Silicon Technology Leadership and the New Scaling Paradigm

Paolo Gargini

Director of Technology Strategy and Intel Fellow Sr. Member, IEEE Chairman of the ITRS

Santa Clara June 20, 2007

Key Messages

- Intel's R&D pipeline will sustain Moore's Law for the foreseeable future
- 45 nm high-k + metal gate is the most significant innovation in transistor technology in 40 years
- Intel has removed 100 percent of the lead across its entire portfolio of packages in its 45nm family of microprocessors
- Intel continues its unwavering commitment to support R&D for future technologies and to deliver the benefits of Moore's Law to our customers

Outline

- Intel's Silicon R&D Pipeline
- From Geometrical Scaling to Equivalent Scaling
- DFM
- Getting the Lead out
- Future Technology Options
- Summary

Delivering Moore's Law

Moore's Law = *Transistor Budget + Lowest Power and Lowest Cost*

Intel's Silicon R&D Pipeline

Continuous flow of new technologies from research to development to manufacturing

Outline

- Intel's Silicon R&D Pipeline
- From Geometrical Scaling to Equivalent Scaling
 - Strained Silicon
- DFM
- Getting the Lead out
- Future Technology Options
- Summary

Gate Oxide Scaling

Intel Ramped Production Ahead of Industry on 90 nm Technology Generation

Total CPU Shipments

Geometrical Scaling Limitations

S/D Leakage
Gate Leakage
S/D Resistance
Decreased Mobility

Gate oxide scaling is reaching its limits

Mobility Innovation

Strained P-Channel Transistor

Strained N-Channel Transistor

Improved Transistor Performance

65 nm transistors increase drive current 10-15% with enhanced strain

65 nm transistors can alternatively provide ~4x leakage reduction No other company has matched these performance-leakage capabilities

65 nm Yield Improvement Trend

65 nm is Intel's highest yielding process ever

Intel Only: Process + Products + Production

65 nm Summary

- Intel has been shipping 65 nm processors since October 2005, more than one year ahead of the competition
- Intel has shipped >120 million 65 nm
- Only Intel has three 65 nm / 300 mm fabs shipping in volume

Logic Technology Evolution

Process Name	<u>P860</u>	<u>P1262</u>	<u>P1264</u>	<u>P1266</u>	<u>P1268</u>
Lithography	130 nm	90 nm	65 nm	45 nm	32 nm
1 st Production	2001	2003	2005	2007	2009
Wafer (mm)	200/300	300	300	300	300

Manufacturing

Development

Outline

- Intel's Silicon R&D Pipeline
- From Geometrical Scaling to Equivalent Scaling
 - Strained Silicon
 - High-k+ Metal gate for 45nm technology
- DFM
- Getting the Lead out
- Future Technology Options
- Summary

High-k Dielectric reduces leakage substantially

intel

3.0nm High-k

Gate

Silicon substrate

10

णाल

Benefits compared to current process technologies

	High-k vs. SiO ₂	Benefit Much faster transistors		
Capacitance	60% greater			
Gate dielectric leakage	> 100x reduction	Far cooler		
	November 4th. 2003			

Continuation of Moore's Law

Process Name	P856	P858	Px60	P1262	P1264	P1266	P1268	P1270
1st Production	1997	1999	2001	2003	2005	2007	2009	2011
Process Generation	0.25 μm	0.18 μm	0.13 μm	90 nm	65 nm	45 nm	32 nm	22 nm
Wafer Size (mm)	200	200	200/300	300	300	300	300	300
Inter-connect	Al	Al	Си	Cu	Cu	Cu	Cu	?
Channel	Si	Si	Si	Strained Si	Strained Si	Strained	Strained Si	Strained Si
Gate dielectric	SiO ₂	High-k	High-k	High-k				
Gate electrode	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Metal	Metal	Metal

Introduction targeted at this time

10277

Subject to change

Intel found a solution for High-k and metal gate

November 4th, 2003

45 nm Technology Benefits

45 nm benefits compared to 65 nm

~2x improvement in transistor density, for either smaller chip size or increased transistor count

~30% reduction in transistor switching power

>20% improvement in transistor switching speed or >5x reduction in source-drain leakage power

>10x reduction in gate oxide leakage power

These performance and leakage improvements would not be possible without high-k + metal gate

1-26-2007

Mark Bohr

45nm High-k Performance/Power Benefits

Transistor Performance vs. Leakage

Gate Oxide Leakage

Gate oxide scaling stopped due to leakage

Gate Oxide Leakage

Technology Generation

High-k dielectric breaks through this barrier

High-k + Metal Gate Transistors

Metal Gate Increases the gate field effect High-k Dielectric Increases the gate field effect Allows use of thicker dielectric to reduce gate leakage

High-k + Metal Gate Combined Transistor drive current increased >20% Or source-drain leakage reduced >5x Gate oxide leakage reduced >10x

High-k + Metal Gate Transistors

"The implementation of high-k and metal gate materials marks the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s" — Gordon Moore

