver Requirements

How to come there?



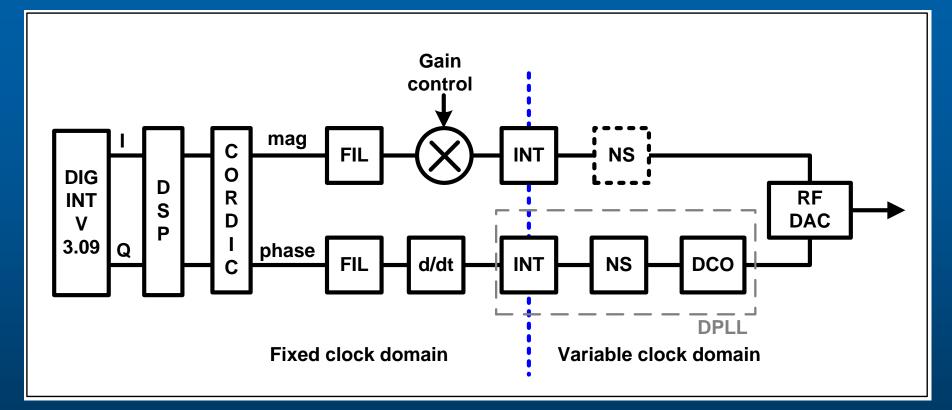
Moore's Law of Multiradio Integration: The SMARTi TRX Evolution

2000	2005	2008	2011
SMARTI+	SMARTI PM2	SMARTI 3GE	SMARTI UE2
650mm ² PCB Area	200mm ² PCB Area	550mm ² PCB Area	280mm ² PCB Area
 Single Mode 3 Band GSM/GPRS 0.35µm BiCMOS 	 Dual Mode 4 Band GSM/EDGE 130nm CMOS 	 Triple Mode 4 Band GSM/EDGE 3 Band UMTS/HSPDA 130nm CMOS 	 Triple Mode 4 Band GSM/EDGE 5 Band UMTS/HSPA+ RX Diversity 65nm CMOS
Triplication of # of bands and # of modes in a decade @ 1/3 of the space			
Inplication of # of ballus and # of modes in a decade @ 1/5 of the space			


Page

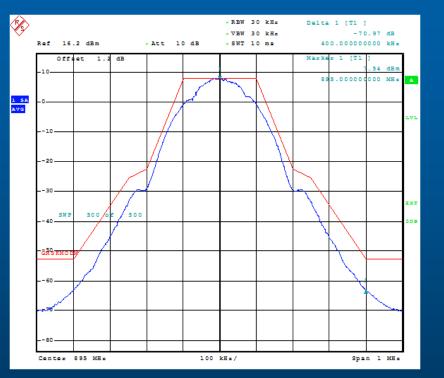
Block Diagram of the Analog Multimode Multiband Transmitter

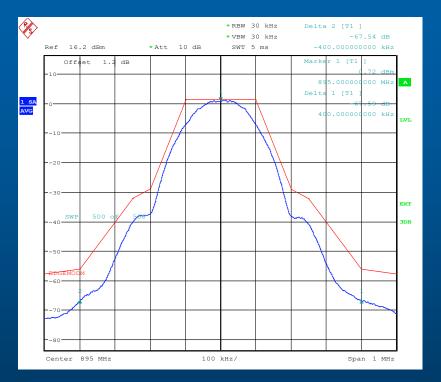
TX concept evolution from Analog to Digital



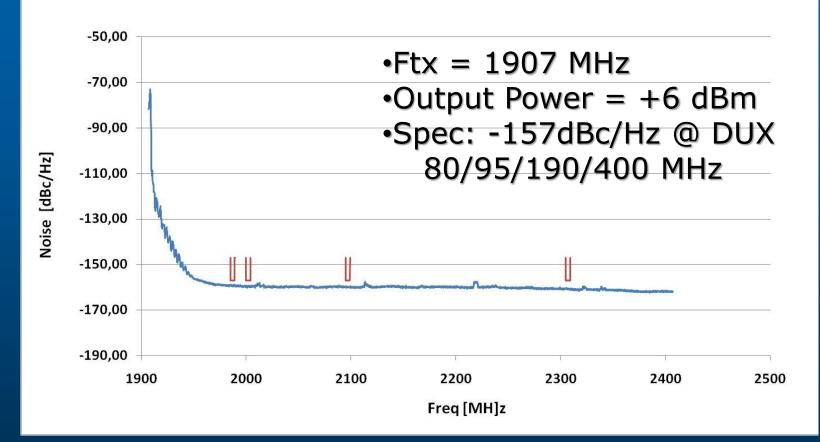
- Reconstruction filter removed
- D/A combined with mixer
- PA driver removed
- APLL replaced with DPLL
- External TX SAW omitted

=> 17b RFDAC requirement (as in audio but at 100000 times higher freq.)


