

CATE A

ALE.

BOB BAKER Senior Vice President General Manager,

Technology and Manufacturing Group

VITAN VINU CONNECTIVIT

Silicon Leadership: **Delivering Innovation**

Relentless Pursuit of Moore's Law

Innovations in Silicon Technology

Extending Leadership for New Opportunities

Moore's Law Still Drives Intel

Source: WSTS/Dataquest/Intel

IDF2009

INTEL DEVELOPER FORUM

10¹⁰

Intel CPU Mips per Watt Trend

10,0000

1,000

IDF2009 INTEL DEVELOPER FORUM

If gas mileage improved as fast as CPU Mips/Watt, we'd have cars today with ~100,000 mpg

The Fundamental Driver of Cost and Innovation

45nm 300mm

45 nm Products Across the Board

Dual Core

Single Core

6 Соге

Revolutionary high-k + metal gate transistors >200 million units shipped

Innovation-Enabled Technology Pipeline: Researchers are Moving on to Investigation of Novel Technology Options

Interconnect

Carbon Nanotube FET

The New Era of Scaling

Copper + Low-k

Strained Silicon

High-k + Metal Gate

Modern CMOS scaling is as much about material innovation as dimensional scaling

							The P	Period	ic Tab	ole of	the Ele	ement	ts						
		¹ H											ш		V		Γ	2 He	
	L 14 11 Na		1 A 7 2 8									F	5 B 10:111 13 Al	14 Si	7 N 14 000 74 15 P	8 0 0 15 9714 16 5 5 974	9 F 10. 9993403 17 Cl Class		SNO0
	19 K	24.00 20 Ca calum 40.078	21 Sc 44,95991				25 Mn	26 Fe	27 Co (cata) 58.033200	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As Normal 14,92160	32 044 34 Se		7 30.64 30 K	r
	37 Rb #datam \$5.4578	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh 102.90150	46 Pd reflations 106.42	47 Ag 300-4 107.8682	48 Cd	49 In	50 Sn 	51 Sb	52 Te	53		A Se
	55 Cs	56 Ba	57 La	72 Hf	73 Ta 180.9479	74 W	75 Re (Bostian) (86,207	76 Os	77 Ir 192,217	78 Pt	79 Au	80 Hg	81 TI 204.1813	82 Pb	83 Bi	84 P		other distances in the local distance in the	80 R = 0
2	87 Fr	88 Ra 8.adum (226)	89 Ac	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh ^{Ratesan} (262)	108 Hs (265)	109 Mt	(269)	(272)	112	113	114					
				[58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 He	DE	r	69 Tm	70 Yb	
				H		91	144.24	(145) 93	150.36 94	151.964 95	157.25 96	158.9251 97			10.12 1.6		101	173.04	+

Am (243)

Cm (247)

Bk Installant (247)

Cf (251)

Es

(252)

Fm

Md (250)

No

Np

Pu (244)

Th Pa U

IDF2009

1117

Jesús A. del Alamo

Home Team Research

Teaching Brief Bio Publications In the News Contact

lesús del Alamo is Donner Professor, MacVicar Faculty Felox and Professor af Electrical Engineering in the Department of Electrical Engineering and Computer Science Massachusetts institute of Technology

Prof. del Alamo leads a research program on 5i and compound serve underto transistor technologies for RF, incrosove and estimeter wave applications. His students have recently tabricated nanometer-scale transition with word record frequency operation. Prof. del Alamo is also investigating the use of 8-V compound seniconductors to

develop a new generation of deepty scaled transistors for future optal applications, Hs goals to elent Moore's law using 8-V semiconductors *

Prof. del Alamo is also engaged in exploring the technology and pedagogy of orene aboratories ("Laby") for science and engineering education. His team has developed laboratory set ups for electrical engineering education that have been accessed by thousands of students from around the word -

MIT MT. | EECS

the Site Map Contact

technology laboratories.

Professor Jesus del Alamo **Professor of Electrical Engineering**

Donner Professor, MacVicar Faculty Fellow Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

IDF2009

...