Density Scaling on Track

45 nm SRAM Chip

0.346 µm² cell 153 Mbit density 119 mm² chip size >1 billion transistors Functional silicon in Jan '06

45 nm SRAM test vehicle includes all transistor and interconnect features to be used on 45 nm microprocessor

Logic Technology Evolution

Process Name	<u>P860</u>	<u>P1262</u>	<u>P1264</u>	<u>P1266</u>	<u>P1268</u>		
Lithography	130 nm	90 nm	65 nm	45 nm	32 nm		
1 st Production	2001	2003	2005	2007	2009		
Wafer (mm)	200/300	300	300	300	300		
Manufacturing							
					(intel		

CPU Shipments (65nm vs. 45nm)

Outline

- Intel's Silicon R&D Pipeline
- From Geometrical Scaling to Equivalent Scaling
- DFM
- Getting the Lead out
- Future Technology Options
- Summary

Design for manufacturing (DFM)

- Moore's Law depends on scaling physical dimensions
- Small variations in dimensions and doping can cause significant variation in function, power and performance
- "DFM" is a set of Design-Process methodologies that reduces and mitigates "variability"

DFM is the solution to the variability challenge

Rounding in transistor layouts

Litho DFM solution: Advanced APSM masks w/ Litho DFM

Intel was first to ramp Alternating Phase Shift Masks (APSM) with litho DFM for 65nm gate patterning and L_{eff} control

Committed to Provide the Best Total Cost at 45nm

SRAM - Functional silicon in Jan '06

Exceptional Gate control through PSM and Double Patterning

Intel DFM advantage: Collaboration of diverse disciplines

Diverse disciplines collaborate under one roof to co-optimize DFM solutions

45 nm Manufacturing Fabs

D1D Oregon - 2H '07

Fab 28 Israel - 1H '08

Fab 32 Arizona - 2H '07

Fab 11X New Mexico - 2H '08

45 nm Yield Improvement Trend

45 nm defect reduction trend at expected 2 year offset 45 nm on track for production in 2H '07

World's First Working 45 nm CPUs

Penryn

45 nm Hi-k Intel® Core™2 and Intel Xeon™ processors Mobile, Desktop, Workstation, and Server Optimized

Silverthorne

45 nm Hi-k new low power microarchitecture

Mobile Internet Devices and Ultra-Mobile PCs

Tick/Tock: Our Model for Sustained Microprocessor Leadership

Forecast -

Driving Down Power and Size CPU + CHIPSET

Outline

- Intel's Silicon R&D Pipeline
- From Geometrical Scaling to Equivalent Scaling
- DFM
- Getting the Lead out
- Future Technology Options
- Summary

Summary

- Intel has removed 100 percent of the lead (Pb) across its entire portfolio of packages in its 45nm family of microprocessors
 - ... 65nm chipsets will transition to 100% lead-free in 2008
- Intel's 45nm Hi-k metal gate process technology represents a dramatic transition to new materials that enable energy efficient performance microprocessors
- Intel's family of 45nm microprocessors will begin production in second half of 2007
- Intel's effort to eliminate lead in our products is part of broader strategy to support an environmentally sustainable future

Reduced Environmental Footprint

Recent Successes

- Launched Intel® Core[™]2 Duo processors: for desktops up to 40% faster and 40% more energy efficient
- Transitioned Intel® StrataFlash® Cellular Memory packages to halogen-free technology.
- Saved over 9 billion gallons of fresh water through our water reuse and recycling practices
- Recycled more than 70% of our chemical and solid wastes
- Reduced our global warming gas emissions the equivalent of removing 50,000 cars from the road
- Named Technology Super Sector Leader by Dow Jones Sustainability Index for the 6th year running

Intel 2006 Corporate Social Responsibility report recently posted online http://www.intel.com/intel/cr/gcr06/overview.htm

Eliminating the Lead (Pb) in Intel Components Flip-Chip Pin Grid Array (FC-PGA) Flip-Chip Ball Grid **Array (FC-BGA) Capacitors** Flip-Chip **v**ad Bump Lead Flip-Chip **Pin Grid** Bump ad Lead **Capacitors** ЛЛЛЛЛЛЛЛЛ LVAd socket **Printed Circuit** Solder **Board Balls** Lvad ***95% of the Lead Content Removed from** Flip-chip Packages in 2004 *Percentage based on weight

Lead-Free Solder Properties Affect Low-K Inter Layer Dielectric

* CTE = Coefficient of Thermal Expansion *PPM= Parts Per Million

Low-K Silicon & Lead-free Package Integration Challenge

example silicon cross-section

SiO₂= Silicon Dioxide

 Successful Integration of Silicon & Lead-Free Flip Chip Package Technologies requires a significant reduction in
 Inter Layer Dielectric (ILD) Stress

Introducing Intel's 45nm 100% Lead-Free Technology

Traditional High-Lead Bumps

Lead-free Advanced Bump Metallurgy

Solders containing lead have been replaced with a copper column and lead-free solder