Digital Transmitter Block Diagram


For an highly competitive digital cellular transmitter 65 nm was a breakeven technology

Measurement results Modulations masks GSM, EDGE @ 895MHz



GSM Power = +15,5dBm Phase Error = 0,8° Noise in GPS Band = -180 dBc/Hz

EDGE (without pre-distortion) Power = +8,5dBmEVM = 1,46%Noise in GPS Band = -166dBc/Hz

Measured TX far off noise in High Band / WCDMA

A fully digital solution free of spurious

Intel Is Leading In RF CMOS Integration CMOS RF SoC With Integrated 3G PAs

XMM[™] 6255 w/ SMARTi[™] UE2p World smallest 3G modem

260mm²

- M2M
- Internet of Things
- Entry Smartphones

ES available Ramp Up E 2013

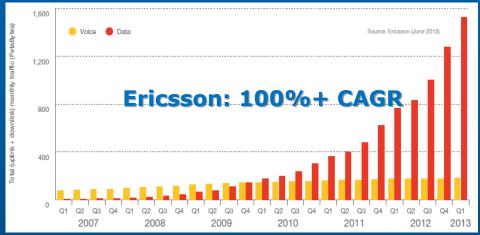
The World's Smallest LTE Solution In 2013

XMM[™] 7161 Multi-Mode Multi-Band LTE Modem

World's smallest LTE Solution • PCB area <400mm²

SMARTi™ m4G RF Module

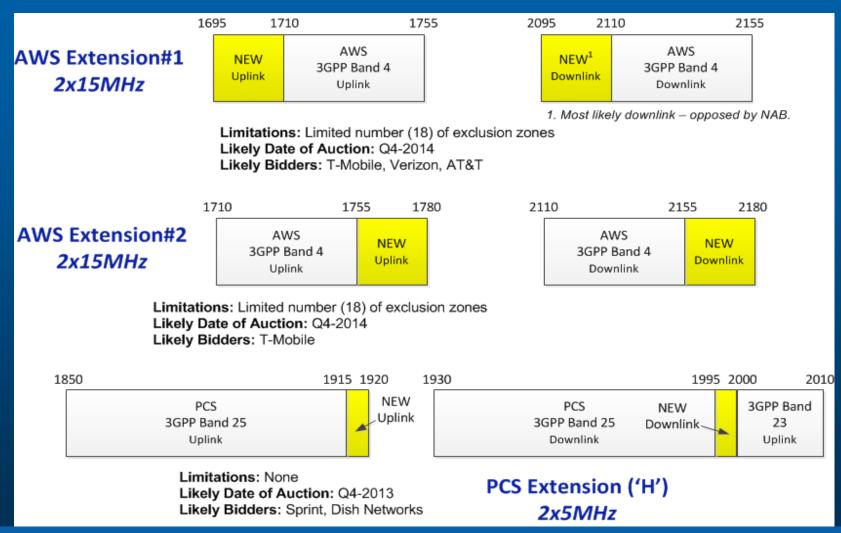
 Including RF Transceiver, Filters, Duplexer, Coupler and Antenna Switches


7 x 5mm Multi-Mode-Multi-Band PA

Towards 5G: Mobile Data Traffic Growth

66% CAGR 2012-2017 Exabytes per Month 12 11.2 EB Cisco: 66% CAGR 7.4 EB 4.7 EB 2.8 EB 1.6 EB 0.9 EB 2012 2013 2014 2015 2016 2017

Ericsson Mobility Report, June 2013 Excludes WiFi, VoIP, MTC


Cisco Visual Networking Index, Feb. 13

- System Capacity Requirements

- Network traffic load increasing by 65-100% CAGR
- Requires up to 2x increase in network capacity per annum
- > 100 higher traffic until 5G introduction in 2020

Trends in Spectrum Availability Example: Emerging U.S. Auctions

U.S. 3.5GHz Spectrum Access System (SAS) Managed Spectrum Sharing

-U.S. Strategic National Objectives

- #1 Release new spectrum potentially with new licensing regime
- #2 Deploy high-capacity technologies including small cell

-FCC Proposal - Citizens Broadband Service (CBS)

Band Status	Band	Bandwidth
Proposed	3350-3650 MHz	100 MHz
Potential	3650-3700 MHz	50 MHz

mm-Wave Frequency Allocations International 60GHz plus U.S. LMDS Bands

BTA ¹ Lic- ense	Band (GHz)	BW (MHz)	BW (GHz)	
	27.5-28.35	850		
А	29.1-29.25	150	1.150	
	31.075-31.225	150		
В	31.0-31.075	75	150	
D	31.225-31.3	75	130	

U.S. Allocations 28-31GHz LMDS Fixed Point-Point Service

Band (GHz)	BW (GHz)	Licensing
71-76	5.0	1. Licensing: database
81-86	5.0	registration, non exclusive.
92-94	2.0	2. Allocation: 1.25GHz
94.1-95	0.9	aggregable blocks 3. Services : point-point
57-66	9.0	fixed services.

