2009 International Solid-State Circuits Conference Intel Paper Highlights

Mark Bohr Intel Senior Fellow

Soumyanath Krishnamurthy Intel Fellow

1

2009 ISSCC Intel Paper Summary Under embargo until February, 4, 9 p.m. PST 2009

- The New Era of Scaling for SoC: Fundamental shifts required in both transistor development and circuit design to continue innovation in microprocessors and SoC products
- **Microprocessor:** Intel will lead half of the microprocessor session with four papers discussing future industry leading 45nm enterprise processors
- Wireless Technology: Three research papers on new wireless developments which will enable more capabilities in the future SOC
- **Graphics for Mobile Technology**: A new technique for small mobile devices like laptops, MIDs and nettops for rich multi-media, bringing additional graphics capabilities onto the processor using SIMD
- 15 total papers presented

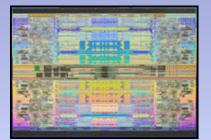
Industry-Leading Enterprise Processors

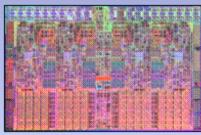
Unquestioned enterprise performance leadership

Paper 3.1: A 45nm 8-Core Enterprise Intel[®] Xeon[®] Processor

- Codename: Nehalem-EX
- 8-core 16-thread enterprise Xeon[®] processor
- 2.3B transistors

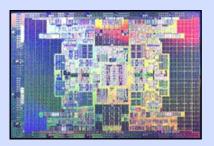
Paper 3.2: A Family of 45nm IA Processors

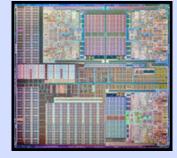

- Codename: Nehalem
- Enhanced Intel[®] CoreTM microarchitecture
- Mobile, desktop and server applications


Paper 3.4: Dynamic Frequency-Switching Clock System on a Quad-Core Itanium[®] Processor

- Codename: Tukwila, 2B+ transistors
- Clock design allows frequency-power optimization without stopping the clock

Paper 3.8: Over One Million TPCC with a 45nm 6-Core Xeon[®] CPU


- Codename: Dunnington
- 1.9B transistors, 16MB L3 cache
- 1M transactions/minute TPCC in 8-socket configuration