Lead Elimination Summary

- Intel has removed 100 percent of the lead across its entire portfolio of packages in its 45nm family of microprocessors
 ... 65nm chipsets will transition to 100% Lead-free in 2008
- Intel's 45nm Hi-k metal gate process technology represents a dramatic transition to new materials that enable energy efficient performance microprocessors
- Intel's family of 45nm microprocessors will begin production in second half of 2007
- Intel's effort to eliminate lead in our products is part of broader strategy to support an environmentally sustainable future

For further information on Intel's lead free technology, please visit www.intel.com/technology/silicon

Outline

- Intel's Silicon R&D Pipeline
- From Geometrical Scaling to Equivalent Scaling
- DFM
- Getting the Lead out
- Future Technology Options
- Summary

Improving on a Planar Transistor

- In planar devices on-current
 An ideal transistor would have is mostly carried in a thin top layer
- Body current is a source of leakage when the device is off
- a gate surround a very thin channel
- This gives the highest on to off ratio & therefore highest power efficiency

Fully Depleted Transistor Structures

1. Ultra thin Tsi 1. Wider Tsi than planar

2. Limited to SOI

1. FIN W_{si} is wider than planar T_{si} 2. Self-Aligned gates 3. Bulk-Si or SOI

Gate

Gate

- Fully depleted thin-body devices improve SCE performance. Tri-Gate is the most favorable architecture for L_G scaling. •

2. Non Self-aligned

Tri-Gate Critical Dimensions

- I_{DSAT} is normalized by $Z_T = W_{Si} + 2*H_{Si}$
- Tri-gate electrostatics strongly depend on the ratio of L_{eff} / W_{eff} as defined by: L _{eff} = L_G 2 * X_{UD}

$$W_{eff} = W_{Si} + 2(\epsilon_{Si}/\epsilon_{OX})^*T_{OX}$$

Tri-Gate Transistor: "A template for the future"

Technical details presented at: ISSDM Conference, Japan, Sept 17, 2002 By Robert Chau

Tri-Gate FIN Critical Dimensions

- I_{DSAT} is normalized by $Z_T = W_{Si} + 2*H_{Si}$
- Tri-gate electrostatics strongly depend on the ratio of L_{eff} / W_{eff} as defined by: L _{eff} = L_G 2 * X_{UD}

$$W_{eff} = W_{Si} + 2(\epsilon_{Si}/\epsilon_{OX})^*T_{OX}$$

Tri-Gate On Bulk!

- I_{DSAT} is normalized by $Z_T = W_{Si} + 2*H_{Si}$
- Tri-gate electrostatics strongly depend on the ratio of L_{eff} / W_{eff} as defined by: L _{eff} = L_G 2 * X_{UD}

$$W_{eff} = W_{Si} + 2(\epsilon_{Si}/\epsilon_{OX})^*T_{OX}$$

The Key is Optimizing the Integration

1. Tri-gate gives better off current and therefore less wasted power

- 2. High k metal gate gives both higher speed and less wasted power
- 3. Strained Si produces higher speed and less wasted power

The sum of all these pieces is once again world leading transistors

Compound Semiconductors

Si = Silicon AI = Aluminum Ga= Gallium In = Indium P = Phosphorous As = Arsenic Sb = Antimony

- Silicon in transistor channel is replaced by "III-V compound semiconductor"
- Result is much higher electron mobility, meaning significant performance and power improvements

Increasing Electron Mobility

Increased mobility in the transistor channel leads to higher performance and less energy consumption

$$I_{DSAT} \propto \frac{W}{L} \cdot \mu \cdot C_{OX}$$

Relative mobility

	Compound Semiconductors		
Si	GaAs	InAs	InSb
1	8	33	50

Compound semiconductors have higher electron mobility than Si; InSb (indium antimonide) is highest of all (intel)

Looking ahead

CMOS to continue for 15-20 years or more; Moore's Law could be extended indefinitely via new architectures, heterogeneous integration, 3D

Depletion and Enhancement Mode

Speed, Power, Performance

InSb QWFETs show > 10x reduction in active power dissipation compared to Si MOSFETs

Benchmarking InSb QWFETs

InSb transistors show significant improvement in intrinsic gate delay and energy-delay product over Si MOSFETs at equivalent gate length

Integration on Si Platform

Current research on incorporation of new transistor onto the existing Si platform

Innovation-Enabled Technology Pipeline

Moore's Law = *Transistor Budget + Lowest Power and Lowest Cost*

Outline

- Intel's Silicon R&D Pipeline
- From Geometrical Scaling to Equivalent Scaling
- DFM
- Getting the Lead out
- Future Technology Options
- Summary

Summary

- Intel's R&D pipeline will sustain Moore's Law for the foreseeable future
- 45 nm high-k + metal gate is the most significant innovation in transistor technology in 40 years
- Intel has removed 100 percent of the lead across its entire portfolio of packages in its 45nm family of microprocessors
 - ... 65nm chipsets will transition to 100% Lead-free in 2008
- Intel continues its unwavering commitment to support R&D for future technologies and to deliver the benefits of Moore's Law to our customers

Legal Information

I INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

I All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

1*Other names and brands may be claimed as the property of others.

I Copyright © 2007 Intel Corporation.

