

Tunnel Creek: Intel's First Generation Intel[®] Atom[™] Processor-based System-on-Chip for Embedded

Matthew Adiletta, Intel Fellow & Director Pranav Mehta, Senior Principal Engineer & CTO, ECG

Technology Insight SPCS002

Sponsors of Tomorrow. (In

Agenda

- Tunnel Creek Architecture Overview
 - Platform Partitioning Flexibility
 - Platform BOM Reduction
 - Performance Density
- Tunnel Creek Application
 Case Studies
 - Industrial Automation
 - IP Media Phone
 - Electronic Cash Register
 - In-Vehicle Infotainment
- Summary

The Embedded Internet by 2015

Mainframes Servers, PC's Cell Phones Embedded

Intel[®] ATOM[™] Processor: FUELING THE BUILD OUT

>2,900 Design Engagements

Digital Blackjack Table Pachinko Machine Vending Machine Carwash Kiosk Subway Ticket Station **Biometrics Finger Print Reader** Point of Sale **Digital Weight Scale** ATM Hotel Concierge System Handheld Barcode Reader Handheld Wireless Spectrum Tester Handheld Ultrasound Hospital Bedside Terminal **Voting Machine** Lottery Machine **Network Security Appliance** VoIP PBX Test and Measurement Appliance **Education Terminal Communications Gateway** Programmable Logic Controller **Computer Numeric Controllers** Industrial HMI Panel Industrial PC **Avionics System** Wearable PC Connected Soldier Device Military Soldier Training Device

Enabling the Next 1,000 Embedded Customers

• Customers Need:

- Reduced Cost on Bill of Materials
- Increased Control of System Source code
- Reduced Vendor Complexity
- Reduced Boot Times
- Reduced Foot Print
- >Perf/Watt/Inch

3 Cornerstones of Innovation for Tunnel Creek

Platform Flexibility

Reduced Bill of Materials

Performance Density

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded

3 Cornerstones of Innovation for Tunnel Creek

Platform Flexibility

Reduced Bill of Materials

Performance Density

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded

Re-Partitioning for Flexibility

Launching in Q4, 2010

Tunnel Creek: Intel® Atom[™] Processor-based System-on-Chip for Embedded Queens Bay Platform = The software, OS, boards & chipset that work with Tunnel Creek PCIe = PCI Express* Technology Menlow = platform with Intel® Atom[™] processor Z510/530

Queens Bay Platform Unleashing Innovation for Optimization

Flexibility -> Scalable and Optimized Solutions

PCIe = PCI Express* Technology Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded Queens Bay Platform = The software, OS, boards & chipset that work with Tunnel Creek

Queens Bay Platform Choice of IOH

Tunnel Creek: Intel® Atom[™] Processor-based System-on-Chip for Embedded Queens Bay Platform = The software, OS, boards & chipset that work with Tunnel Creek

3 Cornerstones of Innovation for Tunnel Creek

Platform Flexibility

Reduced Bill of Materials

Performance Density

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded

Hardware BOM Benefits of Flexibility

e.g. 2010 IVI platform

e.g., 2008 IVI platform

Software BOM: *A Spectrum of Options*

Solution	Custom BIOS	Standard BIOS	Boot Loader Development Kit	
Project Name	-	-	Trinity Lake	
Rating	Best	Better	Good	
Features	Advanced Features All PC features CPU, Memory, Basic IO initialization		CPU, Memory, Basic IO initialization	
OS	Off the Shelf OS, Windows * OS, RTOS, Custom OS	Off the Shelf OS, Windows OS	RTOS, Custom OS and Embedded OS	
Availability	Ready for Silicon Launch	Ready for Silicon Launch	Likely after Silicon Launch	
Completeness	Fine tuning, unique features & boot times	Turnkey Solutions, Reliable schedules	Some Assembly Required	11
Cost	Highest	Middle	Lowest	W
			Platt	orm