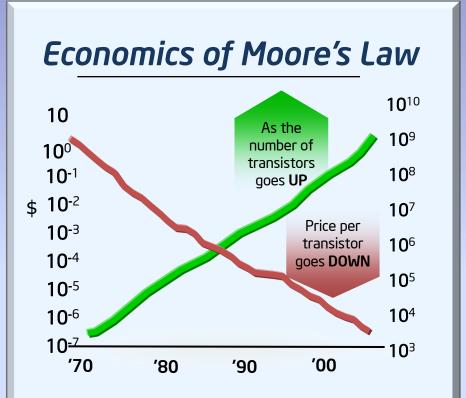
Nehalem-EX

Nehalem

Tukwila

Dunnington

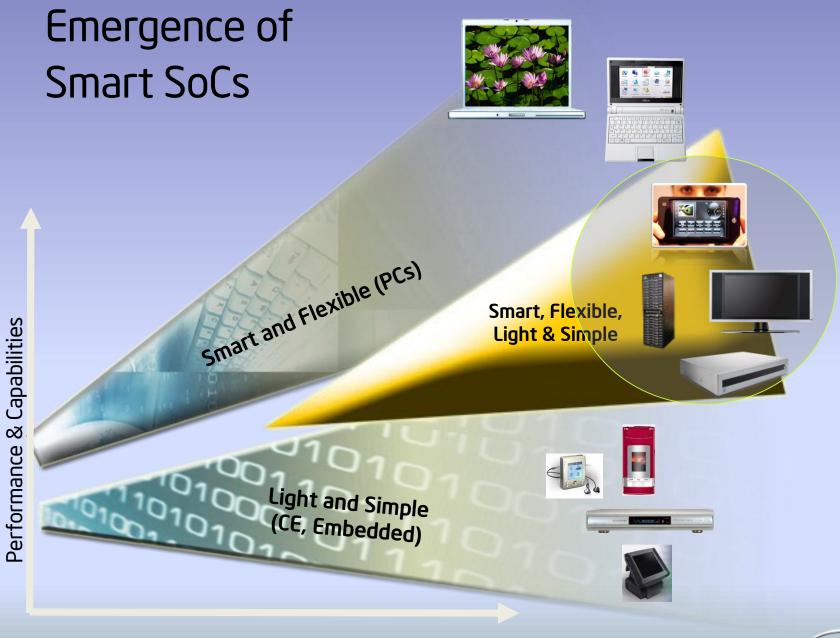
Chip photos not to scale



Copyright © Intel Corporation, 2009. All rights reserved. Third-party marks and brands are the property of their respective owners. All products, dates, and figures are preliminary and subject to change without notice.

Mark Bohr, Intel Senior Fellow ISSCC Plenary Talk, Feb 9th THE NEW ERA OF SCALING IN AN SOC WORLD

Moore's Law Enabling ... More

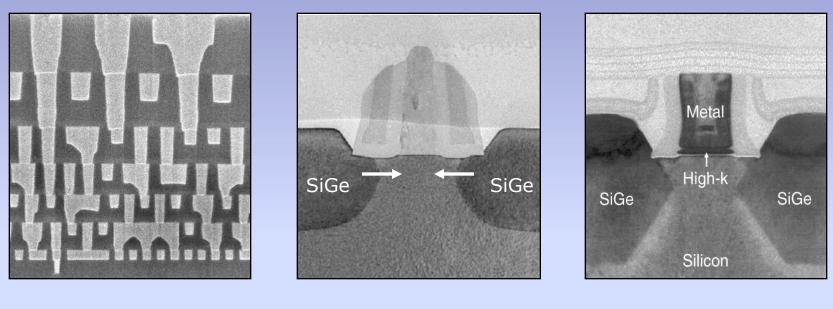


Continue the pace of dimension reduction and feature improvement

- Supporting unprecedented complexity
- 45nm -> 32nm -> 22nm
- 100s of millions of transistor SoCs

(intel)

Intel Advantage

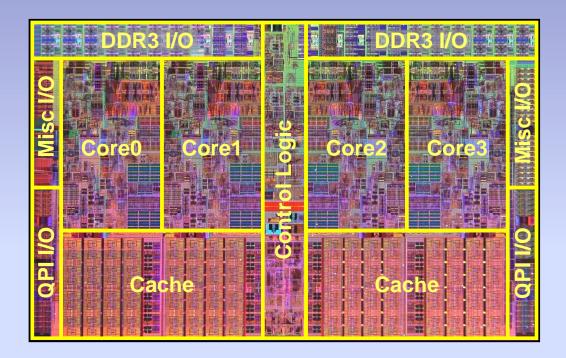


High performance computing leadership Process technology & high volume manufacturing High HW & SW complexity handling expertise

