45nm High-k + Metal Gate Strain-Enhanced Transistors

<u>C. Auth</u>, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass,
T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi,
J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris,
N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren%, V. Souw, K. Tone,
F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn,
C. Wallace, J. Wiedemer, C. Wiegand

Portland Technology Development, [%]PTM Intel Corporation

Outline

- Introduction
- Metal-Gate + Strain Integration
- Transistor/Circuit Results
- Manufacturing
- Conclusions

Introduction

- SiON scaling running out of atoms
- Poly depletion limits inversion T_{OX} scaling

High-k + Metal Gate Benefits

- High-k gate dielectric
 - Reduced gate leakage
 - T_{ox} scaling
- Metal gates
 - Eliminate polysilicon depletion
 - Resolves V_T pinning and poor mobility for high-k gate dielectrics

Metal Gate Flow Options

Metal Gate-Last Benefits

- High Thermal budget available for Midsection
 - Better Activation of S/D Implants
- Low thermal budget for Metal Gate
 - Large range of Gate Materials available
- Significant enhancement of strain
 - Both NMOS and PMOS benefits
- Low cost
 - Total wafer cost adder 4%

Outline

- Introduction
- Metal-Gate + Strain Integration
- Transistor/Circuit Results
- Manufacturing
- Conclusions

Methods of NMOS Strain at 65nm

Tensile Nitride Cap

 Stress Memorization
 →Gate + S/D

Methods of NMOS Strain at 65nm

Tensile Nitride Cap

•Stress Memorization →Gate + S/D

NMOS strain: Tensile Cap Layer

- Running out of space for Nitride Cap Layer
 - Pitch degradation increases with pinchoff of film
 - Requires higher stress & thinner films

Tensile Contact Stress

Use Tensile trench contacts to stress channel

Trench Contacts

Tensile Contact Stress

- Use of Tensile trench contacts provide 10% Idsat improvement
- Matched Contact Resistance

NMOS strain: Metal Gate Stress

- Gate Stress Memorization incompatible with Gate-Last
- Compressive Gate fill material induces strain directly*
 - *C. Kang, et al, IEDM 2006

Compressive Gate Stress

- Compressive Gate Fill shows 5% Idsat improvement
- Additive with Tensile Trench contacts

Mitigation of NMOS stress on PMOS

- Tensile Contact fill mitigated by raised SiGe S/D
- Metal Gate Strain compensated by PMOS WFM

Gate Fill scalability for Gate-Last

Capability to <30nm demonstrated

 Embedded SiGe S/D mobility enhancement strongly dependent on pitch

Embedded SiGe S/D

- Continued Scaling for SiGe S/D
- 1. Ge concentration inc. to 30%
- **2.** Gate \rightarrow S/D distance reduced

PMOS Strain: Gate-Last Flow

- Use of Gate-Last Flow enhances Embedded SiGe S/D*
 - *J. Wang, et al, VLSI 2007
- Removal of poly gate increases channel stress by 50%

Before gate removal

After gate removal

PMOS Strain Components

- Three methods used enhance PMOS performance
- 1. Increase Ge Concentration in Embedded SiGe S/D
- 2. Move Embedded SiGe S/D closer to Gate
- 3. Remove dummy poly gate with Metal Gate-Last flow

Stress degraded due to Pitch Scaling

 Proximity scaling recovers majority of pitch degradation

%Ge provides strain benefit

 Gate-Last provides significant increase in performance

Strain Comparison

65nm Method	45nm Method
<u>NMOS</u>	<u>NMOS</u>
Tensile Nitride Cap	Tensile Trench Contacts
Gate Stress Memorization + S/D Stress Memorization	Metal Gate Stress (MGS) + S/D Stress Memorization
PMOS	<u>PMOS</u>
Embedded SiGe S/D	Embedded SiGe S/D
	(nigher %Ge + reduced S/D)
	Replacement Gate Enhancement

Outline

- Introduction
- Metal-Gate + Strain Integration
- Transistor/Circuit Results
- Manufacturing
- Conclusions

Gate Leakage

Gate leakage is reduced >25X for NMOS and 1000X for PMOS

27

Excellent short channel effects

- Subthreshold slope 100mV/decade
- DIBL 140mV/V NMOS & 200mV/V PMOS

NMOS I_{DSAT} vs. I_{OFF}

Best drives for 45nm or 32nm technology

NMOS I_{Dlin} vs. I_{OFF}

PMOS I_{DSAT} vs. I_{OFF}

Best drives for 45nm or 32nm technology

PMOS I_{Dlin} vs. I_{OFF}

SOC Application

LSTP benchmark (1nA & 1.1V)

NMOS: 1.04 mA/ μ m at I_{OFF} = 1 nA/ μ m & 1.1V PMOS: 0.88 mA/ μ m at I_{OFF} = 1 nA/ μ m & 1.1V

33

Ring Oscillator Speed

Metal Gate Last flow enables 23% reduction in RO delay at the same leakage

Power: SRAM VCCmin

- Low active VCCmin important for low power applications
- 3Mb SRAM
 - 0.346 μ m² cell median active VCCmin of 0.70V
 - 0.382 μ m² cell median active VCCmin of 0.625V

Outline

- Introduction
- Metal-Gate + Strain Integration
- Transistor/Circuit Results
- Manufacturing
- Conclusions

193nm Dry lithography - Poly

- Critical Layers patterned with 193nm Dry lithography
 - Lower cost & Mature toolset
 - Transistor Formation Mask Count Neutral with 65nm
- Double Patterning used at Poly
 - Array of Poly lines are patterned
 - Discrete allowed pitches
 - Poly lines are Cut

65nm SRAM

Multiple Microprocessors

Single Core

Quad Core

Dual Core

Six Core

Defect Reduction Trend

- Record yields demonstrated <2 years after 65 nm
 - Fastest Ramp to high yield ever at Intel

2001 2002 2003 2004 2005 2006 2007 2008 2009

Conclusions

- High-k + Metal Gate transistors have been integrated with Novel Strain techniques
- Gate-Last flow provides significant strain enhancements both on NMOS and PMOS
 - Key driver for process flow decision
 - Achieve record drive currents at tight gate pitch
- 193nm Dry lithography can be extended to the 45nm technology node
- The technology is already in high volume manufacturing
 - High yields demonstrated on multiple microprocessors

Acknowledgements

- The authors gratefully acknowledge the many people in the following organizations at Intel who contributed to this work:
 - Portland Technology Development
 - Quality and Reliability Engineering
 - Process & Technology Modeling
 - Assembly & Test Technology Development

For further information on Intel's silicon technology, please visit our Technology & Research page at <u>www.intel.com/technology</u>