Exploratory Research Essential Computing

Andrew A. Chien Director Intel Research Vice President Corporate Technology Group

Intel Research's Mission

"Drive off-roadmap, high-impact exploratory research vital to Intel"

Advancing the State of the Art

Exploratory Research

World class technical expertise

Multidisciplinary teams

Open Collaboration, university ties

Intel Research around the world

Impact on Intel

- Proactive Health Key Technology and Strategy
- Ethnography and User-centered Design
- Location technology + applications
- Sensors and Activity Inference (Sensornetworks)
- Nanovision and Superresolution
- Planetlab Networking, Distributed Systems
- High Speed Signalling
- Ultra-low Power

•

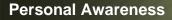
Essential Computing

Simplifying and enriching all aspects of work and daily life

Richly Communicative "Easily form and enrich relationships"

Essential Computing

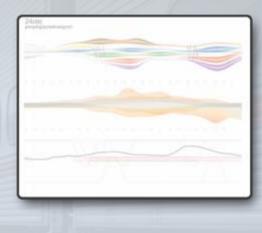
Physicality "Actuating everyday objects"


Concealing Complexity "Technology that just works"

Mobile Sensing Platform & Activity Inference

- Informative, yet unobtrusive sensing platforms
- Sensors, form factors, ergonomics
- Activity inference
- Enhanced Context-awareness
- Better Applications and Interfaces

- Mobile Sensing Platform prototypes
- Embedded inference; detect continuously; enable context-aware applications
- Experiments across applications, contexts, sensing platforms
- Ex: ~ 85% accuracy on detecting sitting, standing, walking up/down stairs, riding elevator, brushing teeth



Mobile Times

- Incorporate temporality as a fundamental element in designing technologies
 - Current focus is on objects, places, people and synchronous/asynchronous
- Deeper understanding of time as an aspect of everyday life
 - Living in a 24/7 world; relative vs. absolute time
 - "freshness date" for technologies, content
 - Move from information flows to temporal interactions
 - Technology that fits our daily temporal patterns

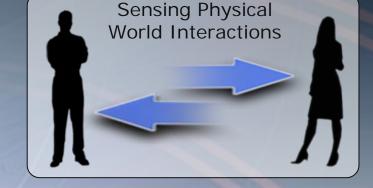
- Develop models of temporality across cultures
- Ethnological studies diverse geographies, cultures, markets and segments
- Shift to integrated platform for probabilistic data management; interactive exploration of probabilistic models of temporal-spatio behaviors
- New visualizations, representations of qualitative and quantitative data

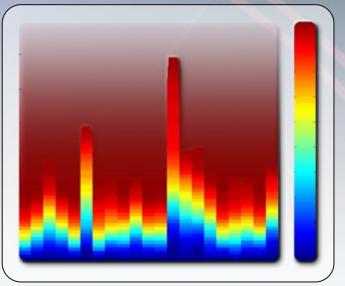
engagement levels Capture and share the right level of information

Research Activities

(social networks)

- Prototypes and group data collection experiments
- Multi-person conversation detection
 - 80%, 4-way (meeting room)
 - 70%, 4-way (noisy open atrium)

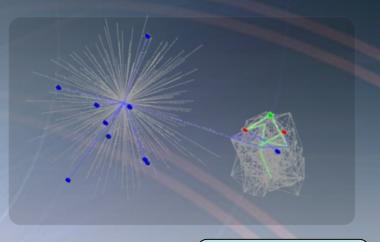

Inferring Communities & Communication

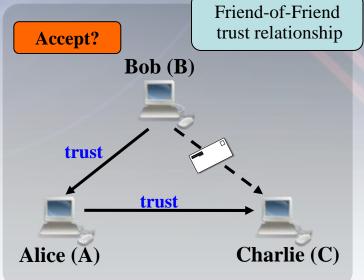

interactions in groups and communities

Identify and model behavior and

Extract interaction & group-specific

attributes such as emotion, intent,

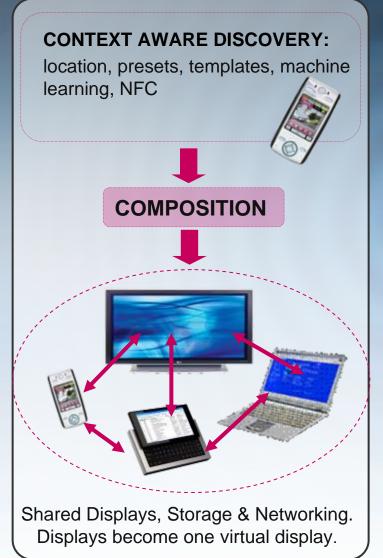



Reliable Email

- Explore new approaches to fighting spam
- Social Whitelisting: Use social relationships to accept mail from people you don't know, but preserve privacy
- Collaborative filtering: users vote on spam; system defends against malicious users who cast fake votes