Extensive R&D investment

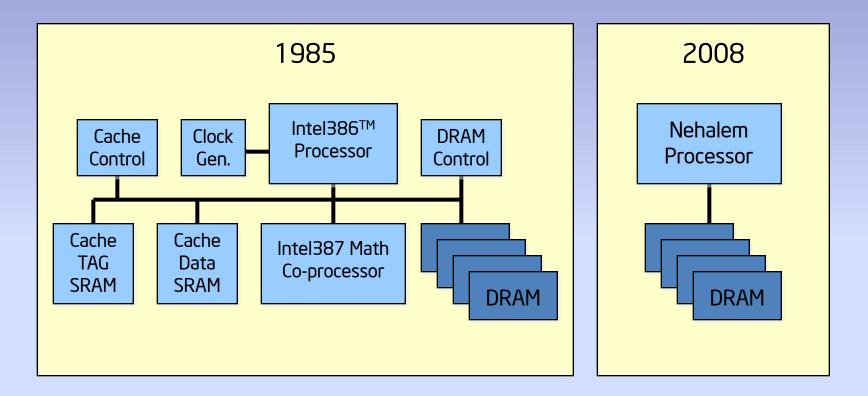
The New Era of Device Scaling

Copper + Low-k

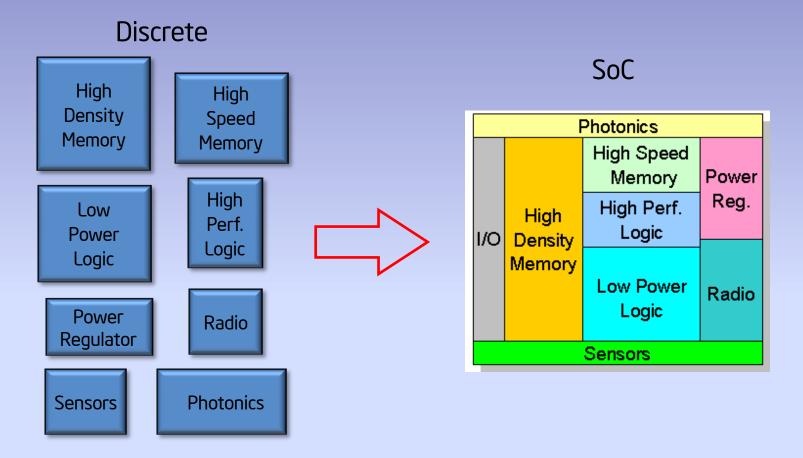

Strained Silicon

High-k + Metal Gate

Modern CMOS scaling is as much about material and structure innovation as dimensional scaling


45 nm Nehalem CPU

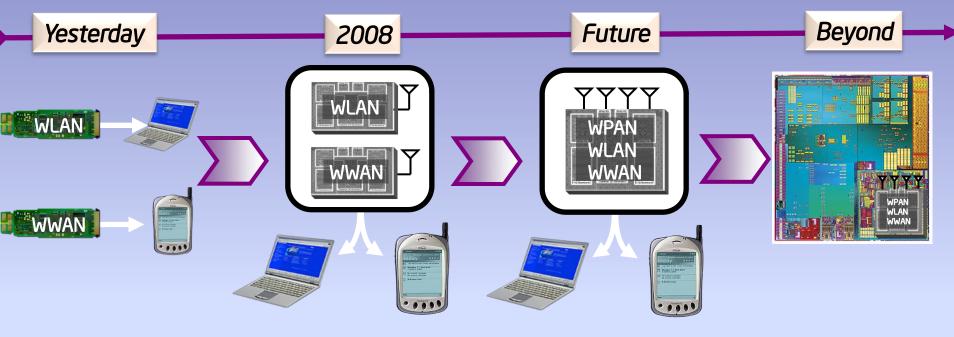
Modern microprocessors are a complex system on a chip with multiple functional units and multiple interfaces


PC Platform Comparison

Modern microprocessors integrate many of the separate system components from past platforms

System Integration

System integration will continue, using key elements such as the Atom[™] core, to realize improved performance and power in a smaller form factor


Krishnamurthy Soumyanath (Soumya) Intel Fellow, Corporate Technology Group

Director, Communications Circuits Research

FUTURE SOC TECHNOLOGIES: DIGITAL MULTI-RADIO, GRAPHICS FOR MOBILE & SENSORS

The Wireless "Radio" Evolution

Discrete Radios

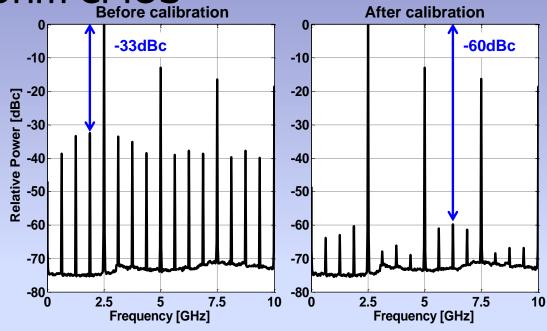
One standard Bulky, costly Inflexible

Integrated Radios

Full CMOS Integration Dual-standard +Performance, -Cost, -TTM

<u>Digital Multi-Radios</u>

Reconfigurable CMOS Radios Multi-standard Tunable antenna **SOC** Full DMR on SOC New Embedded Apps --Cost, --TTM, ++Perf.