<u>0.1 µ</u>m

Continuing Moore's Law

Scaling Enables Lower Cost and Higher Capability

Opportunities to Extend Moore's Law

Researchers Doing Innovative Work

Silicon Leadership: **Delivering Innovation**

Relentless Pursuit of Moore's Law

Innovations in Silicon Technology

Extending Leadership for New Opportunities

On-Time 2 Year Cycles

IDF2009 INTEL DEVELOPER FORUM

32nm - Extending Technology Leadership

Industry-leading features:

- 2nd generation high-k/metal gate transistors
- 4th generation strained silicon
- Highest reported drive currents
- 0.7x pitch scaling enables 50% area reduction

First to demonstrate working 32nm processors

Intel's 32 nm process is certified for production

291 Mbit SRAM >1.9 billion transistors

0.171 um2 cell size 3.8 GHz operation

32 nm Westmere Microprocessor in Production

CPU wafers are moving through the factory in support of planned Q4 revenue production

32nm Manufacturing Fabs: \$7B Investment Over 2 Years

Fab 32 Arizona

INTEL DEVELOPER FORUM

Fab 11*X* New Mexico

The World's First 22 nm SRAM

The World's First 22 nm SRAM

364 Mbit array size

>2.9 billion transistors

3rd generation high-k + metal gate transistors

Same transistor and interconnect features as on 22 nm CPUs

Demonstrating working 22 nm SRAMs is an important milestone towards building working 22 nm microprocessors

22 nm Optimized for Wide Range of Applications

High density 0.092 um² SRAM cell

Low voltage 0.108 um² SRAM cell

0.092 um2 is the smallest SRAM cell in working circuits reported to date

Silicon Leadership: **Delivering Innovation**

Relentless Pursuit of Moore's Law

Innovations in Silicon Technology

Extending Leadership for New Opportunities

New Segment Opportunities: Internet Connected Devices

CE

Embedded

New Segments Require New Technology and Manufacturing Capabilities

IDF2009 INTEL DEVELOPER FORUM

Source: Intel

45nm SoCs

CE Sodaville

Embedded Jasper Forest

Initial 45 nm Intel[®] processor based SoC products

Source: Intel

Integrated Device Manufacturer Advantage

Process

Design Tools

Design for Manufacturing **Co-Optimized Process + Product** Rapid Yield Learning Early Product Ramp

Product

Manufacturing

Masks

Packaging

Expanded Support for New Opportunities

SoCs

Метогу

SoC Process Builds on CPU Process

	45	5nm	32	nm	
	2007	2008	2009	2010	201
Process:	P1266	P1266.8	P1268	P1269	P12
Products:	CPU	SoC	CPU	SoC	CP
	P1266	P1266.8	P1268	P1269	Ρ1

IDF2009 **INTEL DEVELOPER FORUM**

CPU and SoC versions of each process generation to provide transistors, interconnects and other device features optimized for each product line

22nm

2012

P1271 70

U

SoC

SoC Design and Manufacturing Tools Benefits: Time to Market, Modularity, Flexibility, Customization

Soc DESIGN TECHNOLOGY LAYER

IDF2009 INTEL DEVELOPER FORUM

Intel 32nm Package Options: Enabling SOC Optimization in Integration, Form Factor and Cost

MCP FCBGA 2mm thick

DISCRETE FCMB <1 mm thick

SINGLE DIE FCBGA 1.6mm thick

> **POP FCMB** < 0.8 mm thick

0 000 000

Faster Factories Enable Improved Customer Response

Better Commitment

Faster Factories

62% CYCLE TIME REDUCTION

Cycle Time Days

2006

2007

2008

2009

Quicker Order to Delivery

Faster Factories Enable Improved Customer Response

Faster Factories

Better Commitment

BX INCREASE IN YES IN ONE DAY

2007

2008

2009

-

Quicker Order to Delivery

Faster Factories Enable Improved Customer Response

Faster Factories

Better Commitment

25% **IMPROVEMENT IN LESS THAN A YEAR**

July

2008

December January

IDF2009 INTEL DEVELOPER FORUM

....

Quicker Order to Delivery

Work Play Support About Intal Champe Location (intel) . been Products Technology Communities Downloads Resolar Harman - Standards - Baile State Drives and Deckery - Drail B 122 - E Schware Socie State Drive - Overview Products. 20

Petrometers **Natur** International State

Desident Mittabook Server and workatebole Intel® Graphica Technology. Communications Embedded Distage and UD Canadrate electronics

Produktorry. Mitheboellik Choeffs Software Sold State Drives and Calching

See al products

Extreme performance, rehability, and power according pervers, storage and sockatations The Intel® Doneste Selfa Sales Mate 2nve (250) offers subtracting performance and telability, deloaring the logical DPS per well for services, morage and high-and warkstations.