U.S. Allocations 70-80-90GHz Bands

Band (GHz)	BW (GHz)	Jurisdiction	Licensing
57-64	7.0	USA	Unlicensed
57-64	7.0	Canada	Unlicensed
59-66	7.0	Japan	Unlicensed
57-64	7.0	S. Korea	Unlicensed
57-66	9.0	Europe	Unlicensed

International 60GHz Allocations

Band (GHz)	Structure
38.6-40	14 x 50MHz Pairs (100MHz Total)

U.S. Allocations 39GHz Fixed Point-Point Service

Note 1: BTA – Basic Trading Area

mm-Wave System Design Historical Perspective

1993

5 Conclusions

Future mobile radio systems must use ever higher radio frequencies as spectral congestion effectively removes lower frequencies from availability. Future broadband mobile services (eg MBS) will use mmwave frequencies and utilise a microcellular architecture. The limitations of fibre/radio for these applications are outlined and a novel solution, based on optical heterodyning, is proposed in this paper. A RACE funded research programme is investigating this approach and this paper describes the demonstrator that will be built. Applications for MODAL type systems are discussed and some of the most significant results achieved to date are summarised.

In summary, this paper has outlined a novel solution to the problem of providing a connection between a base station and a remote antenna for a mobile access system operating at mm-wave frequencies. Optical technology has been adopted to remove the need for mm-wave signal sources whilst optical fibre is used to interconnect the base station and the antenna thereby ensuring both low installation and maintenance costs.

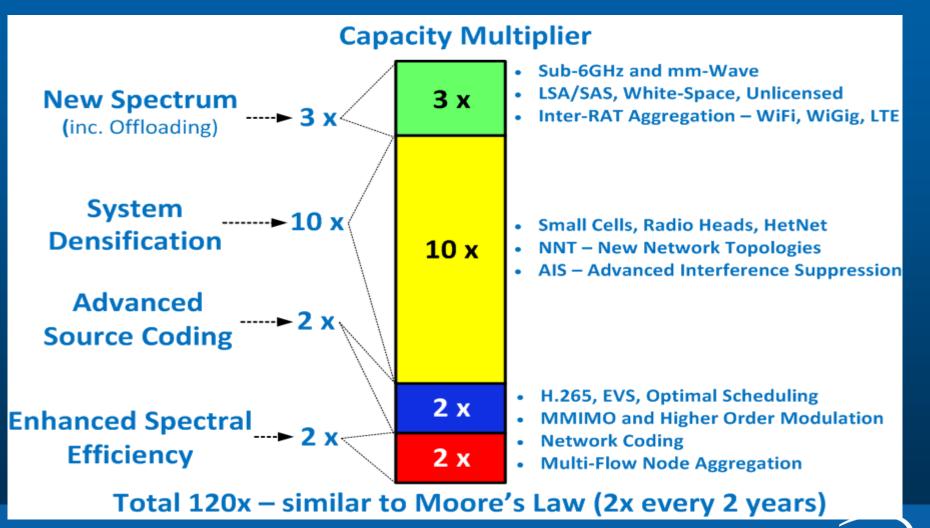
J.J. O'Reilly, et al, "MODAL: an Enabling Technology for Wireless Access", 1993. 4th-IEE Conf. Telecomm.

1995

EVOLUTIONARY PATHS IN PCN

<u>3rd Framework Research - RACE</u> and ESPRIT

CODIT - exploring the potential of code-division multiple access for UMTS, and considering such issues as radio interface parameters, fast and soft handover etc;

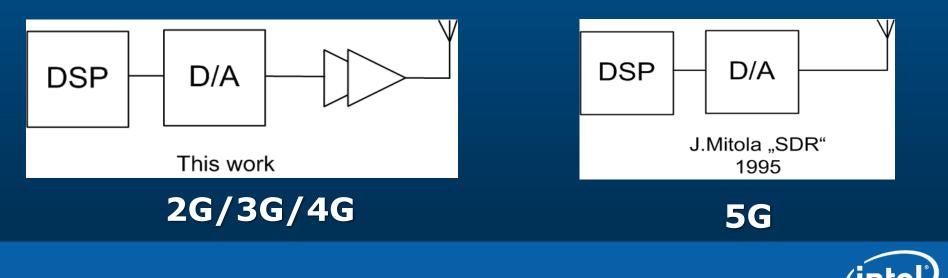

ATDMA - the time-division multiple access equivalent of CODIT with emphasis on the concept of an adaptive terminal which can access different air-interfaces according to the local radio environment and required services;

MBS - targeting the frequency allocation for broadband wireless pico-cell networks in the 62-63GHz and 65-66GHz bands, and paying particular attention to low cost transceiver technology based on GaAs P-HEMT MMICs;

J. Gardiner, "Microwave and mm-WAVE Technology Requirements...European 4th-Framework...", Microwave Symp. Digest, 1995

Network Capacity Enhancement Relative Contribution – 2013-2020

Hypothetical 5G Device – 2020


-5G Era Devices - 2020

- Multi-RAT support including evolution of LTE and WiFi (WiGig)
- Support for 1 or more possible "new" 5G RAT's
- Flexible resource-aggregating "cellular" transceivers, accessing >150MHz with up to antenna 8 ports
- New access to sub-6GHz spectrum and new aggregation modes

Summary

- Exponential mobile data traffic growth is a key driver for the 5th generation mobile networks
- Even with 5G definition just started it is clear that the best 3G/4G solution is prerequisite and enabler for the coming 5G mobile network