Vision: Connectivity Anytime, Anywhere for Everyone

Digital Techniques for radio data transfer in 45nm CMOS

- Pulling-free LO generation by means of fractional division
- Reduced amount of components required, saving silicon area, power and cost
- Takes advantage of inherent statistical variations in the 45nm CMOS process to measure and calibrate mismatches

14

WiFi/WiMax 2.5/3.5GHz LO generation with digital calibration with no filtering

Session 12.6: "A 4.75GHz fractional frequency divider with digital spur calibration in 45nm CMOS"

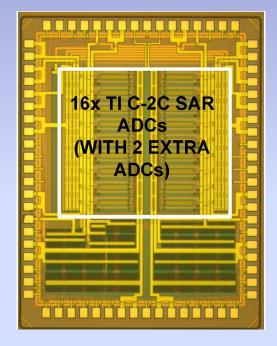
Sync-n-Go

Wireless Display

Wireless Computing

Gigabit wireless enables better user experience and new applications

Airpor Movies

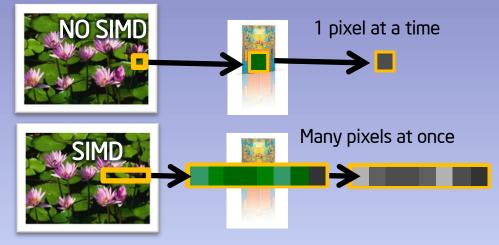

Low power, high data for 60Ghz communication

Convert analog signals to digital by using multiple SAR ADCs and spreading task across all of them.

Data rates in excess of 3Gb/s to allow a DVD quality movie to transfer wirelessly in less than 15 seconds

First ADC that can resolve 7 bits at 2.5Gb/s in pure CMOS, Key step toward digital radios with high performance and low power

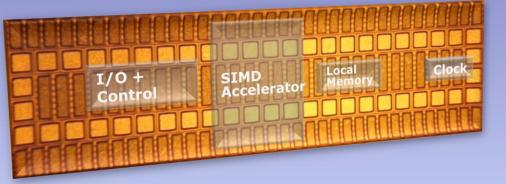
Power comparable to the state of the art ADCs available today, but with better accuracy


First 7 bit 2.5GS/s ADC in 45nm CMOS process.

Session 4.2: "A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP Digital CMOS" (joint work with Carnegie Mellon University)

SIMD Accelerator

"A 300mV 494GOPS/W Reconfigurable Dual Supply 4-Way SIMD Vector Processing Accelerator in 45nm CMOS"


Great multimedia experiences require high-performance **SIMD** processing in the CPU or GPU *SIMD* = <u>Single Instruction Multiple Data</u> SIMD Example: Make an image black & white

A Low-power, Scalable SIMD Accelerator

SIMD Accelerator Prototype

SIMD Challenges

• High leakage currents and — poor power management

18

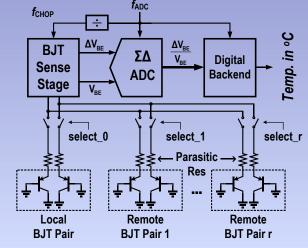
Our Solutions

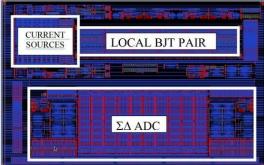
- Fine-grain power gating and active power management
- Do not scale down to ultra low voltages ------ New ultra low voltage circuit techniques

Operation from 1.3V down to ultra-low **0.23V**. Energy-efficiency up to **10X better** at normal voltages and up to **80x better** at ultra-low voltages