Capability

Software BOM: *A Spectrum of Options*

Intel is actively enabling the Embedded Eco-System

3 Cornerstones of Innovation for Tunnel Creek

Platform Flexibility

Reduced Bill of Materials

Performance Density

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded

Tunnel Creek Improved Graphics Performance

3D Mark'06 relative score

■ Intel® Atom[™] Processor Z5xx ■ Tunnel Creek

Menlow-XL package size (CPU: 22x22 + SCH: 37.5x37.5) = 1890mm2 Tunnel Creek+Topcliff package size (CPU: 22x22 + IOH: 23x23) = 1013mm2 46% smaller but 50% better graphics performance Or 2.7x performance density improvement

Tunnel Creek Improved Performance Density

Boot Performance with Splash

- Video BIOS normally scans for panel timings and device priority
- Intel® Embedded Graphics Driver v10.2 supplies Embedded Pre-OS Graphics (EPOG) Driver
- Optimized Pre-OS driver for LVDS splash screen support
- Performance*
 - RESET# to Display < 500 mS
- Available on Intel[®] Atom[™] processors Z5xx series

*Time estimated from CPU RESET vector, beginning of system firmware execution on a customer reference board based on the Intel® Atom™ processor Z5xx series and the Intel® System Controller Hub-based platform.

Tunnel Creek Application Examples

Tunnel Creek for Industrial Automation

Programmable Logic Controllers

- 1. Historically hardware centric (ASIC+MCU)
- 2. Shifting to software centric design on IA
- 3. Enables software scalability across PLCs
- 4. Delivers Faster Time to Market
- 5. Increased performance headroom

The IA Continuum of Computing For Industrial Automation

Tunnel Creek for IP Media Phones

News Weather Stock Music Photos Video Directory

IP Multimedia communication

Tunnel Creek for IP Media Phone Lower Cost, Increased Capabilities

Menlow Today

Scalable Solution

Low Power

Dual Independent Video Streams

HW Accelerated De-Code

Intel[®] Hyper-Threading Technology and HW virtualization (Intel[®] VT-x)

Security Integrated in HW

Intel[®] HD Audio 7 Channel, HW AEC

Queens Bay Adds

HW Accelerated Encode

50% Boost in Graphics Performance

Reduced BOM

45% Reduction in form factor*

Integration of Acoustic Echo, Line Echo and Noise Cancellation

* Compared to Menlow XL

Tunnel Creek: Intel® Atom[™] Processor-based System-on-Chip for Embedded Intel® VT-x = Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture

Tunnel Creek Opportunity for Smart Electronic Cash Registers (ECR)

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded

Tunnel Creek for Smart Adaptable ECRs

Platform Flexibility:

Business specific Modular apps <u>Multi-ling</u>ual

capability or Localization Reduced Bill of Materials:

Integrated Peripherals MeeGo* & Trinity

Lake Support

Performance Density:

Internet capable Human-Machine Interface

> One-touch Interface

Tunnel Creek: Intel® Atom[™] Processor-based System-on-Chip for Embedded Trinity Lake: Boot Loader Development Kit for Intel® Atom[™] Processor based platforms in Embedded

In-Vehicle Infotainment (IVI)

Navigation Music Video Games Directory + Apps *"Today we're thinking and behaving like a consumer-electronics company,"*

Derrick Kuzak, Ford Motor Company VP of Global Product Development

January 2010

Tunnel Creek for IVI

Performance: Advanced Usage Models Multimodal HMI ECU Consolidation Energy Efficient CPU Rich Internet Experience

Automotive Capable: Extended Temp (-40C - +85C) Embedded Lifetime (~7 - 10 yrs) Auto Spec (Grade 3-AEC-Q100 Rev F) Auto OS Support (Microsoft , QNX, MeeGo*) Lower DPM

Rich Ecosystem: Hardware and Software Compatibility and Re-use PC and Consumer

Electronics Ecosystem

Tunnel Creek for IVI In-Vehicle Infotainment Compute Module (ICM)