Research activities

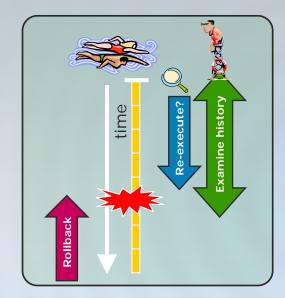
- Combination of social networking, distributed systems, secure protocols
- Simulation studies to demonstrate viability (e.g., eliminate 87% of false positives identified in email trace)

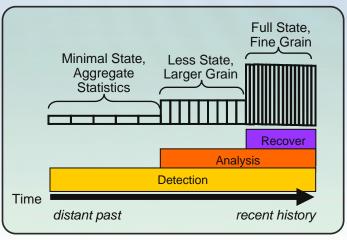

Richly Communicative

Dynamically Composable Computing (DCC)

- "Carry Small, Live Large"
- Research for ultra-mobile, rich user experiences, spanning device ensembles and local infrastructure
 - Stand-alone devices have limited UI, segmented usage, isolated resources
- Acquire and combine nearby resources (e.g. displays, storage, networks, processing) to build a logical computing platform

- Make it easy for users to wirelessly compose multi-device platforms through automation and context.
- Speedup composition by encoding service information in the discovery protocol (no overhead of forming IP connections)
- Extend logical platform battery lifetime by trading-off power and bandwidth, using a system-wide power model.



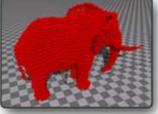

Dynamic Inspection: Parallelism for Software Robustness

Concealing Complexity

- Programs misbehave too often: bugs, security attacks, hardware faults.
- Runtime tools are too slow to be truly effective.
- The challenges of debugging will increase with multi-core systems.

- Utilize additional performance of multi-core systems for debugging.
- Automatic detection of- and recovery fromsoftware errors. Inspect program's dynamic behavior on a core and use program history to understand failures.
- Efficient dynamic program inspection & rewind via a log that is captured by the hardware, managed by the system and exposed to software

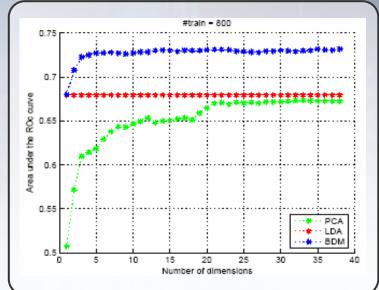
Dynamic Physical Rendering


Physicality

- Flexibly conformable and mobile matter
- Tangible interfaces
- Programmable matter
- Sensing, Planning, Actuation

- Design of fundamental elements of programmable matter (claytronics)
- Algorithms for shaping, morphing, motion
- Programming and debugging for million-element systems
- Power and system challenges for unreliable system elements

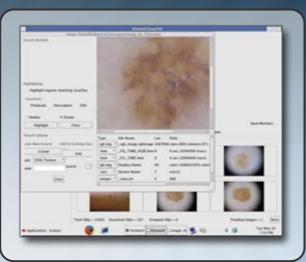


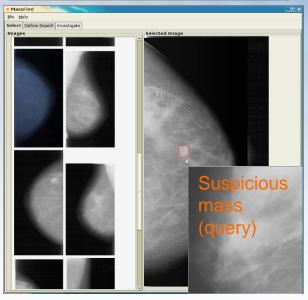

Concealing Complexity

Diamond

Tap the value in *complex*, *loosely-organized* data by enabling cheaper and easier search, retrieval, processing (higher level)
Novel algorithms and architectures, non-indexed search

- Transform distance metric learning into binary classification problems
- Boosted Distance Metric learning improves with more dimensions and requires less storage than baseline algorithms
- Interactive data exploration environments - "play" with complex data (a la spreadsheets)
- Collaborative research with Carnegie Mellon University




Diamond - Breast Cancer

- Apply novel algorithms and architecture to medical research and diagnosis
- Improve doctor decisions by retrieving similar annotated cases

Research Results

- Automatic detection of suspicious masses using [Zheng et al., 2005] and UPMC features to describe mass region of interest
- Supervised learning of optimal distance metric
- Interactively construct searchlets based on examples of classified cell images
- Find cells of particular size (ex. adipocytes) in microscopy images
- Collaborative research with University of Pittsburgh Medical Center.

What you'll see today from IR

Exploratory Research

- Mashmaker: Mashups for the masses
- Interactive Search-Assisted Diagnosis for Medical Imaging (ISAD)
- Dynamic Physical Rendering (DPR)
- BeChip
- Intelligent Grid Management (IGM)
- Integrated Biosystems Lab

People Centered Innovation

- Women and Technology: Options and Growth for the Next 50%
- Personal Digital Money
- Mobile Times: Can Technologies Deliver More Than Busyness
- Islamic Charities

What you'll see today (con't)

Tera-scale Computing

- Log-Based Architecture (LBA)
- Ivy

Energy-Efficiency

- Bright Green: Sustainable Living as a Lens for Technological Innovation

Building the Mobile Tomorrow

- Dynamically Composable Computing (DCC)
- UbiFit: Use of mobile sensing and personal displays to motivate fitness
- Context-Aware IM: Sensing and inference for social application on UMPCs
- Pedestrian Navigation: Inertial sensors (gyros and magnetometers) to make more intuiting reactive applications (map demo)