Potential: Much better graphics on small devices

14.6 A 300mV 494GOPS/W Reconfigurable Dual-Supply 4-Way SIMD Vector Processing Accelerator in 45nm CMOS


First 32nm thermal sensor for multi-core microprocessor applications


Achievement:

Numerous remote sensors used to accurately measure temperature over the entire multi-core die in 32nm CMOS

Results:

- Improves processor power management
- Ability to maximize microprocessor performance, reliably.
- Limit leakage through load-balancing with multiple location hot spot temperature measurements
- Extend life of processor components by maintaining lower operational stress
- Multiple sensors allow more precise identification and intervention

CPU Thermal/power management is crucial to platform performance and energy efficiency

Session 20.1: "A 1.05V 1.6mW, 0.45°C 3σ Resolution $\Sigma\Delta$ based Temperature Sensor with Parasitic Resistance Compensation in 32nm Digital CMOS Process"

Thank You

- Attend Mark Bohr's plenary session:
 - Feb 9th: 10:30am
 - Press Q&A: 1:30pm

Contact Intel for more info:

- <u>www.intel.com/pressroom</u>
- Megan Langer: <u>megan.e.langer@intel.com</u>, 503-333-1121

BACKUP

List of Papers (15)

Microprocessor:

A 45nm 8-Core Enterprise Xeon® Processor

A Family of 45nm IA Processors

Dynamic Frequency-Switching Clock System on A Quad-Core Itanium® Processor

Over One Million TPCC with a 45nm 6-Core Xeon® CPU

Wireless:

A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP Digital CMOS

A 4.75GHz Fractional Frequency Divider with Digital Spur Calibration in 45nm CMOS

A 1MHz-Bandwidth Type-I $\Delta\Sigma$ Fractional-N Synthesizer for WiMAX Applications

Mobile:

A Scalable 3.6-to-5.2mW 5-to-10Gb/s 4-Tap DFE in 32nm CMOS

A 1.1V 5-to-6GHz Reduced-Component Direct-Conversion Transmit Signal Path in 45nm CMOS

13.1 A 172mm2 32Gb MLC NAND Flash Memory in 34nm CMOS

Graphics on Mobile:

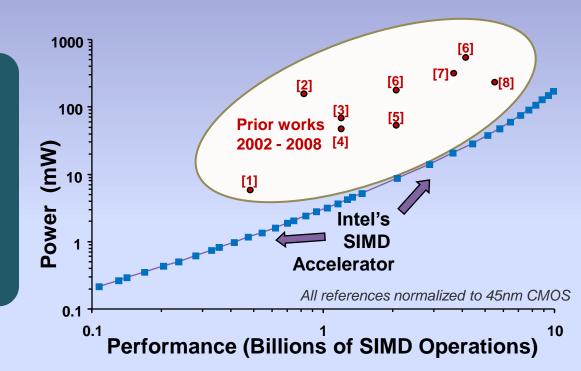
14.6 A 300mV 494GOPS/W Reconfigurable Dual-Supply 4-Way SIMD Vector Processing Accelerator in 45nm CMOS Process Technology:

22.3 A Single-Chip Highly Linear 2.4GHz 30dBm Power Amplifier in 90nm CMOS

27.1 A 4.0GHz 291Mb Voltage-Scalable SRAM in 32nm High-κ Metal-Gate CMOS with Integrated Power Management

Optical I/O Technology in Tera-Scale Computing

A 1.05V 1.6mW 0.45°C 3σ -Resolution $\Delta\Sigma$ -Based Temperature Sensor with Parasitic-Resistance Compensation in 32nm CMOS Forum:


RF Transceivers from 3.x Toward 4G/OFDM-Based Systems

SIMD Accelerator Results

Prototype Results:

- 41% lower power overall
- 6.5x lower active leakage
- 10x lower standby leakage
- 494GOPS/W peak efficiency
- Operates from 0.23V-1.3V
- 161mW @ 2.3GHz, 1.1V