- 230 Pin MXM2 connector
- Defined Pin functions for 230 Pin
 - Includes numerous common automotive functions in addition to common CE functions
- 106mm x85mm, and 85mm x 85 mm versions
- Edge connector tested at Automotive conditions
- Easy migration to next generation
 - Pin functions service both Tunnel Creek + IOH & Next Gen Atom + IOH design migration without carrier board change

ltem	Date
Customer Presentation/technical overview	NOW
Detailed Specifications/ Q&R material	March
Millville Development Systems	May
Sample ICMs	May
ODM sample ICMs	September
ICM development Kits (Crossville)	Q4 '10
ODM Production	Q4 '10 onward

 \square

Tunnel Creek based ICM Block Diagram

230 pin Finger Edge

Tunnel Creek: Intel® Atom™ Processor-based System-on-Chip for Embedded

ICM scales top to bottom and for multiple generations

ICM will have different CPU speed, memory and other population/depopulation options

Tunnel Creek: Intel® Atom[™] Processor-based System-on-Chip for Embedded

ICM230 Go To Market Options

ODM Enabling

Design, Development, tooling, processes to produce ICM for Tier1 Customers

 An ODM fully enabled, and ready to Bid volume automotive business with Tier1's

ICM Licensing

Intel licensing of design, gerbers to enable Tier1's to choose their manufacturing channel Allows Tier 1 to choose and enable their own ODM or manufacturer and/or take advantage of automotive techniques

ICM Specification

Pin-out, connector, form factor etc.

• Allows room for Tier1 to choose exact cost points while maintaining pin out compatibility or carrier board interoperability

D

Tunnel Creek delivers 1st Generation Intel[®] Atom[™] processor Based SoC for Embedded

Tunnel Creek unlocks a new generation of innovation for Intel Atom processor in Embedded through: I/O Flexibility Bill of Materials Reduction Performance Density

Tunnel Creek SoC architecture poised to enable next 1,000 designs on IA

Tunnel Creek: Intel® Atom[™] Processor-based System-on-Chip for Embedded

For Additional Information on Intel in Embedded Computing

Intel Embedded Design Center

http://edc.intel.com

Intel Embedded at IDF 2010:

http://edc.intel.com/Events/IDF2010/

Date	Time	Room	Session ID	Session Title
4/14	13:00	308	EMBS001	Embedded Modular Design Architecture
4/14	14:00	308	EMBS002	Embedded Software Development and System Debugging Tools for Intel® Atom [™] Processor
4/14	15:00	308	EMBS003	Open Infotainment Platform for Next Generation In-Vehicle Infotainment (IVI) System
4/14	16:00	308	EMBS004	Architecting Communications Infrastructure and Networking Equipment on Intel® Architecture
4/14	17:00	308	EMBQ001	Hot Topic Q&A - Embedded Solutions

Please Fill out the Session Evaluation Form Give the completed form to the room monitors as you exit!

Thank You for your input, we use it to improve future Intel Developer Forum events

Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.
- Intel may make changes to specifications and product descriptions at any time, without notice.
- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Tunnel Creek, Menlow, Queens Bay, Trinity Lake and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.
- Intel, Atom, Xeon, Core and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
- *Other names and brands may be claimed as the property of others.
- Copyright © 2010 Intel Corporation.

Risk Factors

The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the corporation's expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions; customer acceptance of Intel's and competitors' products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Additionally, Intel is in the process of transitioning to its next generation of products on 32nm process technology, and there could be execution issues associated with these changes, including product defects and errata along with lower than anticipated manufacturing yields. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; defects or disruptions in the supply of materials or resources; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; product mix and pricing; start-up costs, including costs associated with the new 32nm process technology; variations in inventory valuation, including variations related to the timing of qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; the timing and execution of the manufacturing ramp and associated costs; and capacity utilization;. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. The majority of our non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management's plans with respect to our investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting our ability to design our products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other risk factors that could affect Intel's results is included in Intel's SEC filings, including the report on Form 10-Q.

Rev. 1/14/10