Intel® X25-E Extreme SATA Solid-State Drive

imposity and anthronymu index 3 data painer. halfer." - Seitger, tex 26, 2007

Restaute your Tatat Cost of Deserving (2000

Remarkance applications place a province or performance. raisability, proof torisonation and space unlike traditional land data drives, brief kaled blade brives have no traving perm. Standards in the Booth, and Bochge solution that area offer significantly highly participation that matters are provided in the solution of the solution of the solution of the Designer registering of its Disciplication and past discuss three \$2,255\$ downers \$475\$ State State Date to the service service \$255\$ downers \$475\$ State State Date to the service service \$255\$ downers \$475\$ State Date Date to the service service \$255\$ downers \$475\$ State Date Date to the service service \$255\$ downers \$475\$ State Date Date to the service service \$255\$ downers \$455\$ downers \$455\$ State Date Date to the service service \$255\$ downers \$455\$ downers \$455\$ State Date Date to the service service \$455\$ downers \$455\$ downers \$455\$ State Date Date \$255\$ downers \$455\$ downers \$455 Design Age is a binary and a set of set of the design of the set of the se In a templifie reduction in your 100.

Batter by design

Conserving france descenders of maximum programming experiments, the Disk ADA descenders Salt's Sale-Dates Dates is paragraphing the Minut subtracting performance and relativity, and the encoded of the service of the Disk and the Sale Table of the service descendence of the Disk and the service of the service descendence and the Disk basis manager transferred performance and resolution. We perform the service and performance and resolutions and performance managers and performance and resolutions. The performance managers and performance and resolutions. The performance managers and performance and the performance managers and the service of the Disk Basis managers performance of Disk Maximum Sale 2000 (Dates I Descendence and performance). Economical Coupling In section to its To resourced appreciate, there Tome 2000s before "April 2000 Costs Development Record (2009) and Record-appreciate performance that allow REC in the market tables and remainship interpretion trademical has dark methods that the section of the development of the section and the section of a antidad section of the performance between relations, material table and while evolve the performance relations, material table and while evolve the performance relations.

Validated and tested by balat, on total last toroper. Ad 2006/8 x223-6 Extreme (balta Social-Born Conae and second and valuated in the second board barral and waluaters, platforms, for your places of word,

Product information · Developed product loved

· Descripted detasheet since case shalles published by

Distanti Addi di Stati un Santo

Per Street and In South handling multiple ranges, inset with requestion. The

dougd many

Amorth

Rick Coulson Intel Senior Fellow

Director, Storage Technologies Technology and Manufacturing Group

IDF2009 **INTEL DEVELOPER FORUM**

Platform Co-Optimizations with SSDs

SSDs benefit existing platforms

Storage subsystems lag

Co-optimizing SSDs and platform Improves performance, scalability, power efficiency, total cost

		9 HE I	1 2	دلتلم
Topology	Disk Targets Network Targets Acco	Results Since	Update Frequency (seconds)	
Al Managers	Drag managers and workers from the Topology window to the progress bar of your choice.	G Stat of Test C Last Update		30 45 60 **
	Display	Al Managers	113363274	60000
	Total LOs per Second	Al Managers	421.25	<u>></u>
	Total MBs per Second	Al Managers	0.7962	
	Average UO Response Time (ma)	Al Managers	110 6746	1000
	Maximum L/O Response Time Imal	Al Managert	10031	1003
	1, CPU Utilization Botal)	Al Managers	0	12 M
	Total Error Court		Ř.n	10/1

> 금 4 곳 0 곳	Nater Distances Specification Nater Distances NATION			-	None	Anign	sent 2
P I I I I I I I I I I I I I I I I I I I		The second se		and the second	Contraction of the second second		
Megabytes Käckytes Bytes 100 Percent	Transfer Flequest Score	5	Percent of	Access	Specifica	tion	
	Megabytes Elikbytes	Bytes		100	Percent		1
	Probly Size P No Reply P T + + Megubytes Kikotes	E S				1/0	3

IDF2009

In Closing...

Relentless Pursuit of Moore's Law

Innovations in Silicon Technology

Extending Leadership for New Opportunities

Sponsors of Tomorrow.